keras-hub-nightly 0.19.0.dev202501280343__tar.gz → 0.19.0.dev202501300343__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (428) hide show
  1. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/PKG-INFO +2 -2
  2. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/README.md +1 -1
  3. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/falcon_attention.py +6 -3
  4. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +23 -6
  5. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_attention.py +23 -2
  6. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_attention.py +23 -4
  7. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_attention.py +23 -2
  8. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/mmdit.py +5 -8
  9. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/keras_utils.py +7 -0
  10. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/preset_utils.py +1 -1
  11. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/version_utils.py +1 -1
  12. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub_nightly.egg-info/PKG-INFO +2 -2
  13. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/setup.py +1 -1
  14. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/__init__.py +0 -0
  15. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/__init__.py +0 -0
  16. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/bounding_box/__init__.py +0 -0
  17. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/layers/__init__.py +0 -0
  18. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/metrics/__init__.py +0 -0
  19. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/models/__init__.py +0 -0
  20. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/samplers/__init__.py +0 -0
  21. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/tokenizers/__init__.py +0 -0
  22. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/api/utils/__init__.py +0 -0
  23. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/__init__.py +0 -0
  24. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/api_export.py +0 -0
  25. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/__init__.py +0 -0
  26. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/converters.py +0 -0
  27. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/formats.py +0 -0
  28. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/iou.py +0 -0
  29. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/to_dense.py +0 -0
  30. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  31. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/utils.py +0 -0
  32. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/bounding_box/validate_format.py +0 -0
  33. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/__init__.py +0 -0
  34. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/__init__.py +0 -0
  35. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  36. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  37. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  38. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  39. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  40. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  41. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  42. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  43. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  44. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  45. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  46. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  47. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  48. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  49. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  50. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  51. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  52. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  53. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  54. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  55. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  56. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  57. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/metrics/__init__.py +0 -0
  58. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/metrics/bleu.py +0 -0
  59. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/metrics/edit_distance.py +0 -0
  60. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/metrics/perplexity.py +0 -0
  61. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/metrics/rouge_base.py +0 -0
  62. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/metrics/rouge_l.py +0 -0
  63. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/metrics/rouge_n.py +0 -0
  64. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/__init__.py +0 -0
  65. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/__init__.py +0 -0
  66. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  67. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  68. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  69. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/albert_presets.py +0 -0
  70. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  71. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  72. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  73. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/backbone.py +0 -0
  74. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bart/__init__.py +0 -0
  75. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  76. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bart/bart_presets.py +0 -0
  77. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  78. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  79. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  80. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/basnet/__init__.py +0 -0
  81. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/basnet/basnet.py +0 -0
  82. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  83. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  84. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  85. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  86. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/__init__.py +0 -0
  87. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  88. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  89. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  90. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/bert_presets.py +0 -0
  91. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  92. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  94. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/__init__.py +0 -0
  95. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  96. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  97. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  98. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  100. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  101. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  102. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/causal_lm.py +0 -0
  103. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  104. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/__init__.py +0 -0
  105. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  106. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  107. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  108. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  109. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_presets.py +0 -0
  110. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  111. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  112. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  113. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  114. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  115. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  116. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  117. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  118. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  119. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  120. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  121. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  122. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  123. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  124. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  125. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  126. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  127. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  128. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  129. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  130. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  131. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  133. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  134. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  135. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/densenet/__init__.py +0 -0
  136. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  137. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  138. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  140. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  141. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  142. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  143. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  144. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  145. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  146. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  147. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  149. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  150. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/cba.py +0 -0
  151. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  152. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  153. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  154. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  155. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  156. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  157. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  158. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/electra/__init__.py +0 -0
  159. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  160. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/electra/electra_presets.py +0 -0
  161. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  162. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/__init__.py +0 -0
  163. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  164. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  165. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  166. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  167. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  168. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  170. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/__init__.py +0 -0
  171. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  172. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  173. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  174. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  175. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  176. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  177. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  178. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/flux/__init__.py +0 -0
  179. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/flux/flux_layers.py +0 -0
  180. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/flux/flux_maths.py +0 -0
  181. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/flux/flux_model.py +0 -0
  182. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/flux/flux_presets.py +0 -0
  183. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  184. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/__init__.py +0 -0
  186. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  187. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  188. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  189. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  190. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  191. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  192. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  193. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  194. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt2/__init__.py +0 -0
  195. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  196. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  197. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  198. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  199. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  200. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  201. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  202. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  203. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  204. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  205. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  206. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  207. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/image_classifier.py +0 -0
  208. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  209. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/image_object_detector.py +0 -0
  210. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/image_object_detector_preprocessor.py +0 -0
  211. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/image_segmenter.py +0 -0
  212. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  213. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/image_to_image.py +0 -0
