keras-hub-nightly 0.20.0.dev202504010407__tar.gz → 0.20.0.dev202504030357__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (470) hide show
  1. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/api/models/__init__.py +18 -0
  3. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/api/tokenizers/__init__.py +3 -0
  4. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/gemma_attention.py +26 -17
  5. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_attention.py +2 -2
  6. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +2 -2
  7. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_attention.py +2 -2
  8. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_attention.py +2 -2
  9. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_attention.py +2 -2
  10. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/qwen_attention.py +2 -2
  11. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_attention.py +212 -0
  12. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_backbone.py +198 -0
  13. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_encoder.py +128 -0
  14. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm.py +173 -0
  15. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_masked_lm_preprocessor.py +125 -0
  16. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier.py +121 -0
  17. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_text_classifier_preprocessor.py +128 -0
  18. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_tokenizer.py +62 -0
  19. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/mmdit.py +2 -2
  20. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/keras_utils.py +44 -1
  21. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/preset_utils.py +2 -1
  22. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/utils/timm/__init__.py +0 -0
  23. keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/utils/transformers/__init__.py +0 -0
  24. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/version_utils.py +1 -1
  25. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  26. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub_nightly.egg-info/SOURCES.txt +10 -0
  27. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/setup.py +1 -1
  28. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/README.md +0 -0
  29. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/__init__.py +0 -0
  30. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/api/__init__.py +0 -0
  31. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/api/layers/__init__.py +0 -0
  32. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/api/metrics/__init__.py +0 -0
  33. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/api/samplers/__init__.py +0 -0
  34. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/api/utils/__init__.py +0 -0
  35. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/__init__.py +0 -0
  36. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/api_export.py +0 -0
  37. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/__init__.py +0 -0
  38. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/__init__.py +0 -0
  39. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  40. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  41. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  42. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  43. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  44. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  45. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  46. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  47. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  48. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  49. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  50. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  51. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  52. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  53. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  54. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  55. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  56. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  57. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  58. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  59. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  60. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  61. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  62. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  63. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  64. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/metrics/__init__.py +0 -0
  65. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/metrics/bleu.py +0 -0
  66. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/metrics/edit_distance.py +0 -0
  67. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/metrics/perplexity.py +0 -0
  68. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/metrics/rouge_base.py +0 -0
  69. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/metrics/rouge_l.py +0 -0
  70. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/metrics/rouge_n.py +0 -0
  71. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/__init__.py +0 -0
  72. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/__init__.py +0 -0
  73. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  74. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  75. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  76. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/albert_presets.py +0 -0
  77. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  78. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  79. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  80. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/backbone.py +0 -0
  81. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bart/__init__.py +0 -0
  82. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  83. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bart/bart_presets.py +0 -0
  84. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  85. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  86. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  87. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/basnet/__init__.py +0 -0
  88. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/basnet/basnet.py +0 -0
  89. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  90. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  91. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  92. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  93. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/__init__.py +0 -0
  94. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  95. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  96. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  97. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/bert_presets.py +0 -0
  98. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  99. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  100. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  101. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/__init__.py +0 -0
  102. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  103. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  104. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  105. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  106. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  107. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  108. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  109. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/causal_lm.py +0 -0
  110. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  111. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/__init__.py +0 -0
  112. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  113. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  114. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  115. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  116. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_presets.py +0 -0
  117. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  118. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  119. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  120. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  121. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/cspnet/__init__.py +0 -0
  122. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  123. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  124. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  125. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  126. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  127. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  128. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  129. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  130. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  131. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  132. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  133. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  134. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  135. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  136. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  137. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  138. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  139. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  140. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  141. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  142. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  143. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  144. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  145. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/densenet/__init__.py +0 -0
  146. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  147. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  148. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  149. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  150. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  151. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  152. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  153. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  154. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  155. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  156. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  157. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  158. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  159. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  160. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/cba.py +0 -0
  161. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  162. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  163. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  165. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  166. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  167. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  168. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/electra/__init__.py +0 -0
