keras-hub-nightly 0.20.0.dev202503170356__tar.gz → 0.20.0.dev202503180354__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (447) hide show
  1. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/api/models/__init__.py +18 -0
  3. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/api/tokenizers/__init__.py +4 -0
  4. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/image_converter.py +5 -2
  5. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/__init__.py +1 -0
  6. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/qwen_attention.py +358 -0
  7. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/qwen_backbone.py +327 -0
  8. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/qwen_causal_lm.py +300 -0
  9. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/qwen_causal_lm_preprocessor.py +18 -0
  10. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/qwen_decoder.py +311 -0
  11. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/qwen_layernorm.py +32 -0
  12. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/models/qwen/qwen_tokenizer.py +51 -0
  13. keras_hub_nightly-0.20.0.dev202503180354/keras_hub/src/utils/transformers/convert_qwen.py +148 -0
  14. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/preset_loader.py +3 -0
  15. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/version_utils.py +1 -1
  16. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  17. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub_nightly.egg-info/SOURCES.txt +9 -0
  18. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/setup.py +1 -1
  19. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/README.md +0 -0
  20. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/__init__.py +0 -0
  21. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/api/__init__.py +0 -0
  22. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/api/layers/__init__.py +0 -0
  23. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/api/metrics/__init__.py +0 -0
  24. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/api/samplers/__init__.py +0 -0
  25. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/api/utils/__init__.py +0 -0
  26. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/__init__.py +0 -0
  27. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/api_export.py +0 -0
  28. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/__init__.py +0 -0
  29. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/__init__.py +0 -0
  30. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  31. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  32. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  33. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  34. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  35. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  36. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  37. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  38. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  39. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  40. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  41. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  42. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  43. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  44. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  45. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  46. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  47. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  48. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  49. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  50. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  51. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  52. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  53. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  54. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/metrics/__init__.py +0 -0
  55. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/metrics/bleu.py +0 -0
  56. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/metrics/edit_distance.py +0 -0
  57. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/metrics/perplexity.py +0 -0
  58. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/metrics/rouge_base.py +0 -0
  59. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/metrics/rouge_l.py +0 -0
  60. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/metrics/rouge_n.py +0 -0
  61. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/__init__.py +0 -0
  62. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/__init__.py +0 -0
  63. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  64. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  65. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  66. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/albert_presets.py +0 -0
  67. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  68. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  69. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  70. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/backbone.py +0 -0
  71. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bart/__init__.py +0 -0
  72. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  73. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bart/bart_presets.py +0 -0
  74. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  75. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  76. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  77. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/basnet/__init__.py +0 -0
  78. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/basnet/basnet.py +0 -0
  79. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  80. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  81. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  82. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  83. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/__init__.py +0 -0
  84. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  85. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  86. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  87. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/bert_presets.py +0 -0
  88. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  89. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  90. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  91. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/__init__.py +0 -0
  92. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  93. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  94. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  95. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  96. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  97. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  98. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  99. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/causal_lm.py +0 -0
  100. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  101. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/__init__.py +0 -0
  102. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  103. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  104. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  105. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  106. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_presets.py +0 -0
  107. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  108. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  109. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  110. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  111. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/cspnet/__init__.py +0 -0
  112. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/cspnet/cspnet_backbone.py +0 -0
  113. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/cspnet/cspnet_image_classifier.py +0 -0
  114. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py +0 -0
  115. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/cspnet/cspnet_image_converter.py +0 -0
  116. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/cspnet/cspnet_presets.py +0 -0
  117. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  118. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  119. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  120. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  121. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  122. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  123. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  124. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  125. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  126. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  127. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  128. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  129. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  130. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  131. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  133. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  134. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  135. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/densenet/__init__.py +0 -0
  136. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  137. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  138. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  140. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  141. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  142. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  143. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  144. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  145. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  146. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  147. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  149. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  150. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/cba.py +0 -0
  151. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  152. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  153. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  154. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  155. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  156. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  157. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  158. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/electra/__init__.py +0 -0
  159. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  160. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/electra/electra_presets.py +0 -0
  161. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  162. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/__init__.py +0 -0
