keras-hub-nightly 0.19.0.dev202503020350__tar.gz → 0.19.0.dev202503040351__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (434) hide show
  1. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/api/layers/__init__.py +3 -0
  3. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/api/models/__init__.py +7 -0
  4. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/api/tokenizers/__init__.py +1 -0
  5. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/image_converter.py +97 -1
  6. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +5 -1
  7. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/__init__.py +5 -0
  8. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_backbone.py +230 -0
  9. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_image_converter.py +8 -0
  10. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_layers.py +555 -0
  11. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_loss.py +35 -0
  12. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_preprocessor.py +162 -0
  13. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_presets.py +128 -0
  14. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_text_encoder.py +134 -0
  15. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_tokenizer.py +77 -0
  16. keras_hub_nightly-0.19.0.dev202503040351/keras_hub/src/models/siglip/siglip_vision_encoder.py +151 -0
  17. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/version_utils.py +1 -1
  18. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  19. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub_nightly.egg-info/SOURCES.txt +10 -0
  20. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/setup.py +1 -1
  21. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/README.md +0 -0
  22. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/__init__.py +0 -0
  23. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/api/__init__.py +0 -0
  24. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/api/metrics/__init__.py +0 -0
  25. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/api/samplers/__init__.py +0 -0
  26. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/api/utils/__init__.py +0 -0
  27. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/__init__.py +0 -0
  28. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/api_export.py +0 -0
  29. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/__init__.py +0 -0
  30. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/__init__.py +0 -0
  31. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  32. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/anchor_generator.py +0 -0
  33. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/box_matcher.py +0 -0
  34. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  35. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  36. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  37. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/non_max_supression.py +0 -0
  38. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  39. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  40. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  41. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  42. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  43. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  44. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  45. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  46. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  47. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  48. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  49. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  50. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  51. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  52. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  53. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  54. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  55. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/metrics/__init__.py +0 -0
  56. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/metrics/bleu.py +0 -0
  57. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/metrics/edit_distance.py +0 -0
  58. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/metrics/perplexity.py +0 -0
  59. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/metrics/rouge_base.py +0 -0
  60. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/metrics/rouge_l.py +0 -0
  61. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/metrics/rouge_n.py +0 -0
  62. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/__init__.py +0 -0
  63. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/__init__.py +0 -0
  64. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  65. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  66. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  67. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/albert_presets.py +0 -0
  68. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  69. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  70. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  71. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/backbone.py +0 -0
  72. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bart/__init__.py +0 -0
  73. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  74. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bart/bart_presets.py +0 -0
  75. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  76. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  77. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  78. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/basnet/__init__.py +0 -0
  79. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/basnet/basnet.py +0 -0
  80. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  81. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  82. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  83. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  84. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/__init__.py +0 -0
  85. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  86. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  87. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  88. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/bert_presets.py +0 -0
  89. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  90. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  91. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  92. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/__init__.py +0 -0
  93. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  94. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  95. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  96. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  97. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  98. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  99. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  100. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/causal_lm.py +0 -0
  101. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  102. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/__init__.py +0 -0
  103. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  104. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  105. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  106. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  107. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_presets.py +0 -0
  108. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  109. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  110. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  111. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  112. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  113. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  114. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  115. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  116. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  117. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  118. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  119. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  120. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  121. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  122. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  123. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  124. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  125. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  126. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  127. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  128. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  129. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  130. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  131. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  132. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  133. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/densenet/__init__.py +0 -0
  134. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  135. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  136. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  137. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  138. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  139. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  140. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  141. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  142. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  143. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  144. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  145. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  146. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  147. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  148. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/cba.py +0 -0
  149. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  150. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  151. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  152. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  153. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  154. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  155. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  156. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/electra/__init__.py +0 -0