  169. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  170. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/electra/electra_presets.py +0 -0
  171. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  172. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/__init__.py +0 -0
  173. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  174. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  175. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  176. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  177. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  178. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  179. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  180. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/__init__.py +0 -0
  181. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  182. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  183. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  184. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  186. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  187. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  188. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  189. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/flux/__init__.py +0 -0
  190. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/flux/flux_layers.py +0 -0
  191. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/flux/flux_maths.py +0 -0
  192. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/flux/flux_model.py +0 -0
  193. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/flux/flux_presets.py +0 -0
  194. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  195. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  196. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/__init__.py +0 -0
  197. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  198. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  199. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  200. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  201. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  202. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  203. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  204. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/__init__.py +0 -0
  205. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_backbone.py +0 -0
  206. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_causal_lm.py +0 -0
  207. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py +0 -0
  208. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_decoder_block.py +0 -0
  209. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_image_converter.py +0 -0
  210. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py +0 -0
  211. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_presets.py +0 -0
  212. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_tokenizer.py +0 -0
  213. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/gemma3_vit.py +0 -0
  214. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gemma3/rms_normalization.py +0 -0
  215. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt2/__init__.py +0 -0
  216. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  217. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  218. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  220. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  221. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  222. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  223. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  224. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  225. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  227. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  228. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/image_classifier.py +0 -0
  229. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  230. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/image_segmenter.py +0 -0
  231. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  232. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/image_to_image.py +0 -0
  233. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/inpaint.py +0 -0
  234. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/__init__.py +0 -0
  235. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  236. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  237. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  238. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  239. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  240. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_presets.py +0 -0
  241. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  242. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama3/__init__.py +0 -0
  243. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  244. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  245. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  246. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  247. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  248. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/masked_lm.py +0 -0
  249. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  250. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/__init__.py +0 -0
  251. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  252. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  253. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  254. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  255. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  256. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  257. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  258. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mit/__init__.py +0 -0
  259. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  260. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  261. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  262. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  263. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mit/mit_layers.py +0 -0
  264. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mit/mit_presets.py +0 -0
  265. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  266. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  267. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  268. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  269. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  270. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  271. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/mobilenet/util.py +0 -0
  272. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/object_detector.py +0 -0
  273. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  274. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/opt/__init__.py +0 -0
  275. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  276. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  277. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  278. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/opt/opt_presets.py +0 -0
  279. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  280. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  281. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  282. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  283. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  284. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  285. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  286. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  287. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  288. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  289. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/__init__.py +0 -0
  290. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  291. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  292. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  293. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  294. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  295. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  296. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  297. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  298. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/preprocessor.py +0 -0
  299. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/__init__.py +0 -0
  300. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/qwen_backbone.py +0 -0
  301. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/qwen_causal_lm.py +0 -0
  302. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +0 -0
  303. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/qwen_decoder.py +0 -0
  304. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/qwen_layernorm.py +0 -0
  305. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/qwen/qwen_tokenizer.py +0 -0
  306. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/resnet/__init__.py +0 -0
  307. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  308. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  309. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  310. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  311. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  312. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/__init__.py +0 -0
  313. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  314. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  315. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  316. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  317. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  318. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  319. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  320. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  321. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/__init__.py +0 -0
  322. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  323. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  324. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  325. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  326. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  327. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  328. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  329. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/models/vit_det → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2}/__init__.py +0 -0
  330. /keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/models/xlnet/__init__.py → /keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/roformer_v2/roformer_v2_presets.py +0 -0
  331. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/__init__.py +0 -0
  332. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  333. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  334. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  335. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  336. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_layers.py +0 -0