  214. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/inpaint.py +0 -0
  215. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/__init__.py +0 -0
  216. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  217. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  218. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  220. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  221. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_presets.py +0 -0
  222. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  223. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama3/__init__.py +0 -0
  224. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  225. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  226. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  227. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  228. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  229. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/masked_lm.py +0 -0
  230. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  231. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/__init__.py +0 -0
  232. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  233. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  234. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  235. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  236. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  237. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  238. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  239. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mit/__init__.py +0 -0
  240. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  241. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  242. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  243. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  244. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mit/mit_layers.py +0 -0
  245. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mit/mit_presets.py +0 -0
  246. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  247. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  248. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  249. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/opt/__init__.py +0 -0
  250. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  251. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  252. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  253. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/opt/opt_presets.py +0 -0
  254. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  255. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  256. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  257. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  258. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  259. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  260. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  261. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  262. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  263. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  264. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/__init__.py +0 -0
  265. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  266. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  267. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  268. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  269. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  270. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  271. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  272. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  273. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/preprocessor.py +0 -0
  274. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/resnet/__init__.py +0 -0
  275. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  276. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  277. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  278. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  279. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  280. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/__init__.py +0 -0
  281. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  282. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  283. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  284. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  285. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  286. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  287. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  288. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  289. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  290. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  291. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  292. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/__init__.py +0 -0
  293. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  294. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  295. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  296. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  297. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  298. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  299. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  300. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/__init__.py +0 -0
  301. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  302. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  303. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  304. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_layers.py +0 -0
  306. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  307. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_presets.py +0 -0
  308. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  309. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  310. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/segformer/__init__.py +0 -0
  311. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  312. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  313. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  314. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  315. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  316. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  317. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  319. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  320. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  321. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  322. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  323. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  324. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  325. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  326. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  327. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/__init__.py +0 -0
  328. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  329. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  330. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  331. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  332. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/t5_presets.py +0 -0
  333. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  334. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  335. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/task.py +0 -0
  336. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/text_classifier.py +0 -0
  337. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  338. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/text_to_image.py +0 -0
  339. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vae/__init__.py +0 -0
  340. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  341. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vae/vae_layers.py +0 -0
  342. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vgg/__init__.py +0 -0
  343. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  344. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  345. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  346. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  347. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  348. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit/__init__.py +0 -0
  349. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  350. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  351. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  352. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  353. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit/vit_layers.py +0 -0
  354. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit/vit_presets.py +0 -0
  355. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit_det/__init__.py +0 -0
  356. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  357. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  358. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/__init__.py +0 -0
  359. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  360. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  361. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  362. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  363. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  364. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  365. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  366. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  367. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  368. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  369. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  370. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  371. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  372. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  373. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  374. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlnet/__init__.py +0 -0
  375. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  376. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  377. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  378. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  379. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/__init__.py +0 -0
  380. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/beam_sampler.py +0 -0
  381. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  382. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  383. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/random_sampler.py +0 -0
  384. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/sampler.py +0 -0
  385. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/serialization.py +0 -0
  386. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  387. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  388. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tests/__init__.py +0 -0
  389. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tests/test_case.py +0 -0
  390. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/__init__.py +0 -0
  391. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  392. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  393. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  394. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  395. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  396. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  397. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  398. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  399. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/__init__.py +0 -0
  400. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  401. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  402. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/pipeline_model.py +0 -0
  403. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/python_utils.py +0 -0
  404. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/tensor_utils.py +0 -0
  405. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/timm/__init__.py +0 -0
  406. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  407. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  408. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  409. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  410. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  411. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/__init__.py +0 -0
  412. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  413. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  414. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  415. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  416. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  417. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  418. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  419. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  420. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  421. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  422. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  423. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  424. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
  425. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  426. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub_nightly.egg-info/requires.txt +0 -0
  427. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  428. {keras_hub_nightly-0.19.0.dev202501280343 → keras_hub_nightly-0.19.0.dev202501300343}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202501280343
3
+ Version: 0.19.0.dev202501300343
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -123,7 +123,7 @@ print(keras_hub.utils.decode_imagenet_predictions(preds))
123
123
  Load a Bert model and fine-tune it on IMDb movie reviews:
124
124
 