  163. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  164. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  165. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  166. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  167. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  168. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  170. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/__init__.py +0 -0
  171. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  172. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  173. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  174. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  175. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  176. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  177. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  178. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  179. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/flux/__init__.py +0 -0
  180. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/flux/flux_layers.py +0 -0
  181. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/flux/flux_maths.py +0 -0
  182. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/flux/flux_model.py +0 -0
  183. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/flux/flux_presets.py +0 -0
  184. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  185. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  186. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/__init__.py +0 -0
  187. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  188. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  189. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  190. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  191. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  192. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  193. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  194. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  195. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt2/__init__.py +0 -0
  196. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  197. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  198. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  199. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  200. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  201. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  202. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  203. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  204. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  205. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  206. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  207. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  208. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  209. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/image_classifier.py +0 -0
  210. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  211. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/image_segmenter.py +0 -0
  212. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  213. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/image_to_image.py +0 -0
  214. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/inpaint.py +0 -0
  215. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/__init__.py +0 -0
  216. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_attention.py +0 -0
  217. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  218. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  219. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  220. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  221. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  222. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_presets.py +0 -0
  223. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  224. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama3/__init__.py +0 -0
  225. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  226. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  227. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  228. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  229. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  230. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/masked_lm.py +0 -0
  231. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  232. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/__init__.py +0 -0
  233. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  234. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  235. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  236. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  237. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  238. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  239. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  240. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  241. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mit/__init__.py +0 -0
  242. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  243. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  244. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  245. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  246. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mit/mit_layers.py +0 -0
  247. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mit/mit_presets.py +0 -0
  248. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  249. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  250. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  251. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  252. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  253. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  254. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/mobilenet/util.py +0 -0
  255. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/object_detector.py +0 -0
  256. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  257. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/opt/__init__.py +0 -0
  258. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  259. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  260. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  261. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/opt/opt_presets.py +0 -0
  262. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  263. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  264. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  265. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  266. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  267. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  268. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  269. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  270. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  271. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  272. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/__init__.py +0 -0
  273. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  274. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  275. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  276. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  277. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  278. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  279. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  280. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  281. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  282. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/preprocessor.py +0 -0
  283. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/resnet/__init__.py +0 -0
  284. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  285. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  286. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  287. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  288. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  289. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/__init__.py +0 -0
  290. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  291. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  292. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  293. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  294. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  295. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  296. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  297. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  298. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/__init__.py +0 -0
  299. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  300. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  301. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  302. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  303. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  304. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  306. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/__init__.py +0 -0
  307. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  308. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  309. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  310. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  311. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_layers.py +0 -0
  312. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  313. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_presets.py +0 -0
  314. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  315. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  316. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/segformer/__init__.py +0 -0
  317. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  318. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  319. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  320. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  321. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  322. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  323. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  324. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/__init__.py +0 -0
  325. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_backbone.py +0 -0
  326. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_image_converter.py +0 -0
  327. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_layers.py +0 -0
  328. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_loss.py +0 -0
  329. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_preprocessor.py +0 -0
  330. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_presets.py +0 -0
  331. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_text_encoder.py +0 -0
  332. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_tokenizer.py +0 -0
  333. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/siglip/siglip_vision_encoder.py +0 -0