  337. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  338. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_presets.py +0 -0
  339. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  340. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  341. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/segformer/__init__.py +0 -0
  342. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  343. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  344. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  345. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  346. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  347. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  348. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  349. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/__init__.py +0 -0
  350. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  351. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  352. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  353. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  354. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  355. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  356. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  357. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  358. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  359. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  360. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  361. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  362. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  363. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  364. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  365. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  366. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  367. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  368. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/__init__.py +0 -0
  369. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  370. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  371. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  372. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  373. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/t5_presets.py +0 -0
  374. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  375. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  376. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/task.py +0 -0
  377. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/text_classifier.py +0 -0
  378. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  379. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/text_to_image.py +0 -0
  380. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/text_to_image_preprocessor.py +0 -0
  381. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vae/__init__.py +0 -0
  382. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  383. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vae/vae_layers.py +0 -0
  384. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vgg/__init__.py +0 -0
  385. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  386. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  387. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  388. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  389. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  390. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit/__init__.py +0 -0
  391. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  392. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  393. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  394. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  395. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit/vit_layers.py +0 -0
  396. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit/vit_presets.py +0 -0
  397. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/samplers → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/vit_det}/__init__.py +0 -0
  398. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  399. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  400. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/__init__.py +0 -0
  401. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  402. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  403. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  404. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  405. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  406. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  407. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  408. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  409. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  410. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  411. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  412. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  413. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  414. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  415. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  416. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/tests → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/models/xlnet}/__init__.py +0 -0
  417. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  418. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  419. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  420. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  421. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/tokenizers → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/samplers}/__init__.py +0 -0
  422. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/beam_sampler.py +0 -0
  423. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  424. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  425. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/random_sampler.py +0 -0
  426. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/sampler.py +0 -0
  427. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/serialization.py +0 -0
  428. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  429. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  430. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/utils → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/tests}/__init__.py +0 -0
  431. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tests/test_case.py +0 -0
  432. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/utils/imagenet → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/tokenizers}/__init__.py +0 -0
  433. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  434. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  435. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  436. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  437. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  438. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  439. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  440. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  441. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/utils/timm → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/utils}/__init__.py +0 -0
  442. {keras_hub_nightly-0.20.0.dev202504010407/keras_hub/src/utils/transformers → keras_hub_nightly-0.20.0.dev202504030357/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  443. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  444. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/pipeline_model.py +0 -0
  445. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/python_utils.py +0 -0
  446. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/tensor_utils.py +0 -0
  447. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  448. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  449. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  450. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  451. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  452. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  453. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  454. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  455. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  456. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  457. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  458. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  459. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  460. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  461. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  462. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  463. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_qwen.py +0 -0
  464. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  465. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  466. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  467. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  468. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub_nightly.egg-info/requires.txt +0 -0
  469. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  470. {keras_hub_nightly-0.20.0.dev202504010407 → keras_hub_nightly-0.20.0.dev202504030357}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.20.0.dev202504010407
3
+ Version: 0.20.0.dev202504030357
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -323,6 +323,24 @@ from keras_hub.src.models.roberta.roberta_text_classifier_preprocessor import (
323
323
  RobertaTextClassifierPreprocessor as RobertaPreprocessor,
324
324
  )
325
325
  from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
326
+ from keras_hub.src.models.roformer_v2.roformer_v2_backbone import (
327
+ RoformerV2Backbone as RorformerV2Backbone,
328
+ )
329
+ from keras_hub.src.models.roformer_v2.roformer_v2_masked_lm import (
330
+ RoformerV2MaskedLM,
331
+ )
332
+ from keras_hub.src.models.roformer_v2.roformer_v2_masked_lm_preprocessor import (
333
+ RoformerV2MaskedLMPreprocessor,
334
+ )
335
+ from keras_hub.src.models.roformer_v2.roformer_v2_text_classifier import (
336
+ RorformerV2TextClassifier,
337
+ )
338
+ from keras_hub.src.models.roformer_v2.roformer_v2_text_classifier_preprocessor import (
339
+ RoformerV2TextClassifierPreprocessor,
340
+ )
341
+ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
342
+ RoformerV2Tokenizer,
343
+ )
326
344
  from keras_hub.src.models.sam.sam_backbone import SAMBackbone
327
345
  from keras_hub.src.models.sam.sam_image_segmenter import SAMImageSegmenter
328
346
  from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
@@ -35,6 +35,9 @@ from keras_hub.src.models.qwen.qwen_tokenizer import (
35
35
  QwenTokenizer as Qwen2Tokenizer,
36
36
  )
37
37
  from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
38
+ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
39
+ RoformerV2Tokenizer,
40
+ )
38
41
  from keras_hub.src.models.siglip.siglip_tokenizer import SigLIPTokenizer
39
42
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer
40
43
  from keras_hub.src.models.whisper.whisper_tokenizer import WhisperTokenizer
@@ -6,7 +6,9 @@ from keras import ops
6
6
 