  157. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  158. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/electra/electra_presets.py +0 -0
  159. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  160. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/__init__.py +0 -0
  161. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  162. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  163. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  165. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  166. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  167. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  168. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/__init__.py +0 -0
  169. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  170. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  171. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  172. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  173. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  174. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  175. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  176. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  177. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/flux/__init__.py +0 -0
  178. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/flux/flux_layers.py +0 -0
  179. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/flux/flux_maths.py +0 -0
  180. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/flux/flux_model.py +0 -0
  181. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/flux/flux_presets.py +0 -0
  182. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  183. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  184. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/__init__.py +0 -0
  185. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  186. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  187. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  188. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  189. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  190. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  191. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  192. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  193. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt2/__init__.py +0 -0
  194. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  195. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  196. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  197. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  198. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  199. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  200. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  201. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  202. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  203. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  204. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  205. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  206. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  207. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/image_classifier.py +0 -0
  208. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  209. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/image_segmenter.py +0 -0
  210. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  211. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/image_to_image.py +0 -0
  212. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/inpaint.py +0 -0
  213. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/__init__.py +0 -0
  214. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_attention.py +0 -0
  215. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  216. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  217. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  218. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  219. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  220. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_presets.py +0 -0
  221. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  222. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama3/__init__.py +0 -0
  223. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  224. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  225. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  227. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  228. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/masked_lm.py +0 -0
  229. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  230. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/__init__.py +0 -0
  231. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  232. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  233. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  234. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  235. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  236. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  237. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  238. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  239. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mit/__init__.py +0 -0
  240. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  241. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  242. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  243. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  244. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mit/mit_layers.py +0 -0
  245. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mit/mit_presets.py +0 -0
  246. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  247. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  248. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  249. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py +0 -0
  250. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mobilenet/mobilenet_image_converter.py +0 -0
  251. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mobilenet/mobilenet_presets.py +0 -0
  252. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/mobilenet/util.py +0 -0
  253. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/object_detector.py +0 -0
  254. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/object_detector_preprocessor.py +0 -0
  255. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/opt/__init__.py +0 -0
  256. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  257. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  258. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  259. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/opt/opt_presets.py +0 -0
  260. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  261. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  262. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  263. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  264. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  265. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  266. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  267. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  268. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  269. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/__init__.py +0 -0
  270. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  271. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  272. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  273. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  274. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  275. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  276. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  277. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  278. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  279. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/preprocessor.py +0 -0
  280. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/resnet/__init__.py +0 -0
  281. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  282. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  283. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  284. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  285. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  286. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/__init__.py +0 -0
  287. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  288. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  289. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  290. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  291. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  292. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  293. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  294. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  295. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/__init__.py +0 -0
  296. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  297. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  298. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  299. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  300. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  301. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  302. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  303. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/__init__.py +0 -0
  304. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  305. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  306. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  307. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  308. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_layers.py +0 -0
  309. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  310. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_presets.py +0 -0
  311. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  312. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  313. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/segformer/__init__.py +0 -0