125
125
  ```python
126
- classifier = keras_hub.models.BertClassifier.from_preset(
126
+ classifier = keras_hub.models.TextClassifier.from_preset(
127
127
  "bert_base_en_uncased",
128
128
  activation="softmax",
129
129
  num_classes=2,
@@ -78,7 +78,7 @@ print(keras_hub.utils.decode_imagenet_predictions(preds))
78
78
  Load a Bert model and fine-tune it on IMDb movie reviews:
79
79
 
80
80
  ```python
81
- classifier = keras_hub.models.BertClassifier.from_preset(
81
+ classifier = keras_hub.models.TextClassifier.from_preset(
82
82
  "bert_base_en_uncased",
83
83
  activation="softmax",
84
84
  num_classes=2,
@@ -110,9 +110,11 @@ class FalconAttention(keras.layers.Layer):
110
110
 
111
111
  attention_scores = ops.einsum("bqnh,bknh->bnqk", query, key)
112
112
  attention_scores = ops.add(attention_scores, alibi)
113
- attention_scores = (
114
- attention_scores * self.inv_norm_factor
115
- ) # [batch_size, num_heads, query_length, kv_length]
113
+ # [batch_size, num_heads, query_length, kv_length]
114
+ attention_scores = ops.multiply(
115
+ attention_scores,
116
+ ops.cast(self.inv_norm_factor, self.compute_dtype),
117
+ )
116
118
  attention_scores = self.softmax(
117
119
  attention_scores, ops.expand_dims(attention_mask, 1)
118
120
  )
@@ -120,6 +122,7 @@ class FalconAttention(keras.layers.Layer):
120
122
  attention_output = ops.einsum(
121
123
  "bnqk,bknh->bqnh", attention_scores, value
122
124
  )
125
+
123
126
  attention_output = ops.reshape(
124
127
  attention_output,
125
128
  [batch_size, seq_length, self.num_heads * self.head_dim],
@@ -1,8 +1,11 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
4
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
5
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
6
9
 
7
10
 
8
11
  class GPTNeoXAttention(keras.layers.Layer):
@@ -58,6 +61,8 @@ class GPTNeoXAttention(keras.layers.Layer):
58
61
  self.bias_initializer = keras.initializers.get(bias_initializer)
59
62
  self.max_sequence_length = max_sequence_length
60
63
 
64
+ self._inv_norm_factor = 1.0 / math.sqrt(self.attn_head_size)
65
+
61
66
  def build(self, input_shape):
62
67
  self._qkv_dense = keras.layers.EinsumDense(
63
68
  equation="abc,cde->abde",
@@ -120,14 +125,26 @@ class GPTNeoXAttention(keras.layers.Layer):
120
125
  def _compute_attention(
121
126
  self, query, key, value, attention_mask=None, training=None
122
127
  ):
123
- attention_scores = ops.einsum("aecd,abcd->acbe", key, query)
128
+ if has_flash_attention_support() and self.dropout == 0:
129
+ # Use `dot_product_attention` with Flash Attention support if
130
+ # available.
131
+ if attention_mask is not None:
132
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
133
+ attention_mask = ops.cast(attention_mask, dtype="bool")
134
+ attention_output = ops.dot_product_attention(
135
+ query,
136
+ key,
137
+ value,
138
+ mask=attention_mask,
139
+ scale=self._inv_norm_factor,
140
+ )
141
+ return attention_output
124
142
 
125
- norm_factor = ops.sqrt(
126
- ops.convert_to_tensor(self.attn_head_size, self.compute_dtype)
143
+ attention_scores = ops.einsum("aecd,abcd->acbe", key, query)
144
+ attention_scores = ops.multiply(
145
+ attention_scores,
146
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
127
147
  )
128
-
129
- attention_scores /= norm_factor
130
-
131
148
  attention_scores = self._masked_softmax(
132
149
  attention_scores, attention_mask
133
150
  )
@@ -1,8 +1,11 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
4
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
5
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
6
9
 
7
10
 
8
11
  class LlamaAttention(keras.layers.Layer):
@@ -43,7 +46,7 @@ class LlamaAttention(keras.layers.Layer):
43
46
  # h = head dim
44
47
  hidden_dim = inputs_shape[-1]
45
48
  head_dim = hidden_dim // self.num_query_heads
46
- self._norm_factor = ops.sqrt(ops.cast(head_dim, self.compute_dtype))
49
+ self._inv_norm_factor = 1.0 / math.sqrt(head_dim)
47
50
 
48
51
  self._query_dense = keras.layers.EinsumDense(
49
52
  equation="bqm,muh->bquh",
@@ -182,9 +185,27 @@ class LlamaAttention(keras.layers.Layer):
182
185
  return self._softmax(attention_scores)
183
186
 