7
7
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
8
8
  from keras_hub.src.utils.keras_utils import clone_initializer
9
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
9
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
10
+ from keras_hub.src.utils.keras_utils import gpu_supports_fused_attention_op
11
+ from keras_hub.src.utils.keras_utils import running_on_gpu
10
12
  from keras_hub.src.utils.keras_utils import running_on_tpu
11
13
 
12
14
 
@@ -106,17 +108,22 @@ class CachedGemmaAttention(keras.layers.Layer):
106
108
  )
107
109
  return x
108
110
 
109
- def _can_use_flash_attention(self):
110
- if not has_flash_attention_support():
111
+ def _use_fused_attention_op(self):
112
+ if not fused_attention_op_available():
111
113
  return False
112
114
  if self.dropout > 0.0:
113
115
  return False
114
- if self.logit_soft_cap is None:
115
- return True
116
- sig = inspect.signature(ops.dot_product_attention)
117
- # We can currently only run soft capped attention for keras >= 3.10
118
- # and only on TPU.
119
- return running_on_tpu() and "attn_logits_soft_cap" in sig.parameters
116
+ if running_on_gpu():
117
+ # GPU never supports softcap in the fused op.
118
+ if self.logit_soft_cap is not None:
119
+ return False
120
+ return gpu_supports_fused_attention_op()
121
+ elif running_on_tpu():
122
+ # TPU supports softcap with on keras >= 3.10.
123
+ sig = inspect.signature(ops.dot_product_attention)
124
+ return "attn_logits_soft_cap" in sig.parameters
125
+ else:
126
+ return False
120
127
 
121
128
  def _compute_attention(
122
129
  self,
@@ -133,7 +140,14 @@ class CachedGemmaAttention(keras.layers.Layer):
133
140
  query_normalization = 1 / np.sqrt(
134
141
  self.hidden_dim // self.num_query_heads
135
142
  )
136
- if self._can_use_flash_attention():
143
+
144
+ if self.use_sliding_window_attention and attention_mask is not None:
145
+ attention_mask = self._mask_sliding_window(
146
+ attention_mask,
147
+ cache_update_index=cache_update_index,
148
+ )
149
+
150
+ if self._use_fused_attention_op():
137
151
  if attention_mask is not None:
138
152
  attention_mask = ops.expand_dims(attention_mask, axis=1)
139
153
  attention_mask = ops.cast(attention_mask, dtype="bool")
@@ -172,13 +186,8 @@ class CachedGemmaAttention(keras.layers.Layer):
172
186
  ops.tanh(attention_logits), self.logit_soft_cap
173
187
  )
174
188
 
175
- if self.use_sliding_window_attention:
176
- attention_mask = self._mask_sliding_window(
177
- attention_mask,
178
- cache_update_index=cache_update_index,
179
- )
180
-
181
- attention_mask = attention_mask[:, None, None, :, :]
189
+ if attention_mask is not None:
190
+ attention_mask = attention_mask[:, None, None, :, :]
182
191
  orig_dtype = attention_logits.dtype
183
192
  attention_softmax = self.softmax(attention_logits, mask=attention_mask)
184
193
  attention_softmax = ops.cast(attention_softmax, orig_dtype)
@@ -7,7 +7,7 @@ from keras import ops
7
7
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
8
8
  from keras_hub.src.models.gemma.rms_normalization import RMSNormalization
9
9
  from keras_hub.src.utils.keras_utils import clone_initializer
10
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
10
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
11
11
  from keras_hub.src.utils.keras_utils import running_on_tpu
12
12
 
13
13
 
@@ -140,7 +140,7 @@ class CachedGemma3Attention(keras.layers.Layer):
140
140
  return x
141
141
 
142
142
  def _can_use_flash_attention(self):
143
- if not has_flash_attention_support():
143
+ if not fused_attention_op_available():
144
144
  return False
145
145
  if self.dropout > 0.0:
146
146
  return False
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  class GPTNeoXAttention(keras.layers.Layer):
@@ -125,7 +125,7 @@ class GPTNeoXAttention(keras.layers.Layer):
125
125
  def _compute_attention(
126
126
  self, query, key, value, attention_mask=None, training=None
127
127
  ):
128
- if has_flash_attention_support() and self.dropout == 0:
128
+ if fused_attention_op_available() and self.dropout == 0:
129
129
  # Use `dot_product_attention` with Flash Attention support if
130
130
  # available.
131
131
  if attention_mask is not None:
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  class LlamaAttention(keras.layers.Layer):
@@ -185,7 +185,7 @@ class LlamaAttention(keras.layers.Layer):
185
185
  return self._softmax(attention_scores)
186
186
 
187
187
  def _compute_attention(self, query, key, value, attention_mask=None):
188
- if has_flash_attention_support():
188
+ if fused_attention_op_available():
189
189
  # Use `dot_product_attention` with Flash Attention support if
190
190
  # available.
191
191
  if attention_mask is not None:
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  # This is just a self-attention layer in Mistral. But it can be generalized
@@ -196,7 +196,7 @@ class CachedMistralAttention(keras.layers.Layer):
196
196
  return self._softmax(attention_scores)
197
197
 
198
198
  def _compute_attention(self, query, key, value, attention_mask=None):
199
- if has_flash_attention_support():
199
+ if fused_attention_op_available():
200
200
  # Use `dot_product_attention` with Flash Attention support if
201
201
  # available.
202
202
  if attention_mask is not None:
@@ -8,7 +8,7 @@ from keras_hub.src.models.phi3.phi3_rotary_embedding import (
8
8
  Phi3SuScaledRotaryEmbedding,
9
9
  )
10
10
  from keras_hub.src.utils.keras_utils import clone_initializer
11
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
11
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
12
12
 