  314. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  315. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  316. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  317. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  319. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  320. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  321. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  322. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  323. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  324. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  325. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  326. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  327. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  328. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  329. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  330. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  331. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/__init__.py +0 -0
  332. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  333. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  334. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  335. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  336. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/t5_presets.py +0 -0
  337. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  338. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  339. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/task.py +0 -0
  340. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/text_classifier.py +0 -0
  341. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  342. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/text_to_image.py +0 -0
  343. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vae/__init__.py +0 -0
  344. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  345. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vae/vae_layers.py +0 -0
  346. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vgg/__init__.py +0 -0
  347. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  348. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  349. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  350. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  351. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  352. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit/__init__.py +0 -0
  353. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  354. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  355. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  356. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  357. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit/vit_layers.py +0 -0
  358. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit/vit_presets.py +0 -0
  359. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit_det/__init__.py +0 -0
  360. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  361. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  362. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/__init__.py +0 -0
  363. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  364. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  365. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  366. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  367. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  368. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  369. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  370. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  371. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  372. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  373. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  374. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  375. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  376. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  377. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  378. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlnet/__init__.py +0 -0
  379. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  380. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  381. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  382. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  383. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/__init__.py +0 -0
  384. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/beam_sampler.py +0 -0
  385. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  386. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  387. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/random_sampler.py +0 -0
  388. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/sampler.py +0 -0
  389. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/serialization.py +0 -0
  390. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  391. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  392. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tests/__init__.py +0 -0
  393. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tests/test_case.py +0 -0
  394. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/__init__.py +0 -0
  395. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  396. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  397. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  398. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  399. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  400. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  401. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  402. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  403. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/__init__.py +0 -0
  404. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  405. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  406. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/keras_utils.py +0 -0
  407. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/pipeline_model.py +0 -0
  408. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/preset_utils.py +0 -0
  409. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/python_utils.py +0 -0
  410. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/tensor_utils.py +0 -0
  411. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/timm/__init__.py +0 -0
  412. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  413. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  414. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/timm/convert_mobilenet.py +0 -0
  415. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  416. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  417. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  418. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/__init__.py +0 -0
  419. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  420. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  421. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  422. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  423. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  424. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  425. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  426. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  427. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  428. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  429. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  430. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  431. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  432. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub_nightly.egg-info/requires.txt +0 -0
  433. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  434. {keras_hub_nightly-0.19.0.dev202503020350 → keras_hub_nightly-0.19.0.dev202503040351}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202503020350
3
+ Version: 0.19.0.dev202503040351
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -70,6 +70,9 @@ from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
70
70
  from keras_hub.src.models.segformer.segformer_image_converter import (
71
71
  SegFormerImageConverter,
72
72
  )
73
+ from keras_hub.src.models.siglip.siglip_image_converter import (
74
+ SigLIPImageConverter,
75
+ )
73
76
  from keras_hub.src.models.vgg.vgg_image_converter import VGGImageConverter
74
77
  from keras_hub.src.models.vit.vit_image_converter import ViTImageConverter
75
78
  from keras_hub.src.models.whisper.whisper_audio_converter import (
@@ -312,6 +312,13 @@ from keras_hub.src.models.segformer.segformer_image_segmenter_preprocessor impor
312
312
  )
313
313
  from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
314
314
  from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
315
+ from keras_hub.src.models.siglip.siglip_backbone import SigLIPBackbone
316
+ from keras_hub.src.models.siglip.siglip_preprocessor import SigLIPPreprocessor
317
+ from keras_hub.src.models.siglip.siglip_text_encoder import SigLIPTextEncoder
318
+ from keras_hub.src.models.siglip.siglip_tokenizer import SigLIPTokenizer
319
+ from keras_hub.src.models.siglip.siglip_vision_encoder import (
320
+ SigLIPVisionEncoder,
321
+ )
315
322
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
316
323
  StableDiffusion3Backbone,
317
324
  )
@@ -30,6 +30,7 @@ from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
30
30
  )
31
31
  from keras_hub.src.models.phi3.phi3_tokenizer import Phi3Tokenizer
32
32
  from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
33
+ from keras_hub.src.models.siglip.siglip_tokenizer import SigLIPTokenizer
33
34
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer
34
35
  from keras_hub.src.models.whisper.whisper_tokenizer import WhisperTokenizer
35
36
  from keras_hub.src.models.xlm_roberta.xlm_roberta_tokenizer import (
@@ -1,6 +1,7 @@
1
1
  import math
2
2
 
3
3
  import keras
4
+ import ml_dtypes
4
5
  import numpy as np
5
6
  from keras import ops
6
7
 
@@ -18,6 +19,95 @@ from keras_hub.src.utils.tensor_utils import check_bounding_box_support
18
19
  from keras_hub.src.utils.tensor_utils import preprocessing_function
19
20
 
20
21
 
22
+ # TODO: Use `keras.layers.Resizing` once `antialias` is configurable.