184
187
  def _compute_attention(self, query, key, value, attention_mask=None):
188
+ if has_flash_attention_support():
189
+ # Use `dot_product_attention` with Flash Attention support if
190
+ # available.
191
+ if attention_mask is not None:
192
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
193
+ attention_mask = ops.cast(attention_mask, dtype="bool")
194
+ attention_output = ops.dot_product_attention(
195
+ query,
196
+ key,
197
+ value,
198
+ mask=attention_mask,
199
+ scale=self._inv_norm_factor,
200
+ )
201
+ return attention_output
202
+
185
203
  attention_scores = ops.einsum(self._dot_product_equation, query, key)
186
204
 
187
- attention_scores = attention_scores / self._norm_factor
205
+ attention_scores = ops.multiply(
206
+ attention_scores,
207
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
208
+ )
188
209
  attention_scores = self._masked_softmax(
189
210
  attention_scores, attention_mask
190
211
  )
@@ -1,8 +1,11 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
4
6
  from keras_hub.src.layers.modeling.rotary_embedding import RotaryEmbedding
5
7
  from keras_hub.src.utils.keras_utils import clone_initializer
8
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
6
9
 
7
10
 
8
11
  # This is just a self-attention layer in Mistral. But it can be generalized
@@ -52,6 +55,7 @@ class CachedMistralAttention(keras.layers.Layer):
52
55
  # h = head dim
53
56
  self._hidden_dim = inputs_shape[-1]
54
57
  self._head_dim = self._hidden_dim // self._num_query_heads
58
+ self._inv_norm_factor = 1.0 / math.sqrt(self._head_dim)
55
59
 
56
60
  self._query_dense = keras.layers.EinsumDense(
57
61
  equation="bqm,muh->bquh",
@@ -192,11 +196,26 @@ class CachedMistralAttention(keras.layers.Layer):
192
196
  return self._softmax(attention_scores)
193
197
 
194
198
  def _compute_attention(self, query, key, value, attention_mask=None):
195
- attention_scores = ops.einsum(self._dot_product_equation, query, key)
196
-
197
- norm_factor = ops.sqrt(ops.cast(self._head_dim, self.compute_dtype))
199
+ if has_flash_attention_support():
200
+ # Use `dot_product_attention` with Flash Attention support if
201
+ # available.
202
+ if attention_mask is not None:
203
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
204
+ attention_mask = ops.cast(attention_mask, dtype="bool")
205
+ attention_output = ops.dot_product_attention(
206
+ query,
207
+ key,
208
+ value,
209
+ mask=attention_mask,
210
+ scale=self._inv_norm_factor,
211
+ )
212
+ return attention_output
198
213
 
199
- attention_scores = attention_scores / norm_factor
214
+ attention_scores = ops.einsum(self._dot_product_equation, query, key)
215
+ attention_scores = ops.multiply(
216
+ attention_scores,
217
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
218
+ )
200
219
  attention_scores = self._masked_softmax(
201
220
  attention_scores, attention_mask
202
221
  )
@@ -1,3 +1,5 @@
1
+ import math
2
+
1
3
  import keras
2
4
  from keras import ops
3
5
 
@@ -6,6 +8,7 @@ from keras_hub.src.models.phi3.phi3_rotary_embedding import (
6
8
  Phi3SuScaledRotaryEmbedding,
7
9
  )
8
10
  from keras_hub.src.utils.keras_utils import clone_initializer
11
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
9
12
 
10
13
 
11
14
  class Phi3Attention(keras.layers.Layer):
@@ -53,7 +56,7 @@ class Phi3Attention(keras.layers.Layer):
53
56
  # h = head dim
54
57
  hidden_dim = inputs_shape[-1]
55
58
  head_dim = hidden_dim // self.num_query_heads
56
- self._norm_factor = ops.sqrt(ops.cast(head_dim, self.compute_dtype))
59
+ self._inv_norm_factor = 1.0 / math.sqrt(head_dim)
57
60
 
58
61
  self.query_dense = keras.layers.EinsumDense(
59
62
  equation="bqm,muh->bquh",
@@ -214,8 +217,26 @@ class Phi3Attention(keras.layers.Layer):
214
217
  return self.softmax(attention_scores)
215
218
 