13
13
 
14
14
  class Phi3Attention(keras.layers.Layer):
@@ -217,7 +217,7 @@ class Phi3Attention(keras.layers.Layer):
217
217
  return self.softmax(attention_scores)
218
218
 
219
219
  def _compute_attention(self, query, key, value, attention_mask=None):
220
- if has_flash_attention_support():
220
+ if fused_attention_op_available():
221
221
  # Use `dot_product_attention` with Flash Attention support if
222
222
  # available.
223
223
  if attention_mask is not None:
@@ -5,7 +5,7 @@ from keras import ops
5
5
 
6
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
- from keras_hub.src.utils.keras_utils import has_flash_attention_support
8
+ from keras_hub.src.utils.keras_utils import fused_attention_op_available
9
9
 
10
10
 
11
11
  class QwenAttention(keras.layers.Layer):
@@ -263,7 +263,7 @@ class QwenAttention(keras.layers.Layer):
263
263
  Returns:
264
264
  attention_output: Output tensor after applying attention.
265
265
  """
266
- if has_flash_attention_support():
266
+ if fused_attention_op_available():
267
267
  # Use `dot_product_attention` with Flash Attention support if
268
268
  # available.
269
269
  if attention_mask is not None:
@@ -0,0 +1,212 @@
1
+ import keras
2
+ from keras import initializers
3
+ from keras import ops
4
+
5
+
6
+ class RoformerNorm(keras.layers.Layer):
7
+ """A normalization layer for Roformer that implements RMS normalization."""
8
+
9
+ def __init__(self, epsilon=1e-6, **kwargs):
10
+ super().__init__(**kwargs)
11
+ self.epsilon = epsilon
12
+
13
+ def build(self, input_shape):
14
+ dim = input_shape[-1]
15
+ self.scale = self.add_weight(
16
+ name="scale",
17
+ trainable=True,
18
+ shape=(dim,),
19
+ initializer="ones",
20
+ dtype=self.variable_dtype,
21
+ )
22
+ self.built = True
23
+
24
+ def call(self, x):
25
+ x = ops.cast(x, "float32")
26
+ var = ops.mean(ops.power(x, 2), axis=-1, keepdims=True)
27
+ x = x * ops.rsqrt(var + self.epsilon)
28
+ return ops.cast(x * self.scale, self.compute_dtype)
29
+
30
+ def get_config(self):
31
+ config = super().get_config()
32
+ config.update({"epsilon": self.epsilon})
33
+ return config
34
+
35
+
36
+ class RoformrPositionalEmbedding(keras.layers.Layer):
37
+ """Native rotary implement by jianlin su
38
+ from native implement
39
+ https://github.com/bojone/bert4keras
40
+
41
+ """
42
+
43
+ def __init__(self, output_dim, max_wavelength=10000, **kwargs):
44
+ super().__init__(**kwargs)
45
+ self.max_wavelength = max_wavelength
46
+ self.output_dim = output_dim
47
+
48
+ def call(self, tensors):
49
+ input_shape = ops.shape(tensors[0])
50
+ seq_len = input_shape[1]
51
+ position_ids = ops.arange(0, seq_len, dtype=tensors[0].dtype)[None]
52
+ embeddings = self.sinusoidal_embeddings(
53
+ position_ids, self.output_dim, self.max_wavelength
54
+ )
55
+ embeddings = ops.cast(embeddings, self.compute_dtype)
56
+
57
+ ndim = ops.ndim(tensors[0])
58
+ sinusoidal = self.align(embeddings, [0, 1, -1], ndim)
59
+ cos_pos = ops.repeat(sinusoidal[..., 1::2], 2, -1)
60
+ sin_pos = ops.repeat(sinusoidal[..., ::2], 2, -1)
61
+ outputs = []
62
+ for tensor in tensors:
63
+ tensor2 = ops.stack([-tensor[..., 1::2], tensor[..., ::2]], ndim)
64
+ tensor2 = ops.reshape(tensor2, ops.shape(tensor))
65
+ outputs.append(tensor * cos_pos + tensor2 * sin_pos)
66
+ return outputs[0] if len(outputs) == 1 else outputs
67
+
68
+ def align(self, tensor, axes, ndim=None):
69
+ ndim = ndim or max(axes) + 1
70
+ indices = [None] * ndim
71
+ for i in axes:
72
+ indices[i] = slice(None)
73
+ if keras.config.backend() == "jax":
74
+ return tensor[tuple(indices)]
75
+ return tensor[indices]
76
+
77
+ def sinusoidal_embeddings(self, pos, dim, base=10000):