23
+ # https://github.com/keras-team/keras/pull/20972
24
+ def _saturate_cast(x, dtype, backend_module):
25
+ def get_dtype_min_max(dtype):
26
+ if "bool" == dtype:
27
+ dtype_min = 0
28
+ dtype_max = 1
29
+ elif "int" in dtype:
30
+ dtype_min = ml_dtypes.iinfo(dtype).min
31
+ dtype_max = ml_dtypes.iinfo(dtype).max
32
+ else:
33
+ dtype_min = ml_dtypes.finfo(dtype).min
34
+ dtype_max = ml_dtypes.finfo(dtype).max
35
+ return dtype_min, dtype_max
36
+
37
+ dtype = keras.backend.standardize_dtype(dtype)
38
+ in_dtype = keras.backend.standardize_dtype(x.dtype)
39
+ in_min, in_max = get_dtype_min_max(in_dtype)
40
+ out_min, out_max = get_dtype_min_max(dtype)
41
+
42
+ min_limit = np.maximum(in_min, out_min).astype(in_dtype)
43
+ if min_limit < out_min:
44
+ min_limit = np.nextafter(min_limit, 0, dtype=in_dtype)
45
+ max_limit = np.minimum(in_max, out_max).astype(in_dtype)
46
+ if max_limit > out_max:
47
+ max_limit = np.nextafter(max_limit, 0, dtype=in_dtype)
48
+
49
+ x = backend_module.numpy.clip(x, min_limit, max_limit)
50
+ return backend_module.cast(x, dtype)
51
+
52
+
53
+ class ResizingAntialiasConfigurable(keras.layers.Resizing):
54
+ """A preprocessing layer which resizes images.
55
+
56
+ This class is the same as `keras.layers.Resizing` but exposes `antialias` as
57
+ a configurable parameter.
58
+ """
59
+
60
+ def __init__(
61
+ self,
62
+ height,
63
+ width,
64
+ interpolation="bilinear",
65
+ antialias=False,
66
+ crop_to_aspect_ratio=False,
67
+ pad_to_aspect_ratio=False,
68
+ fill_mode="constant",
69
+ fill_value=0.0,
70
+ data_format=None,
71
+ **kwargs,
72
+ ):
73
+ super().__init__(
74
+ height=height,
75
+ width=width,
76
+ interpolation=interpolation,
77
+ crop_to_aspect_ratio=crop_to_aspect_ratio,
78
+ pad_to_aspect_ratio=pad_to_aspect_ratio,
79
+ fill_mode=fill_mode,
80
+ fill_value=fill_value,
81
+ data_format=data_format,
82
+ **kwargs,
83
+ )
84
+ self.antialias = bool(antialias)
85
+
86
+ def transform_images(self, images, transformation=None, training=True):
87
+ size = (self.height, self.width)
88
+ resized = self.backend.image.resize(
89
+ images,
90
+ size=size,
91
+ interpolation=self.interpolation,
92
+ antialias=self.antialias, # Added.
93
+ data_format=self.data_format,
94
+ crop_to_aspect_ratio=self.crop_to_aspect_ratio,
95
+ pad_to_aspect_ratio=self.pad_to_aspect_ratio,
96
+ fill_mode=self.fill_mode,
97
+ fill_value=self.fill_value,
98
+ )
99
+ if resized.dtype == images.dtype:
100
+ return resized
101
+ if keras.backend.is_int_dtype(images.dtype):
102
+ resized = self.backend.numpy.round(resized)
103
+ return _saturate_cast(resized, images.dtype, self.backend)
104
+
105
+ def get_config(self):
106
+ config = super().get_config()
107
+ config.update({"antialias": self.antialias})
108
+ return config
109
+
110
+
21
111
  @keras_hub_export("keras_hub.layers.ImageConverter")
22
112
  class ImageConverter(PreprocessingLayer):
23
113
  """Preprocess raw images into model ready inputs.
@@ -65,6 +155,8 @@ class ImageConverter(PreprocessingLayer):
65
155
  interpolation: String, the interpolation method.
66
156
  Supports `"bilinear"`, `"nearest"`, `"bicubic"`,
67
157
  `"lanczos3"`, `"lanczos5"`. Defaults to `"bilinear"`.
158
+ antialias: Whether to use an antialiasing filter when downsampling an
159
+ image. Defaults to `False`.