  334. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  335. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  336. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  337. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  338. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  339. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  340. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  341. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  342. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  343. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  344. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/__init__.py +0 -0
  345. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  346. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  347. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  348. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  349. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/t5_presets.py +0 -0
  350. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  351. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  352. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/task.py +0 -0
  353. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/text_classifier.py +0 -0
  354. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  355. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/text_to_image.py +0 -0
  356. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vae/__init__.py +0 -0
  357. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  358. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vae/vae_layers.py +0 -0
  359. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vgg/__init__.py +0 -0
  360. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  361. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  362. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  363. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  364. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  365. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit/__init__.py +0 -0
  366. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  367. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  368. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  369. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  370. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit/vit_layers.py +0 -0
  371. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit/vit_presets.py +0 -0
  372. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit_det/__init__.py +0 -0
  373. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  374. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  375. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/__init__.py +0 -0
  376. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  377. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  378. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  379. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  380. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  381. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  382. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  383. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  384. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  385. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  386. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  387. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  388. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  389. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  390. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  391. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlnet/__init__.py +0 -0
  392. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  393. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  394. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  395. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  396. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/__init__.py +0 -0
  397. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/beam_sampler.py +0 -0
  398. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  399. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  400. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/random_sampler.py +0 -0
  401. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/sampler.py +0 -0
  402. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/serialization.py +0 -0
  403. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  404. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  405. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tests/__init__.py +0 -0
  406. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tests/test_case.py +0 -0
  407. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/__init__.py +0 -0
  408. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  409. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  410. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  411. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  412. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  413. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  414. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  415. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  416. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/__init__.py +0 -0
  417. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  418. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  419. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/keras_utils.py +0 -0
  420. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/pipeline_model.py +0 -0
  421. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/preset_utils.py +0 -0
  422. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/python_utils.py +0 -0
  423. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/tensor_utils.py +0 -0
  424. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/__init__.py +0 -0
  425. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/convert_cspnet.py +0 -0
  426. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  427. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  428. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  429. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  430. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  431. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  432. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/__init__.py +0 -0
  433. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  434. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  435. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  436. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  437. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  438. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  439. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  440. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  441. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  442. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  443. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  444. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  445. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub_nightly.egg-info/requires.txt +0 -0
  446. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  447. {keras_hub_nightly-0.20.0.dev202503170356 → keras_hub_nightly-0.20.0.dev202503180354}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.20.0.dev202503170356
3
+ Version: 0.20.0.dev202503180354
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -267,6 +267,24 @@ from keras_hub.src.models.phi3.phi3_causal_lm_preprocessor import (
267
267
  )
268
268
  from keras_hub.src.models.phi3.phi3_tokenizer import Phi3Tokenizer
269
269
  from keras_hub.src.models.preprocessor import Preprocessor
270
+ from keras_hub.src.models.qwen.qwen_backbone import QwenBackbone
271
+ from keras_hub.src.models.qwen.qwen_backbone import (
272
+ QwenBackbone as Qwen2Backbone,
273
+ )
274
+ from keras_hub.src.models.qwen.qwen_causal_lm import QwenCausalLM
275
+ from keras_hub.src.models.qwen.qwen_causal_lm import (
276
+ QwenCausalLM as Qwen2CausalLM,
277
+ )
278
+ from keras_hub.src.models.qwen.qwen_causal_lm_preprocessor import (
279
+ QwenCausalLMPreprocessor,
280
+ )
281
+ from keras_hub.src.models.qwen.qwen_causal_lm_preprocessor import (
282
+ QwenCausalLMPreprocessor as Qwen2CausalLMPreprocessor,
283
+ )
284
+ from keras_hub.src.models.qwen.qwen_tokenizer import QwenTokenizer
285
+ from keras_hub.src.models.qwen.qwen_tokenizer import (
286
+ QwenTokenizer as Qwen2Tokenizer,
287
+ )
270
288
  from keras_hub.src.models.resnet.resnet_backbone import ResNetBackbone
271
289
  from keras_hub.src.models.resnet.resnet_image_classifier import (
272
290
  ResNetImageClassifier,
@@ -29,6 +29,10 @@ from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
29
29
  PaliGemmaTokenizer,
30
30
  )
31
31
  from keras_hub.src.models.phi3.phi3_tokenizer import Phi3Tokenizer
32
+ from keras_hub.src.models.qwen.qwen_tokenizer import QwenTokenizer
33
+ from keras_hub.src.models.qwen.qwen_tokenizer import (
34
+ QwenTokenizer as Qwen2Tokenizer,
35
+ )
32
36
  from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
33
37
  from keras_hub.src.models.siglip.siglip_tokenizer import SigLIPTokenizer
34
38
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer
@@ -280,6 +280,8 @@ class ImageConverter(PreprocessingLayer):
280
280
  return inputs
281
281
 
282
282
  def _expand_non_channel_dims(self, value, inputs):
283
+ input_dtype = keras.backend.standardize_dtype(inputs.dtype)
284
+
283
285
  unbatched = len(ops.shape(inputs)) == 3
284
286
  channels_first = self.data_format == "channels_first"
285
287
  if unbatched:
@@ -294,9 +296,10 @@ class ImageConverter(PreprocessingLayer):
294
296
  # device (potentially GPU) after preprocessing.
295
297
  if keras.backend.backend() == "torch" and self.image_size is None:
296
298
  return ops.expand_dims(value, broadcast_dims).cpu()
297
- return ops.expand_dims(value, broadcast_dims)
299
+ expanded = ops.expand_dims(value, broadcast_dims)
300
+ return ops.cast(expanded, input_dtype)
298
301
  else:
299
- return np.expand_dims(value, broadcast_dims)
302
+ return np.expand_dims(value, broadcast_dims).astype(input_dtype)
300
303
 
301
304
  def get_config(self):
302
305
  config = super().get_config()
@@ -0,0 +1 @@
1
+ from keras_hub.src.models.qwen.qwen_backbone import QwenBackbone
@@ -0,0 +1,358 @@
1
+ import math
2
+
3
+ import keras
4
+ from keras import ops
5
+
6
+ from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
7
+ from keras_hub.src.utils.keras_utils import clone_initializer
8
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
9
+
10
+
11
+ class QwenAttention(keras.layers.Layer):
12
+ """A multi-head attention layer for Qwen models
13
+
14
+ This attention implementation supports grouped-query attention (GQA) where
15
+ the number of key-value heads can be less than the number of query heads.