78
+ if dim % 2 != 0:
79
+ raise ("Dimension must be even")
80
+
81
+ indices = ops.arange(0, dim // 2, dtype="float32")
82
+ indices = ops.power(ops.cast(base, dtype="float32"), -2 * indices / dim)
83
+ embeddings = ops.einsum("...,d->...d", pos, indices)
84
+ embeddings = ops.stack(
85
+ [ops.sin(embeddings), ops.cos(embeddings)], axis=-1
86
+ )
87
+ shape = list(ops.shape(embeddings))
88
+ embeddings = ops.reshape(embeddings, shape[:-2] + [-1])
89
+ return embeddings
90
+
91
+ def get_config(self):
92
+ config = super().get_config()
93
+ config.update(
94
+ {
95
+ "out_dim": self.out_dim,
96
+ "max_wavelength": self.max_wavelength,
97
+ }
98
+ )
99
+ return config
100
+
101
+
102
+ @keras.saving.register_keras_serializable(package="keras_hub")
103
+ class RoformerAttention(keras.layers.Layer):
104
+ """MultiHeadAttention by roformerV2
105
+
106
+ modifity from native implement
107
+ https://github.com/bojone/bert4keras
108
+ """
109
+
110
+ def __init__(
111
+ self,
112
+ heads,
113
+ head_size,
114
+ out_dim=None,
115
+ use_bias=False,
116
+ max_wavelength=10000,
117
+ kernel_initializer="glorot_uniform",
118
+ **kwargs,
119
+ ):
120
+ super().__init__(**kwargs)
121
+ self.heads = heads
122
+ self.head_size = head_size
123
+ self.out_dim = out_dim or heads * head_size
124
+ self.use_bias = use_bias
125
+ self.kernel_initializer = initializers.get(kernel_initializer)
126
+ self.max_wavelength = max_wavelength
127
+
128
+ def build(self, input_shape):
129
+ super().build(input_shape)
130
+ self.q_dense = keras.layers.Dense(
131
+ units=self.head_size * self.heads,
132
+ use_bias=self.use_bias,
133
+ kernel_initializer=self.kernel_initializer,
134
+ name="q_dense_layer",
135
+ dtype=self.dtype_policy,
136
+ )
137
+ self.q_dense.build(input_shape)
138
+
139
+ self.k_dense = keras.layers.Dense(
140
+ units=self.head_size * self.heads,
141
+ use_bias=self.use_bias,
142
+ kernel_initializer=self.kernel_initializer,
143
+ name="k_dense_layer",
144
+ dtype=self.dtype_policy,
145
+ )
146
+ self.k_dense.build(input_shape)
147
+
148
+ self.v_dense = keras.layers.Dense(
149
+ units=self.head_size * self.heads,
150
+ use_bias=self.use_bias,
151
+ kernel_initializer=self.kernel_initializer,
152
+ name="v_dense_layer",
153
+ dtype=self.dtype_policy,
154
+ )
155
+ self.v_dense.build(input_shape)
156
+
157
+ self.o_dense = keras.layers.Dense(
158
+ units=self.out_dim,
159
+ use_bias=self.use_bias,
160
+ kernel_initializer=self.kernel_initializer,
161
+ name="o_dense_layer",
162
+ dtype=self.dtype_policy,
163
+ )
164
+ self.o_dense.build([None, None, self.head_size * self.heads])
165
+
166
+ self.rotary_embedding_layer = RoformrPositionalEmbedding(
167
+ self.head_size, self.max_wavelength, dtype=self.dtype_policy
168
+ )
169
+ self.rotary_embedding_layer.build([])
170
+
171
+ def call(self, x, attention_mask=None):
172
+ qw = self.q_dense(x)
173
+ kw = self.k_dense(x)
174
+ vw = self.v_dense(x)
175
+
176
+ b, s = ops.shape(qw)[:2]
177
+ qw = ops.reshape(qw, (b, s, self.heads, self.head_size))
178
+ kw = ops.reshape(kw, (b, s, self.heads, self.head_size))
179
+ vw = ops.reshape(vw, (b, s, self.heads, self.head_size))
180
+
181
+ qw, kw = self.rotary_embedding_layer([qw, kw])
182
+ if keras.__version__ < "3.6":
183
+ raise ("Please make sure your Keras version is >=3.6.")
184
+ flash_attention = keras.config.is_flash_attention_enabled()
185
+ attention_mask = ops.reshape(attention_mask, [b, 1, s, 1])
186
+ if keras.config.backend() == "torch":
187
+ attention_mask = ops.repeat(attention_mask, s, -1)
188
+ attention_mask = ops.transpose(attention_mask, [0, 1, 3, 2])
189
+ o = ops.dot_product_attention(