68
160
  bounding_box_format: A string specifying the format of the bounding
69
161
  boxes, one of `"xyxy"`, `"rel_xyxy"`, `"xywh"`, `"center_xywh"`,
70
162
  `"yxyx"`, `"rel_yxyx"`. Specifies the format of the bounding boxes
@@ -107,6 +199,7 @@ class ImageConverter(PreprocessingLayer):
107
199
  crop_to_aspect_ratio=True,
108
200
  pad_to_aspect_ratio=False,
109
201
  interpolation="bilinear",
202
+ antialias=False,
110
203
  bounding_box_format="yxyx",
111
204
  data_format=None,
112
205
  **kwargs,
@@ -132,12 +225,13 @@ class ImageConverter(PreprocessingLayer):
132
225
  resizing_kwargs = {}
133
226
  if check_bounding_box_support():
134
227
  resizing_kwargs["bounding_box_format"] = bounding_box_format
135
- self.resizing = keras.layers.Resizing(
228
+ self.resizing = ResizingAntialiasConfigurable(
136
229
  height=image_size[0] if image_size else None,
137
230
  width=image_size[1] if image_size else None,
138
231
  crop_to_aspect_ratio=crop_to_aspect_ratio,
139
232
  pad_to_aspect_ratio=pad_to_aspect_ratio,
140
233
  interpolation=interpolation,
234
+ antialias=antialias,
141
235
  data_format=data_format,
142
236
  dtype=self.dtype_policy,
143
237
  name="resizing",
@@ -148,6 +242,7 @@ class ImageConverter(PreprocessingLayer):
148
242
  self.crop_to_aspect_ratio = crop_to_aspect_ratio
149
243
  self.pad_to_aspect_ratio = pad_to_aspect_ratio
150
244
  self.interpolation = interpolation
245
+ self.antialias = antialias
151
246
  self.bounding_box_format = bounding_box_format
152
247
  self.data_format = standardize_data_format(data_format)
153
248
 
@@ -211,6 +306,7 @@ class ImageConverter(PreprocessingLayer):
211
306
  "scale": self.scale,
212
307
  "offset": self.offset,
213
308
  "interpolation": self.interpolation,
309
+ "antialias": self.antialias,
214
310
  "crop_to_aspect_ratio": self.crop_to_aspect_ratio,
215
311
  "pad_to_aspect_ratio": self.pad_to_aspect_ratio,
216
312
  "bounding_box_format": self.bounding_box_format,
@@ -330,7 +330,11 @@ class PaliGemmaVitEncoder(keras.layers.Layer):
330
330
  # `compute_output_spec` fails to propagate `inputs_shape`
331
331
  # correctly, causing it to be `None`.
332
332
  inputs_shape = [None, None, None]
333
- return [inputs_shape[0], inputs_shape[1], self.hidden_dim]
333
+ return [
334
+ inputs_shape[0],
335
+ (inputs_shape[1] // self.patch_size) ** 2,
336
+ self.hidden_dim,
337
+ ]
334
338
 
335
339
  def get_config(self):
336
340
  config = super().get_config()
@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.siglip.siglip_backbone import SigLIPBackbone
2
+ from keras_hub.src.models.siglip.siglip_presets import backbone_presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(backbone_presets, SigLIPBackbone)
@@ -0,0 +1,230 @@
1
+ import keras
2
+ from keras import layers
3
+ from keras import ops
4
+
5
+ from keras_hub.src.api_export import keras_hub_export
6
+ from keras_hub.src.models.backbone import Backbone
7
+ from keras_hub.src.models.siglip.siglip_layers import SigLIPHead
8
+ from keras_hub.src.models.siglip.siglip_loss import SigLIPLoss
9
+
10
+
11
+ @keras_hub_export("keras_hub.models.SigLIPBackbone")
12
+ class SigLIPBackbone(Backbone):
13
+ """SigCLIP core network with hyperparameters.
14
+
15
+ This backbone implements the base architecture for the Sigmoid loss in the
16
+ Language-Image Pre-training (SigLIP) model. Unlike standard contrastive
17
+ learning with softmax normalization, the sigmoid loss operates solely on
18
+ image-text pairs and does not require a global view of the pairwise
19
+ similarities for normalization. It includes vision and text encoders. This
20
+ backbone outputs the final logit scores corresponding to each image and
21
+ token input.
22
+
23
+ The default constructor gives a fully customizable, randomly initialized
24
+ SigLIP model with any number of layers, heads, and embedding dimensions. To
25
+ load preset architectures and weights, use the `from_preset` constructor.
