keras-hub-nightly 0.19.0.dev202501080345__tar.gz → 0.19.0.dev202501090358__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/PKG-INFO +13 -2
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/mmdit.py +254 -58
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +15 -2
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +12 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/PKG-INFO +13 -2
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/setup.py +1 -1
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/README.md +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/layers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/models/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/cba.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_maths.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_model.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_object_detector.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/inpaint.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/text_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vae/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vae/vae_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vae/vae_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit_det/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tests/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/preset_loader.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/setup.cfg +0 -0
{keras_hub_nightly-0.19.0.dev202501080345 → keras_hub_nightly-0.19.0.dev202501090358}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202501090358
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -31,6 +31,17 @@ Requires-Dist: tensorflow-text
|
|
31
31
|
Provides-Extra: extras
|
32
32
|
Requires-Dist: rouge-score; extra == "extras"
|
33
33
|
Requires-Dist: sentencepiece; extra == "extras"
|
34
|
+
Dynamic: author
|
35
|
+
Dynamic: author-email
|
36
|
+
Dynamic: classifier
|
37
|
+
Dynamic: description
|
38
|
+
Dynamic: description-content-type
|
39
|
+
Dynamic: home-page
|
40
|
+
Dynamic: license
|
41
|
+
Dynamic: provides-extra
|
42
|
+
Dynamic: requires-dist
|
43
|
+
Dynamic: requires-python
|
44
|
+
Dynamic: summary
|
34
45
|
|
35
46
|
# KerasHub: Multi-framework Pretrained Models
|
36
47
|
[](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
|
@@ -15,9 +15,8 @@ class AdaptiveLayerNormalization(layers.Layer):
|
|
15
15
|
|
16
16
|
Args:
|
17
17
|
embedding_dim: int. The size of each embedding vector.
|
18
|
-
|
19
|
-
|
20
|
-
transformers. Defaults to `False`.
|
18
|
+
num_modulations: int. The number of the modulation parameters. The
|
19
|
+
available values are `2`, `6` and `9`. Defaults to `2`.
|
21
20
|
**kwargs: other keyword arguments passed to `keras.layers.Layer`,
|
22
21
|
including `name`, `dtype` etc.
|
23
22
|
|
@@ -28,11 +27,17 @@ class AdaptiveLayerNormalization(layers.Layer):
|
|
28
27
|
https://arxiv.org/abs/2212.09748).
|
29
28
|
"""
|
30
29
|
|
31
|
-
def __init__(self, hidden_dim,
|
30
|
+
def __init__(self, hidden_dim, num_modulations=2, **kwargs):
|
32
31
|
super().__init__(**kwargs)
|
33
|
-
|
34
|
-
|
35
|
-
num_modulations
|
32
|
+
hidden_dim = int(hidden_dim)
|
33
|
+
num_modulations = int(num_modulations)
|
34
|
+
if num_modulations not in (2, 6, 9):
|
35
|
+
raise ValueError(
|
36
|
+
"`num_modulations` must be `2`, `6` or `9`. "
|
37
|
+
f"Received: num_modulations={num_modulations}"
|
38
|
+
)
|
39
|
+
self.hidden_dim = hidden_dim
|
40
|
+
self.num_modulations = num_modulations
|
36
41
|
|
37
42
|
self.silu = layers.Activation("silu", dtype=self.dtype_policy)
|
38
43
|
self.dense = layers.Dense(
|
@@ -52,40 +57,84 @@ class AdaptiveLayerNormalization(layers.Layer):
|
|
52
57
|
self.norm.build(inputs_shape)
|
53
58
|
|
54
59
|
def call(self, inputs, embeddings, training=None):
|
55
|
-
|
60
|
+
hidden_states = inputs
|
56
61
|
emb = self.dense(self.silu(embeddings), training=training)
|
57
|
-
if self.