190
+ qw, kw, vw, mask=attention_mask, flash_attention=flash_attention
191
+ )
192
+
193
+ return self.o_dense(ops.reshape(o, [b, s, -1]))
194
+
195
+ def compute_output_shape(self, input_shape):
196
+ return input_shape
197
+
198
+ def get_config(self):
199
+ config = super().get_config()
200
+ config.update(
201
+ {
202
+ "heads": self.heads,
203
+ "head_size": self.head_size,
204
+ "out_dim": self.out_dim,
205
+ "use_bias": self.use_bias,
206
+ "max_wavelength": self.max_wavelength,
207
+ "kernel_initializer": initializers.serialize(
208
+ self.kernel_initializer
209
+ ),
210
+ }
211
+ )
212
+ return config
@@ -0,0 +1,198 @@
1
+ import keras
2
+ from keras import activations
3
+
4
+ from keras_hub.src.api_export import keras_hub_export
5
+ from keras_hub.src.layers.modeling.reversible_embedding import (
6
+ ReversibleEmbedding,
7
+ )
8
+ from keras_hub.src.models.backbone import Backbone
9
+ from keras_hub.src.models.roformer_v2.roformer_v2_attention import RoformerNorm
10
+ from keras_hub.src.models.roformer_v2.roformer_v2_encoder import (
11
+ RoformerV2Encoder,
12
+ )
13
+
14
+
15
+ def roformer_kernel_initializer(stddev=0.02):
16
+ return keras.initializers.TruncatedNormal(stddev=stddev)
17
+
18
+
19
+ @keras_hub_export("keras_hub.models.RorformerV2Backbone")
20
+ class RoformerV2Backbone(Backbone):
21
+ """A RoformerV2 encoder network.
22
+
23
+ This class implements a bi-directional Transformer-based encoder as
24
+ described in ["Roformer"](https://github.com/ZhuiyiTechnology/roformer).
25
+ It includes the
26
+ embedding lookups and transformer layers, but not the masked language model
27
+ or next sentence prediction heads.
28
+
29
+ The default constructor gives a fully customizable, randomly initialized
30
+ RoformerV2 encoder with any number of layers, heads, and embed dim.To
31
+ load preset architectures and weights, use the `from_preset()` constructor.
32
+
33
+ Disclaimer: Pre-trained models are provided on an "as is" basis, without
34
+ warranties or conditions of any kind.
35
+
36
+ Args:
37
+ vocabulary_size: int. The size of the token vocabulary.
38
+ num_layers: int. The number of transformer layers.
39
+ num_heads: int. The number of attention heads for each transformer.
40
+ The hidden size must be divisible by the number of attention heads.
41
+ hidden_dim: int. The size of the transformer encoding and pooler layers.
42
+ intermediate_dim: int. The output dimension of the first Dense layer in
43
+ a two-layer feedforward network for each transformer.
44
+ dropout: float. Dropout probability for the Transformer encoder.
45
+ num_segments: int. The number of types that the 'segment_ids' input can
46
+ take.
47
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
48
+ for model computations and weights. Note that some computations,
49
+ such as softmax and layer normalization, will always be done at
50
+ float32 precision regardless of dtype.
51
+
52
+ Examples:
53
+ ```python
54
+ input_data = {
55
+ "token_ids": np.ones(shape=(1, 12), dtype="int32"),
56
+ "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]]),
57
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
58
+ }
59
+
60
+ # Pretrained RoformerV2 encoder.
61
+ model = keras_hub.models.RoformerV2Backbone.from_preset("roformer_v2_base")
62
+ model(input_data)
63
+
64
+ # Randomly initialized RoformerV2 encoder with a custom config.
65
+ model = keras_hub.models.RoformerV2Backbone(
66
+ vocabulary_size=30552,
67
+ num_layers=4,
68
+ num_heads=4,
69
+ hidden_dim=256,
70
+ intermediate_dim=512,
71
+ head_size = 64,
72
+ )
73
+ model(input_data)
74
+ ```
75
+ """
76
+
77
+ def __init__(