16
+
17
+ Args:
18
+ num_query_heads: Number of query heads.
19
+ num_key_value_heads: Number of key/value heads (for GQA).
20
+ rope_max_wavelength: Maximum wavelength for RoPE (Rotary Position
21
+ Embedding).
22
+ rope_scaling_factor: Scaling factor for RoPE, used for extending
23
+ context length.
24
+ kernel_initializer: Initializer for the kernel weights.
25
+ bias_initializer: Initializer for the bias weights.
26
+ dropout: Dropout rate for attention weights.
27
+ use_sliding_window_attention: Whether to use sliding window
28
+ attention.
29
+ sliding_window_size: Size of the sliding window for attention.
30
+ **kwargs: Additional keyword arguments to pass to the Layer.
31
+ """
32
+
33
+ def __init__(
34
+ self,
35
+ num_query_heads,
36
+ num_key_value_heads,
37
+ rope_max_wavelength=10000,
38
+ rope_scaling_factor=1,
39
+ kernel_initializer="glorot_uniform",
40
+ bias_initializer="zeros",
41
+ dropout=0,
42
+ use_sliding_window_attention=False,
43
+ sliding_window_size=4096,
44
+ **kwargs,
45
+ ):
46
+ super().__init__(
47
+ **kwargs,
48
+ )
49
+ self.num_query_heads = num_query_heads
50
+ self.num_key_value_heads = num_key_value_heads
51
+ self.dropout = dropout
52
+
53
+ self.num_key_value_groups = num_query_heads // num_key_value_heads
54
+ self.rope_max_wavelength = rope_max_wavelength
55
+
56
+ self.kernel_initializer = keras.initializers.get(
57
+ clone_initializer(kernel_initializer)
58
+ )
59
+ self.bias_initializer = keras.initializers.get(
60
+ clone_initializer(bias_initializer)
61
+ )
62
+
63
+ self.rope_scaling_factor = rope_scaling_factor
64
+ self.use_sliding_window_attention = use_sliding_window_attention
65
+ self.sliding_window_size = sliding_window_size
66
+
67
+ def build(self, inputs_shape):
68
+ # Einsum variables:
69
+ # b = batch size
70
+ # q = query length
71
+ # k = key/value length
72
+ # m = model dim
73
+ # u = num query heads
74
+ # v = num key/value heads
75
+ # h = head dim
76
+ hidden_dim = inputs_shape[-1]
77
+ head_dim = hidden_dim // self.num_query_heads
78
+ self._inv_norm_factor = 1.0 / math.sqrt(head_dim)
79
+ self._query_dense = keras.layers.EinsumDense(
80
+ equation="bqm,muh->bquh",
81
+ output_shape=(None, self.num_query_heads, head_dim),
82
+ kernel_initializer=self.kernel_initializer,
83
+ bias_initializer=self.bias_initializer,
84
+ bias_axes="uh",
85
+ dtype=self.dtype_policy,
86
+ name="query",
87
+ )
88
+ self._query_dense.build(inputs_shape)
89
+
90
+ self._key_dense = keras.layers.EinsumDense(
91
+ equation="bkm,mvh->bkvh",
92
+ output_shape=(
93
+ None,
94
+ self.num_key_value_heads,
95
+ head_dim,
96
+ ),
97
+ kernel_initializer=self.kernel_initializer,
98
+ bias_initializer=self.bias_initializer,
99
+ bias_axes="vh",
100
+ dtype=self.dtype_policy,
101
+ name="key",
102
+ )
103
+ self._key_dense.build(inputs_shape)
104
+
105
+ self._value_dense = keras.layers.EinsumDense(
106
+ equation="bkm,mvh->bkvh",
107
+ output_shape=(
108
+ None,
109
+ self.num_key_value_heads,
110
+ head_dim,
111
+ ),
112
+ kernel_initializer=self.kernel_initializer,
113
+ bias_initializer=self.bias_initializer,
114
+ bias_axes="vh",
115
+ dtype=self.dtype_policy,
116
+ name="value",
117
+ )
118
+ self._value_dense.build(inputs_shape)
119
+
120
+ self._softmax = keras.layers.Softmax(
121
+ axis=-1,
122
+ dtype="float32",
123
+ name="attention_softmax",
124
+ )
125
+
126
+ self._dropout_layer = keras.layers.Dropout(
127
+ rate=self.dropout,
128
+ dtype=self.dtype_policy,
129
+ )
130
+
131
+ self._output_dense = keras.layers.EinsumDense(
132
+ equation="bquh,uhm->bqm",
133
+ output_shape=(None, hidden_dim),
134
+ kernel_initializer=self.kernel_initializer,
135
+ dtype=self.dtype_policy,
136
+ name="attention_output",
137
+ )
138
+ self._output_dense.build((None, None, self.num_query_heads, head_dim))
139
+
140
+ self.rotary_embedding_layer = RotaryEmbedding(
141
+ max_wavelength=self.rope_max_wavelength,
142
+ scaling_factor=self.rope_scaling_factor,
143
+ dtype=self.dtype_policy,
144
+ )
145
+
146
+ self._dot_product_equation = "bquh,bkuh->buqk"
147
+ self._combine_equation = "buqk,bkuh->bquh"
148
+
149
+ self.built = True
150
+
151
+ def call(
152
+ self,
153
+ hidden_states,
154
+ attention_mask=None,
155
+ cache=None,
156
+ cache_update_index=None,
157
+ training=None,
158
+ ):
159
+ """Applies attention mechanism to the input hidden states.