|
58
|
-
|
59
|
-
|
60
|
-
|
62
|
+
if self.num_modulations == 9:
|
63
|
+
(
|
64
|
+
shift_msa,
|
65
|
+
scale_msa,
|
66
|
+
gate_msa,
|
67
|
+
shift_mlp,
|
68
|
+
scale_mlp,
|
69
|
+
gate_mlp,
|
70
|
+
shift_msa2,
|
71
|
+
scale_msa2,
|
72
|
+
gate_msa2,
|
73
|
+
) = ops.split(emb, self.num_modulations, axis=1)
|
74
|
+
elif self.num_modulations == 6:
|
75
|
+
(
|
76
|
+
shift_msa,
|
77
|
+
scale_msa,
|
78
|
+
gate_msa,
|
79
|
+
shift_mlp,
|
80
|
+
scale_mlp,
|
81
|
+
gate_mlp,
|
82
|
+
) = ops.split(emb, self.num_modulations, axis=1)
|
61
83
|
else:
|
62
|
-
shift_msa, scale_msa = ops.split(emb,
|
84
|
+
shift_msa, scale_msa = ops.split(emb, self.num_modulations, axis=1)
|
85
|
+
|
63
86
|
scale_msa = ops.expand_dims(scale_msa, axis=1)
|
64
87
|
shift_msa = ops.expand_dims(shift_msa, axis=1)
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
),
|
70
|
-
shift_msa,
|
88
|
+
norm_hidden_states = ops.cast(
|
89
|
+
self.norm(hidden_states, training=training), scale_msa.dtype
|
90
|
+
)
|
91
|
+
hidden_states = ops.add(
|
92
|
+
ops.multiply(norm_hidden_states, ops.add(1.0, scale_msa)), shift_msa
|
71
93
|
)
|
72
|
-
|
73
|
-
|
94
|
+
|
95
|
+
if self.num_modulations == 9:
|
96
|
+
scale_msa2 = ops.expand_dims(scale_msa2, axis=1)
|
97
|
+
shift_msa2 = ops.expand_dims(shift_msa2, axis=1)
|
98
|
+
hidden_states2 = ops.add(
|
99
|
+
ops.multiply(norm_hidden_states, ops.add(1.0, scale_msa2)),
|
100
|
+
shift_msa2,
|
101
|
+
)
|
102
|
+
return (
|
103
|
+
hidden_states,
|
104
|
+
gate_msa,
|
105
|
+
shift_mlp,
|
106
|
+
scale_mlp,
|
107
|
+
gate_mlp,
|
108
|
+
hidden_states2,
|
109
|
+
gate_msa2,
|
110
|
+
)
|
111
|
+
elif self.num_modulations == 6:
|
112
|
+
return hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
74
113
|
else:
|
75
|
-
return
|
114
|
+
return hidden_states
|
76
115
|
|
77
116
|
def get_config(self):
|
78
117
|
config = super().get_config()
|
79
118
|
config.update(
|
80
119
|
{
|
81
120
|
"hidden_dim": self.hidden_dim,
|
82
|
-
"
|
121
|
+
"num_modulations": self.num_modulations,
|
83
122
|
}
|
84
123
|
)
|
85
124
|
return config
|
86
125
|
|
87
126
|
def compute_output_shape(self, inputs_shape, embeddings_shape):
|
88
|
-
if self.
|
127
|
+
if self.num_modulations == 9:
|
128
|
+
return (
|
129
|
+
inputs_shape,
|
130
|
+
embeddings_shape,
|
131
|
+
embeddings_shape,
|
132
|
+
embeddings_shape,
|
133
|
+
embeddings_shape,
|
134
|
+
inputs_shape,
|
135
|
+
embeddings_shape,
|
136
|
+
)
|
137
|
+
elif self.num_modulations == 6:
|
89
138
|
return (
|
90
139
|
inputs_shape,
|
91
140
|
embeddings_shape,
|
@@ -345,6 +394,27 @@ class TimestepEmbedding(layers.Layer):
|
|
345
394
|
return output_shape
|
346
395
|
|
347
396
|
|
397
|
+
def get_qk_norm(qk_norm=None, q_norm_name="q_norm", k_norm_name="k_norm"):
|
398
|
+
"""Helper function to instantiate `LayerNormalization` layers."""