216
219
  def _compute_attention(self, query, key, value, attention_mask=None):
220
+ if has_flash_attention_support():
221
+ # Use `dot_product_attention` with Flash Attention support if
222
+ # available.
223
+ if attention_mask is not None:
224
+ attention_mask = ops.expand_dims(attention_mask, axis=1)
225
+ attention_mask = ops.cast(attention_mask, dtype="bool")
226
+ attention_output = ops.dot_product_attention(
227
+ query,
228
+ key,
229
+ value,
230
+ mask=attention_mask,
231
+ scale=self._inv_norm_factor,
232
+ )
233
+ return attention_output
234
+
217
235
  attention_scores = ops.einsum("bquh,bkuh->buqk", query, key)
218
- attention_scores = attention_scores / self._norm_factor
236
+ attention_scores = ops.multiply(
237
+ attention_scores,
238
+ ops.cast(self._inv_norm_factor, self.compute_dtype),
239
+ )
219
240
  attention_scores = self._masked_softmax(
220
241
  attention_scores, attention_mask
221
242
  )
@@ -7,6 +7,7 @@ from keras import ops
7
7
  from keras_hub.src.layers.modeling.position_embedding import PositionEmbedding
8
8
  from keras_hub.src.models.backbone import Backbone
9
9
  from keras_hub.src.utils.keras_utils import gelu_approximate
10
+ from keras_hub.src.utils.keras_utils import has_flash_attention_support
10
11
  from keras_hub.src.utils.keras_utils import standardize_data_format
11
12
 
12
13
 
@@ -770,17 +771,14 @@ class MMDiTBlock(layers.Layer):
770
771
  def _compute_attention(self, query, key, value):
771
772
  batch_size = ops.shape(query)[0]
772
773
 
773
- # Use the fast path when `ops.dot_product_attention` and flash attention
774
- # are available.
775
- if hasattr(ops, "dot_product_attention") and hasattr(
776
- keras.config, "is_flash_attention_enabled"
777
- ):
774
+ if has_flash_attention_support():
775
+ # Use `dot_product_attention` with Flash Attention support if
776
+ # available.
778
777
  encoded = ops.dot_product_attention(
779
778
  query,
780
779
  key,
781
780
  value,
782
781
  scale=self._inverse_sqrt_key_dim,
783
- flash_attention=keras.config.is_flash_attention_enabled(),
784
782
  )
785
783
  return ops.reshape(
786
784
  encoded, (batch_size, -1, self.num_heads * self.head_dim)
@@ -793,10 +791,9 @@ class MMDiTBlock(layers.Layer):
793
791
  probs = self.softmax(logits)
794
792
  probs = ops.cast(probs, self.compute_dtype)
795
793
  encoded = ops.einsum("BNTS,BSNH->BTNH", probs, value)
796
- encoded = ops.reshape(
794
+ return ops.reshape(
797
795
  encoded, (batch_size, -1, self.num_heads * self.head_dim)
798
796
  )
799
- return encoded
800
797
 
801
798
  def call(self, inputs, context, timestep_embedding, training=None):
802
799
  # Compute pre-attention.
@@ -53,3 +53,10 @@ def standardize_data_format(data_format):
53
53
  f"Received: data_format={data_format}"
54
54
  )
55
55
  return data_format
56
+
57
+
58
+ def has_flash_attention_support():
59
+ if hasattr(keras.config, "is_flash_attention_enabled"):
60
+ return True
61
+ else:
62
+ return False
@@ -240,7 +240,7 @@ def tf_copy_gfile_to_cache(preset, path):
240
240
  try:
241
241
  import tensorflow as tf
242
242
 
243
- os.make_dirs(os.path.dirname(local_path), exist_ok=True)
243
+ os.makedirs(os.path.dirname(local_path), exist_ok=True)
244
244
  tf.io.gfile.copy(url, local_path)
245
245
  except Exception as e:
246
246
  # gfile.copy will leave an empty file after an error.
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202501280343"
4
+ __version__ = "0.19.0.dev202501300343"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202501280343
3
+ Version: 0.19.0.dev202501300343
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -123,7 +123,7 @@ print(keras_hub.utils.decode_imagenet_predictions(preds))
123
123
  Load a Bert model and fine-tune it on IMDb movie reviews:
124
124
 
125
125
  ```python
126
- classifier = keras_hub.models.BertClassifier.from_preset(
126
+ classifier = keras_hub.models.TextClassifier.from_preset(
127
127
  "bert_base_en_uncased",
128
128
  activation="softmax",
129
129
  num_classes=2,
@@ -23,7 +23,7 @@ def get_version(rel_path):
23
23
 
24
24
  HERE = pathlib.Path(__file__).parent
25
25
  README = (HERE / "README.md").read_text()
26
- VERSION = "0.19.0.dev202501280343" # get_version("keras_hub/src/version_utils.py")
26
+ VERSION = "0.19.0.dev202501300343" # get_version("keras_hub/src/version_utils.py")
27
27
 
28
28
  setup(
29
29
  name="keras-hub-nightly", # "keras-hub",