78
+ self,
79
+ vocabulary_size,
80
+ num_layers,
81
+ num_heads,
82
+ hidden_dim,
83
+ intermediate_dim,
84
+ head_size,
85
+ use_bias=False,
86
+ activation="relu",
87
+ dropout=0.1,
88
+ num_segments=2,
89
+ dtype=None,
90
+ max_wavelength=10000,
91
+ **kwargs,
92
+ ):
93
+ # === Layers ===
94
+ self.token_embedding = ReversibleEmbedding(
95
+ input_dim=vocabulary_size,
96
+ output_dim=hidden_dim,
97
+ embeddings_initializer=roformer_kernel_initializer(),
98
+ dtype=dtype,
99
+ name="token_embedding",
100
+ )
101
+ self.segment_embedding = keras.layers.Embedding(
102
+ input_dim=num_segments,
103
+ output_dim=hidden_dim,
104
+ embeddings_initializer=roformer_kernel_initializer(),
105
+ dtype=dtype,
106
+ name="segment_embedding",
107
+ )
108
+ self.embeddings_add = keras.layers.Add(
109
+ dtype=dtype,
110
+ name="embeddings_add",
111
+ )
112
+ self.embeddings_layer_norm = RoformerNorm(
113
+ epsilon=keras.backend.epsilon(),
114
+ dtype=dtype,
115
+ name="embeddings_layer_norm",
116
+ )
117
+ self.embeddings_dropout = keras.layers.Dropout(
118
+ dropout,
119
+ dtype=dtype,
120
+ name="embeddings_dropout",
121
+ )
122
+ self.transformer_layers = []
123
+ for i in range(num_layers):
124
+ layer = RoformerV2Encoder(
125
+ heads=num_heads,
126
+ head_size=head_size,
127
+ intermediate_size=intermediate_dim,
128
+ use_bias=use_bias,
129
+ max_wavelength=max_wavelength,
130
+ dropout=dropout,
131
+ activation=activation,
132
+ kernel_initializer=roformer_kernel_initializer(),
133
+ dtype=dtype,
134
+ name=f"transformer_layer_{i}",
135
+ )
136
+ self.transformer_layers.append(layer)
137
+
138
+ # === Functional Model ===
139
+ token_id_input = keras.Input(
140
+ shape=(None,), dtype="int32", name="token_ids"
141
+ )
142
+ segment_id_input = keras.Input(
143
+ shape=(None,), dtype="int32", name="segment_ids"
144
+ )
145
+ attention_mask = keras.ops.not_equal(token_id_input, 0)
146
+ # Embed tokens, positions, and segment ids.
147
+ tokens = self.token_embedding(token_id_input)
148
+ segments = self.segment_embedding(segment_id_input)
149
+ # Sum, normalize and apply dropout to embeddings.
150
+ x = self.embeddings_add((tokens, segments))
151
+ x = self.embeddings_layer_norm(x)
152
+ x = self.embeddings_dropout(x)
153
+ for transformer_layer in self.transformer_layers:
154
+ x = transformer_layer(x, attention_mask=attention_mask)
155
+
156
+ super().__init__(
157
+ inputs={
158
+ "token_ids": token_id_input,
159
+ "segment_ids": segment_id_input,
160
+ },
161
+ outputs=x,
162
+ dtype=dtype,
163
+ **kwargs,
164
+ )
165
+
166
+ # === Config ===
167
+ self.vocabulary_size = vocabulary_size
168
+ self.num_layers = num_layers
169
+ self.num_heads = num_heads
170
+ self.hidden_dim = hidden_dim
171
+ self.intermediate_dim = intermediate_dim
172
+ self.dropout = dropout
173
+ self.num_segments = num_segments
174
+ self.max_wavelength = max_wavelength
175
+ self.head_size = head_size
176
+ self.dropout = dropout
177
+ self.activation = activations.get(activation)
178
+ self.use_bias = use_bias
179
+ self.start_token_index = 0
180
+
181
+ def get_config(self):
182
+ config = super().get_config()
183
+ config.update(
184
+ {
185
+ "vocabulary_size": self.vocabulary_size,
186
+ "num_layers": self.num_layers,
187
+ "num_heads": self.num_heads,
188
+ "hidden_dim": self.hidden_dim,
189
+ "intermediate_dim": self.intermediate_dim,
190
+ "dropout": self.dropout,
191
+ "num_segments": self.num_segments,
192
+ "max_wavelength": self.max_wavelength,
193
+ "head_size": self.head_size,
194
+ "use_bias": self.use_bias,
195
+ "activation": activations.serialize(self.activation),
196
+ }
197
+ )
198
+ return config