|
399
|
+
q_norm = None
|
400
|
+
k_norm = None
|
401
|
+
if qk_norm is None:
|
402
|
+
pass
|
403
|
+
elif qk_norm == "rms_norm":
|
404
|
+
q_norm = layers.LayerNormalization(
|
405
|
+
epsilon=1e-6, rms_scaling=True, dtype="float32", name=q_norm_name
|
406
|
+
)
|
407
|
+
k_norm = layers.LayerNormalization(
|
408
|
+
epsilon=1e-6, rms_scaling=True, dtype="float32", name=k_norm_name
|
409
|
+
)
|
410
|
+
else:
|
411
|
+
raise NotImplementedError(
|
412
|
+
"Supported `qk_norm` are `'rms_norm'` and `None`. "
|
413
|
+
f"Received: qk_norm={qk_norm}."
|
414
|
+
)
|
415
|
+
return q_norm, k_norm
|
416
|
+
|
417
|
+
|
348
418
|
class DismantledBlock(layers.Layer):
|
349
419
|
"""A dismantled block used to compute pre- and post-attention.
|
350
420
|
|
@@ -356,6 +426,8 @@ class DismantledBlock(layers.Layer):
|
|
356
426
|
the end of the block.
|
357
427
|
qk_norm: Optional str. Whether to normalize the query and key tensors.
|
358
428
|
Available options are `None` and `"rms_norm"`. Defaults to `None`.
|
429
|
+
use_dual_attention: bool. Whether to use a dual attention in the
|
430
|
+
block. Defaults to `False`.
|
359
431
|
**kwargs: other keyword arguments passed to `keras.layers.Layer`,
|
360
432
|
including `name`, `dtype` etc.
|
361
433
|
"""
|
@@ -367,6 +439,7 @@ class DismantledBlock(layers.Layer):
|
|
367
439
|
mlp_ratio=4.0,
|
368
440
|
use_projection=True,
|
369
441
|
qk_norm=None,
|
442
|
+
use_dual_attention=False,
|
370
443
|
**kwargs,
|
371
444
|
):
|
372
445
|
super().__init__(**kwargs)
|
@@ -375,6 +448,7 @@ class DismantledBlock(layers.Layer):
|
|
375
448
|
self.mlp_ratio = mlp_ratio
|
376
449
|
self.use_projection = use_projection
|
377
450
|
self.qk_norm = qk_norm
|
451
|
+
self.use_dual_attention = use_dual_attention
|
378
452
|
|
379
453
|
head_dim = hidden_dim // num_heads
|
380
454
|
self.head_dim = head_dim
|
@@ -384,7 +458,7 @@ class DismantledBlock(layers.Layer):
|
|
384
458
|
if use_projection:
|
385
459
|
self.ada_layer_norm = AdaptiveLayerNormalization(
|
386
460
|
hidden_dim,
|
387
|
-
|
461
|
+
num_modulations=9 if use_dual_attention else 6,
|
388
462
|
dtype=self.dtype_policy,
|
389
463
|
name="ada_layer_norm",
|
390
464
|
)
|
@@ -395,18 +469,10 @@ class DismantledBlock(layers.Layer):
|
|
395
469
|
self.attention_qkv = layers.Dense(
|
396
470
|
hidden_dim * 3, dtype=self.dtype_policy, name="attention_qkv"
|
397
471
|
)
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
self.k_norm = layers.LayerNormalization(
|
403
|
-
epsilon=1e-6, rms_scaling=True, dtype="float32", name="q_norm"
|
404
|
-
)
|
405
|
-
elif qk_norm is not None:
|
406
|
-
raise NotImplementedError(
|
407
|
-
"Supported `qk_norm` are `'rms_norm'` and `None`. "
|
408
|
-
f"Received: qk_norm={qk_norm}."