26
+
27
+ Args:
28
+ vision_encoder: The SigLIP vision encoder for encoding the input images.
29
+ text_encoder: The SigLIP text encoder for encoding the input tokens.
30
+ projection_dim: int. The size of the projection layer.
31
+ dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
32
+ for the models computations and weights. Note that some
33
+ computations, such as softmax and layer normalization will always
34
+ be done a float32 precision regardless of dtype.
35
+
36
+ Example:
37
+ ```python
38
+ input_data = {
39
+ "images": np.ones(shape=(1, 224, 224, 3), dtype="float32"),
40
+ "token_ids": np.ones(shape=(1, 64), dtype="int32"),
41
+ }
42
+
43
+ # Pretrained SigLIP model.
44
+ model = keras_hub.models.SigLIPBackbone.from_preset(
45
+ "siglip_base_patch16_224"
46
+ )
47
+ model(input_data)
48
+
49
+ # Randomly initialized SigLIP model with custom config.
50
+ vision_encoder = keras_hub.models.SigLIPVisionEncoder(
51
+ patch_size=32,
52
+ hidden_dim=768,
53
+ num_layers=8,
54
+ num_heads=8,
55
+ intermediate_dim=2048,
56
+ image_shape=(384, 384, 3),
57
+ )
58
+ text_encoder = keras_hub.models.SigLIPTextEncoder(
59
+ vocabulary_size=32000,
60
+ embedding_dim=768,
61
+ hidden_dim=768,
62
+ num_layers=8,
63
+ num_heads=8,
64
+ intermediate_dim=2048,
65
+ )
66
+ model = keras_hub.models.SigLIPBackbone(
67
+ vision_encoder=vision_encoder,
68
+ text_encoder=text_encoder,
69
+ )
70
+ model(input_data)
71
+ ```
72
+ """
73
+
74
+ def __init__(
75
+ self,
76
+ vision_encoder,
77
+ text_encoder,
78
+ dtype=None,
79
+ **kwargs,
80
+ ):
81
+ # === Layers ===
82
+ self.vision_encoder = vision_encoder
83
+ self.text_encoder = text_encoder
84
+ self.siglip_head = SigLIPHead(dtype=dtype, name="siglip_head")
85
+
86
+ # === Functional Model ===
87
+ image_input = layers.Input(
88
+ shape=self.vision_encoder.image_shape, name="images"
89
+ )
90
+ token_id_input = layers.Input(
91
+ shape=(None,), dtype="int32", name="token_ids"
92
+ )
93
+ vision_embeddings = self.get_vision_embeddings(image_input)
94
+ text_embeddings = self.get_text_embeddings(token_id_input)
95
+ vision_logits, text_logits = self.siglip_head(
96
+ vision_embeddings, text_embeddings
97
+ )
98
+
99
+ super().__init__(
100
+ inputs={
101
+ "images": image_input,
102
+ "token_ids": token_id_input,
103
+ },
104
+ outputs={
105
+ "vision_logits": vision_logits,
106
+ "text_logits": text_logits,
107
+ },
108
+ dtype=dtype,
109
+ **kwargs,
110
+ )
111
+
112
+ def compute_loss(
113
+ self, x, y=None, y_pred=None, sample_weight=None, **kwargs
114
+ ):
115
+ outputs = self(x)
116
+ text_logits = outputs["text_logits"]
117
+ batch_size = ops.shape(text_logits)[0]
118
+ eye = ops.eye(batch_size, dtype=text_logits.dtype)
119
+ m1_diag1 = -ops.ones_like(text_logits) + 2 * eye
120
+ return super().compute_loss(
121
+ x=x,
122
+ y=m1_diag1,
123
+ y_pred=text_logits,
124
+ sample_weight=sample_weight,
125
+ **kwargs,
126
+ )
127
+
128
+ def compile(
129
+ self,
130
+ optimizer="auto",
131
+ loss="auto",
132
+ metrics=None,
133
+ **kwargs,
134
+ ):
135
+ """Configures the `SigLIPBackbone` task for training.