160
+
161
+ Args:
162
+ hidden_states: Input tensor of shape [batch_size, seq_length,
163
+ hidden_size].
164
+ attention_mask: Mask tensor of shape [batch_size, seq_length,
165
+ seq_length].
166
+ cache: Optional cached key and value tensors.
167
+ cache_update_index: Index at which to update the cache.
168
+ training: Boolean indicating whether in training mode.
169
+
170
+ Returns:
171
+ attention_output: Output tensor after applying attention.
172
+ cache: Updated cache tensors (if cache is provided).
173
+ """
174
+ start_index = (
175
+ cache_update_index if cache_update_index is not None else 0
176
+ )
177
+
178
+ query = self._query_dense(hidden_states)
179
+
180
+ # Compute RoPE for queries
181
+ query = self.rotary_embedding_layer(query, start_index=start_index)
182
+
183
+ def _compute_key_value(x):
184
+ key, value = self._key_dense(x), self._value_dense(x)
185
+ # Compute RoPE for keys
186
+ key = self.rotary_embedding_layer(key, start_index=start_index)
187
+ return key, value
188
+
189
+ if cache is not None:
190
+ key_cache = cache[:, 0, ...]
191
+ value_cache = cache[:, 1, ...]
192
+ if cache_update_index is None:
193
+ key = key_cache
194
+ value = value_cache
195
+ else:
196
+ key_update, value_update = _compute_key_value(hidden_states)
197
+ start = [0, cache_update_index, 0, 0]
198
+ key = ops.slice_update(key_cache, start, key_update)
199
+ value = ops.slice_update(value_cache, start, value_update)
200
+ cache = ops.stack((key, value), axis=1)
201
+ else:
202
+ if cache_update_index is not None:
203
+ raise ValueError(
204
+ "`cache_update_index` should not be set if `cache` is "
205
+ f"`None`. Received: cache={cache}, "
206
+ f"cache_update_index={cache_update_index}"
207
+ )
208
+ key, value = _compute_key_value(hidden_states)
209
+
210
+ # [batch_shape, seq_len, num_key_value_heads, head_dim]
211
+ # -> [batch_shape, seq_len, num_heads, head_dim]
212
+ key = ops.repeat(key, repeats=self.num_key_value_groups, axis=2)
213
+ value = ops.repeat(value, repeats=self.num_key_value_groups, axis=2)
214
+
215
+ attention_output = self._compute_attention(
216
+ query,
217
+ key,
218
+ value,
219
+ attention_mask,
220
+ cache_update_index=cache_update_index,
221
+ )
222
+
223
+ attention_output = self._dropout_layer(
224
+ attention_output, training=training
225
+ )
226
+
227
+ attention_output = self._output_dense(attention_output)
228
+
229
+ if cache is not None:
230
+ return attention_output, cache
231
+ return attention_output
232
+
233
+ def _masked_softmax(self, attention_scores, attention_mask=None):
234
+ """Applies softmax with optional masking.
235
+
236
+ Args:
237
+ attention_scores: Attention score tensor.
238
+ attention_mask: Optional mask tensor.
239
+
240
+ Returns:
241
+ Masked softmax attention weights.