|
409
|
-
)
|
472
|
+
q_norm, k_norm = get_qk_norm(qk_norm)
|
473
|
+
if q_norm is not None:
|
474
|
+
self.q_norm = q_norm
|
475
|
+
self.k_norm = k_norm
|
410
476
|
if use_projection:
|
411
477
|
self.attention_proj = layers.Dense(
|
412
478
|
hidden_dim, dtype=self.dtype_policy, name="attention_proj"
|
@@ -426,6 +492,19 @@ class DismantledBlock(layers.Layer):
|
|
426
492
|
name="mlp",
|
427
493
|
)
|
428
494
|
|
495
|
+
if use_dual_attention:
|
496
|
+
self.attention_qkv2 = layers.Dense(
|
497
|
+
hidden_dim * 3, dtype=self.dtype_policy, name="attention_qkv2"
|
498
|
+
)
|
499
|
+
q_norm2, k_norm2 = get_qk_norm(qk_norm, "q_norm2", "k_norm2")
|
500
|
+
if q_norm is not None:
|
501
|
+
self.q_norm2 = q_norm2
|
502
|
+
self.k_norm2 = k_norm2
|
503
|
+
if use_projection:
|
504
|
+
self.attention_proj2 = layers.Dense(
|
505
|
+
hidden_dim, dtype=self.dtype_policy, name="attention_proj2"
|
506
|
+
)
|
507
|
+
|
429
508
|
def build(self, inputs_shape, timestep_embedding):
|
430
509
|
self.ada_layer_norm.build(inputs_shape, timestep_embedding)
|
431
510
|
self.attention_qkv.build(inputs_shape)
|
@@ -437,6 +516,13 @@ class DismantledBlock(layers.Layer):
|
|
437
516
|
self.attention_proj.build(inputs_shape)
|
438
517
|
self.norm2.build(inputs_shape)
|
439
518
|
self.mlp.build(inputs_shape)
|
519
|
+
if self.use_dual_attention:
|
520
|
+
self.attention_qkv2.build(inputs_shape)
|
521
|
+
if self.qk_norm is not None:
|
522
|
+
self.q_norm2.build([None, None, self.num_heads, self.head_dim])
|
523
|
+
self.k_norm2.build([None, None, self.num_heads, self.head_dim])
|
524
|
+
if self.use_projection:
|
525
|
+
self.attention_proj2.build(inputs_shape)
|
440
526
|
|
441
527
|
def _modulate(self, inputs, shift, scale):
|
442
528
|
inputs = ops.cast(inputs, self.compute_dtype)
|
@@ -456,8 +542,12 @@ class DismantledBlock(layers.Layer):
|
|
456
542
|
)
|
457
543
|
q, k, v = ops.unstack(qkv, 3, axis=2)
|
458
544
|
if self.qk_norm is not None:
|
459
|
-
q =
|
460
|
-
|
545
|
+
q = ops.cast(
|
546
|
+
self.q_norm(q, training=training), self.compute_dtype
|
547
|
+
)
|
548
|
+
k = ops.cast(
|
549
|
+
self.k_norm(k, training=training), self.compute_dtype
|
550
|
+
)
|
461
551
|
return (q, k, v), (inputs, gate_msa, shift_mlp, scale_mlp, gate_mlp)
|
462
552
|
else:
|
463
553
|
x = self.ada_layer_norm(
|
@@ -469,8 +559,12 @@ class DismantledBlock(layers.Layer):
|
|
469
559
|
)
|
470
560
|
q, k, v = ops.unstack(qkv, 3, axis=2)
|
471
561
|
if self.qk_norm is not None:
|
472
|
-
q =
|
473
|
-
|
562
|
+
q = ops.cast(
|
563
|
+
self.q_norm(q, training=training), self.compute_dtype
|
564
|
+
)
|
565
|
+
k = ops.cast(
|
566
|
+
self.k_norm(k, training=training), self.compute_dtype
|
567
|
+
)
|
474
568
|
return (q, k, v)
|
475
569
|
|
476
570
|
def _compute_post_attention(