136
+
137
+ `SigLIPBackbone` extends the default compilation signature
138
+ of `keras.Model.compile` with defaults for `optimizer` and `loss`. To
139
+ override these defaults, pass any value to these arguments during
140
+ compilation.
141
+
142
+ Args:
143
+ optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
144
+ instance. Defaults to `"auto"`, which uses the default
145
+ optimizer for `SigLIPBackbone`. See `keras.Model.compile` and
146
+ `keras.optimizers` for more info on possible `optimizer`
147
+ values.
148
+ loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
149
+ Defaults to `"auto"`, in which case the default loss
150
+ computation of `SigLIPBackbone` will be applied.
151
+ See `keras.Model.compile` and `keras.losses` for more info on
152
+ possible `loss` values.
153
+ metrics: `a list of metrics to be evaluated by
154
+ the model during training and testing. Defaults to `None`.
155
+ See `keras.Model.compile` and `keras.metrics` for
156
+ more info on possible `metrics` values.
157
+ **kwargs: See `keras.Model.compile` for a full list of arguments
158
+ supported by the compile method.
159
+ """
160
+ if optimizer == "auto":
161
+ # Using the alternative optimizer AdamW instead of the
162
+ # ScalingViT-Adafactor optimizer mentioned in the paper:
163
+ # https://arxiv.org/abs/2303.15343 - C. Robustness of SigLIP
164
+ # results.
165
+ optimizer = keras.optimizers.AdamW(1e-3, weight_decay=1e-4)
166
+ if loss == "auto":
167
+ loss = SigLIPLoss()
168
+ if metrics == "auto":
169
+ metrics = [keras.metrics.Accuracy()]
170
+ super().compile(
171
+ optimizer=optimizer,
172
+ loss=loss,
173
+ metrics=metrics,
174
+ **kwargs,
175
+ )
176
+
177
+ def get_vision_embeddings(self, images):
178
+ """Get the embeddings from the vision encoder.
179
+
180
+ Args:
181
+ images: The input tensor for the vision encoder.
182
+
183
+ Returns:
184
+ The output embeddings obtained by applying projection layer to the
185
+ pooled output of the vision encoder.
186
+ """
187
+ return self.vision_encoder({"images": images})
188
+
189
+ def get_text_embeddings(self, token_ids):
190
+ """Get the embeddings from the text encoder.
191
+
192
+ Args:
193
+ token_ids: The input int tensor for the text encoder.
194
+
195
+ Returns:
196
+ The output embeddings obtained by applying projection layer to the
197
+ pooled output of the text encoder.
198
+ """
199
+ return self.text_encoder({"token_ids": token_ids})
200
+
201
+ def get_config(self):
202
+ config = super().get_config()
203
+ config.update(
204
+ {
205
+ "vision_encoder": layers.serialize(self.vision_encoder),
206
+ "text_encoder": layers.serialize(self.text_encoder),
207
+ }
208
+ )
209
+ return config
210
+
211
+ @classmethod
212
+ def from_config(cls, config, custom_objects=None):
213
+ config = config.copy()
214
+
215
+ # Propagate `dtype` to submodels if needed.
216
+ if "dtype" in config and config["dtype"] is not None:
217
+ dtype_config = config["dtype"]
218
+ if "dtype" not in config["vision_encoder"]["config"]:
219
+ config["vision_encoder"]["config"]["dtype"] = dtype_config
220
+ if "dtype" not in config["text_encoder"]["config"]:
221
+ config["text_encoder"]["config"]["dtype"] = dtype_config
222
+
223
+ # We expect submodels to be instantiated.
224
+ config["vision_encoder"] = layers.deserialize(
225
+ config["vision_encoder"], custom_objects=custom_objects
226
+ )
227
+ config["text_encoder"] = layers.deserialize(
228
+ config["text_encoder"], custom_objects=custom_objects
229
+ )
230
+ return cls(**config)
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.siglip.siglip_backbone import SigLIPBackbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.SigLIPImageConverter")
7
+ class SigLIPImageConverter(ImageConverter):
8
+ backbone_cls = SigLIPBackbone