242
+ """
243
+ if attention_mask is not None:
244
+ return self._softmax(
245
+ attention_scores, attention_mask[:, None, :, :]
246
+ )
247
+ return self._softmax(attention_scores)
248
+
249
+ def _compute_attention(
250
+ self, query, key, value, attention_mask=None, cache_update_index=None
251
+ ):
252
+ """Computes attention using query, key, and value tensors.
253
+
254
+ Uses Flash Attention when available for better performance.
255
+
256
+ Args:
257
+ query: Query tensor.
258
+ key: Key tensor.
259
+ value: Value tensor.
260
+ attention_mask: Optional mask tensor.
261
+ cache_update_index: Index for sliding window computation.
262
+
263
+ Returns:
264
+ attention_output: Output tensor after applying attention.
265
+ """
266
+ if has_flash_attention_support():
267
+ # Use `dot_product_attention` with Flash Attention support if
268
+ # available.
269
+ if attention_mask is not None:
270
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
271
+ attention_mask = ops.cast(attention_mask, dtype="bool")
272
+ attention_output = ops.dot_product_attention(
273
+ query,
274
+ key,
275
+ value,
276
+ mask=attention_mask,
277
+ scale=self._inv_norm_factor,
278
+ )
279
+ return attention_output
280
+
281
+ attention_scores = ops.einsum(self._dot_product_equation, query, key)
282
+
283
+ attention_scores = ops.multiply(
284
+ attention_scores,
285
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
286
+ )
287
+ if self.use_sliding_window_attention:
288
+ attention_mask = self._mask_sliding_window(
289
+ attention_mask,
290
+ cache_update_index=cache_update_index,
291
+ )
292
+ attention_scores = self._masked_softmax(
293
+ attention_scores, attention_mask
294
+ )
295
+ attention_scores = ops.cast(attention_scores, self.compute_dtype)
296
+ attention_output = ops.einsum(
297
+ self._combine_equation, attention_scores, value
298
+ )
299
+
300
+ return attention_output
301
+
302
+ def _mask_sliding_window(
303
+ self,
304
+ attention_mask,
305
+ cache_update_index=0,
306
+ ):
307
+ """Creates and combines a sliding window mask with the attention mask.
308
+
309
+ Args:
310
+ attention_mask: Original attention mask.
311
+ cache_update_index: Starting index for the sliding window.
312
+
313
+ Returns:
314
+ Combined attention mask with sliding window constraints.
315
+ """
316
+ _, query_len, key_len = ops.shape(attention_mask)
317
+ # Compute the sliding window for square attention.
318
+ all_ones = ops.ones((key_len, key_len), "bool")
319
+ if keras.config.backend() == "tensorflow":
320
+ # TODO: trui/tril has issues with dynamic shape on the tensorflow
321
+ # backend. We should fix, but use `band_part` for now.
322
+ import tensorflow as tf
323
+
324
+ band_size = ops.minimum(key_len, self.sliding_window_size - 1)
325
+ band_size = ops.cast(band_size, "int32")
326
+ sliding_mask = tf.linalg.band_part(all_ones, band_size, band_size)
327
+ else:
328
+ sliding_mask = ops.triu(
329
+ all_ones, -1 * self.sliding_window_size + 1
330
+ ) * ops.tril(all_ones, self.sliding_window_size - 1)
331
+ # Slice the window for short queries during generation.
332
+ start = (cache_update_index, 0)
333
+ sliding_mask = ops.slice(sliding_mask, start, (query_len, key_len))
334
+ sliding_mask = ops.expand_dims(sliding_mask, 0)
335
+ return ops.logical_and(attention_mask, ops.cast(sliding_mask, "bool"))
336
+
337
+ def get_config(self):
338
+ config = super().get_config()
339
+ config.update(
340
+ {
341
+ "num_query_heads": self.num_query_heads,
342
+ "num_key_value_heads": self.num_key_value_heads,
343
+ "rope_max_wavelength": self.rope_max_wavelength,
344
+ "rope_scaling_factor": self.rope_scaling_factor,
345
+ "kernel_initializer": keras.initializers.serialize(
346
+ self.kernel_initializer
347
+ ),
348
+ "bias_initializer": keras.initializers.serialize(
349
+ self.bias_initializer
350
+ ),
351
+ "dropout": self.dropout,
352
+ "use_sliding_window_attention": (
353
+ self.use_sliding_window_attention
354
+ ),
355
+ "sliding_window_size": self.sliding_window_size,
356
+ }
357
+ )
358
+ return config