|
@@ -495,22 +589,95 @@ class DismantledBlock(layers.Layer):
|
|
495
589
|
)
|
496
590
|
return x
|
497
591
|
|
592
|
+
def _compute_pre_attention_with_dual_attention(
|
593
|
+
self, inputs, timestep_embedding, training=None
|
594
|
+
):
|
595
|
+
batch_size = ops.shape(inputs)[0]
|
596
|
+
x, gate_msa, shift_mlp, scale_mlp, gate_mlp, x2, gate_msa2 = (
|
597
|
+
self.ada_layer_norm(inputs, timestep_embedding, training=training)
|
598
|
+
)
|
599
|
+
# Compute the main attention
|
600
|
+
qkv = self.attention_qkv(x, training=training)
|
601
|
+
qkv = ops.reshape(
|
602
|
+
qkv, (batch_size, -1, 3, self.num_heads, self.head_dim)
|
603
|
+
)
|
604
|
+
q, k, v = ops.unstack(qkv, 3, axis=2)
|
605
|
+
if self.qk_norm is not None:
|
606
|
+
q = ops.cast(self.q_norm(q, training=training), self.compute_dtype)
|
607
|
+
k = ops.cast(self.k_norm(k, training=training), self.compute_dtype)
|
608
|
+
# Compute the dual attention
|
609
|
+
qkv2 = self.attention_qkv2(x2, training=training)
|
610
|
+
qkv2 = ops.reshape(
|
611
|
+
qkv2, (batch_size, -1, 3, self.num_heads, self.head_dim)
|
612
|
+
)
|
613
|
+
q2, k2, v2 = ops.unstack(qkv2, 3, axis=2)
|
614
|
+
if self.qk_norm is not None:
|
615
|
+
q2 = ops.cast(
|
616
|
+
self.q_norm2(q2, training=training), self.compute_dtype
|
617
|
+
)
|
618
|
+
k2 = ops.cast(
|
619
|
+
self.k_norm2(k2, training=training), self.compute_dtype
|
620
|
+
)
|
621
|
+
return (
|
622
|
+
(q, k, v),
|
623
|
+
(q2, k2, v2),
|
624
|
+
(inputs, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2),
|
625
|
+
)
|
626
|
+
|
627
|
+
def _compute_post_attention_with_dual_attention(
|
628
|
+
self, inputs, inputs2, inputs_intermediates, training=None
|
629
|
+
):
|
630
|
+
x, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2 = (
|
631
|
+
inputs_intermediates
|
632
|
+
)
|
633
|
+
gate_msa = ops.expand_dims(gate_msa, axis=1)
|
634
|
+
shift_mlp = ops.expand_dims(shift_mlp, axis=1)
|
635
|
+
scale_mlp = ops.expand_dims(scale_mlp, axis=1)
|
636
|
+
gate_mlp = ops.expand_dims(gate_mlp, axis=1)
|
637
|
+
gate_msa2 = ops.expand_dims(gate_msa2, axis=1)
|
638
|
+
attn = self.attention_proj(inputs, training=training)
|
639
|
+
x = ops.add(x, ops.multiply(gate_msa, attn))
|
640
|
+
attn2 = self.attention_proj2(inputs2, training=training)
|
641
|
+
x = ops.add(x, ops.multiply(gate_msa2, attn2))
|
642
|
+
x = ops.add(
|
643
|
+
x,
|
644
|
+
ops.multiply(
|
645
|
+
gate_mlp,
|
646
|
+
self.mlp(
|
647
|
+
self._modulate(self.norm2(x), shift_mlp, scale_mlp),
|
648
|
+
training=training,
|
649
|
+
),
|
650
|
+
),
|
651
|
+
)
|
652
|
+
return x
|
653
|
+
|
498
654
|
def call(
|
499
655
|
self,
|
500
656
|
inputs,
|
501
657
|
timestep_embedding=None,
|
502
658
|
inputs_intermediates=None,
|
659
|
+
inputs2=None, # For the dual attention.
|
503
660
|
pre_attention=True,
|
504
661
|
training=None,
|
505
662
|
):
|
506
663
|
if pre_attention:
|
507
|
-
|
508
|
-
|
509
|
-
|
664
|
+
if self.use_dual_attention:
|
665
|
+
return self._compute_pre_attention_with_dual_attention(
|
666
|
+
inputs, timestep_embedding, training=training
|
667
|
+
)
|
668
|
+
else:
|
669
|
+
return self._compute_pre_attention(
|
670
|
+
inputs, timestep_embedding, training=training
|
671
|
+
)
|
510
672
|
else:
|
511
|
-
|
512
|
-
|
513
|
-
|
673
|
+
if self.use_dual_attention:
|
674
|
+
return self._compute_post_attention_with_dual_attention(
|
675
|
+
inputs, inputs2, inputs_intermediates, training=training
|
676
|
+
)
|
677
|
+
else:
|
678
|
+
return self._compute_post_attention(
|
679
|
+
inputs, inputs_intermediates, training=training
|
680
|
+
)
|
514
681
|
|
515
682
|
def get_config(self):
|
516
683
|
config = super().get_config()
|
@@ -521,6 +688,7 @@ class DismantledBlock(layers.Layer):
|
|
521
688
|
"mlp_ratio": self.mlp_ratio,
|
522
689
|
"use_projection": self.use_projection,
|
523
690
|
"qk_norm": self.qk_norm,
|
691
|
+
"use_dual_attention": self.use_dual_attention,
|
524
692
|
}
|
525
693
|
)
|
526
694
|
return config
|
@@ -542,6 +710,8 @@ class MMDiTBlock(layers.Layer):
|
|
542
710
|
layer at the end of the context block.
|
543
711
|
qk_norm: Optional str. Whether to normalize the query and key tensors.
|
544
712
|
Available options are `None` and `"rms_norm"`. Defaults to `None`.
|
713
|
+
use_dual_attention: bool. Whether to use a dual attention in the
|
714
|
+
block. Defaults to `False`.
|
545
715
|
**kwargs: other keyword arguments passed to `keras.layers.Layer`,
|
546
716
|
including `name`, `dtype` etc.
|
547
717
|
|
@@ -557,6 +727,7 @@ class MMDiTBlock(layers.Layer):
|
|
557
727
|
mlp_ratio=4.0,
|
558
728
|
use_context_projection=True,
|
559
729
|
qk_norm=None,
|
730
|
+
use_dual_attention=False,
|
560
731
|
**kwargs,
|
561
732
|
):
|
562
733
|
super().__init__(**kwargs)
|
@@ -565,6 +736,7 @@ class MMDiTBlock(layers.Layer):
|
|
565
736
|
self.mlp_ratio = mlp_ratio
|
566
737
|
self.use_context_projection = use_context_projection
|
567
738
|
self.qk_norm = qk_norm
|
739
|
+
self.use_dual_attention = use_dual_attention
|
568
740
|
|
569
741
|
head_dim = hidden_dim // num_heads
|
570
742
|
self.head_dim = head_dim
|
@@ -576,6 +748,7 @@ class MMDiTBlock(layers.Layer):
|
|
576
748
|
mlp_ratio=mlp_ratio,
|
577
749
|
use_projection=True,
|
578
750
|
qk_norm=qk_norm,
|
751
|
+
use_dual_attention=use_dual_attention,
|
579
752
|
dtype=self.dtype_policy,
|
580
753
|
name="x_block",
|
581
754
|
)
|
@@ -602,8 +775,6 @@ class MMDiTBlock(layers.Layer):
|
|
602
775
|
if hasattr(ops, "dot_product_attention") and hasattr(
|
603
776
|
keras.config, "is_flash_attention_enabled"
|
604
777
|
):
|
605
|
-
# `ops.dot_product_attention` is slower than the vanilla
|
606
|
-
# implementation in the tensorflow backend.
|
607
778
|
encoded = ops.dot_product_attention(
|
608
779
|
query,
|
609
780
|
key,
|
@@ -643,9 +814,14 @@ class MMDiTBlock(layers.Layer):
|
|
643
814
|
training=training,
|
644
815
|
)
|
645
816
|
context_len = ops.shape(context_qkv[0])[1]
|
646
|
-
|
647
|
-
|
648
|
-
|
817
|
+
if self.x_block.use_dual_attention:
|
818
|
+
x_qkv, x_qkv2, x_intermediates = self.x_block(
|
819
|
+
x, timestep_embedding=timestep_embedding, training=training
|
820
|
+
)
|
821
|
+
else:
|
822
|
+
x_qkv, x_intermediates = self.x_block(
|
823
|
+
x, timestep_embedding=timestep_embedding, training=training
|
824
|
+
)
|
649
825
|
q = ops.concatenate([context_qkv[0], x_qkv[0]], axis=1)
|
650
826
|
k = ops.concatenate([context_qkv[1], x_qkv[1]], axis=1)
|
651
827
|
v = ops.concatenate([context_qkv[2], x_qkv[2]], axis=1)
|
@@ -656,12 +832,23 @@ class MMDiTBlock(layers.Layer):
|
|
656
832
|
x_attention = attention[:, context_len:]
|
657
833
|
|
658
834
|
# Compute post-attention.
|
659
|
-
|
660
|
-
|
661
|
-
|
662
|
-
|
663
|
-
|
664
|
-
|
835
|
+
if self.x_block.use_dual_attention:
|
836
|
+
q2, k2, v2 = x_qkv2
|
837
|
+
x_attention2 = self._compute_attention(q2, k2, v2)
|
838
|
+
x = self.x_block(
|
839
|
+
x_attention,
|
840
|
+
inputs_intermediates=x_intermediates,
|
841
|
+
inputs2=x_attention2,
|
842
|
+
pre_attention=False,
|
843
|
+
training=training,
|
844
|
+
)
|
845
|
+
else:
|
846
|
+
x = self.x_block(
|
847
|
+
x_attention,
|
848
|
+
inputs_intermediates=x_intermediates,
|
849
|
+
pre_attention=False,
|
850
|
+
training=training,
|
851
|
+
)
|
665
852
|
if self.use_context_projection:
|
666
853
|
context = self.context_block(
|
667
854
|
context_attention,
|
@@ -682,6 +869,7 @@ class MMDiTBlock(layers.Layer):
|
|
682
869
|
"mlp_ratio": self.mlp_ratio,
|
683
870
|
"use_context_projection": self.use_context_projection,
|
684
871
|
"qk_norm": self.qk_norm,
|
872
|
+
"use_dual_attention": self.use_dual_attention,
|
685
873
|
}
|
686
874
|
)
|
687
875
|
return config
|
@@ -761,6 +949,9 @@ class MMDiT(Backbone):
|
|
761
949
|
qk_norm: Optional str. Whether to normalize the query and key tensors in
|
762
950
|
the intermediate blocks. Available options are `None` and
|
763
951
|
`"rms_norm"`. Defaults to `None`.
|
952
|
+
dual_attention_indices: Optional tuple. Specifies the indices of
|
953
|
+
the blocks that serve as dual attention blocks. Typically, this is
|
954
|
+
for 3.5 version. Defaults to `None`.
|
764
955
|
data_format: `None` or str. If specified, either `"channels_last"` or
|
765
956
|
`"channels_first"`. The ordering of the dimensions in the
|
766
957
|
inputs. `"channels_last"` corresponds to inputs with shape
|
@@ -786,6 +977,7 @@ class MMDiT(Backbone):
|
|
786
977
|
context_shape=(None, 4096),
|
787
978
|
pooled_projection_shape=(2048,),
|
788
979
|
qk_norm=None,
|
980
|
+
dual_attention_indices=None,
|
789
981
|
data_format=None,
|
790
982
|
dtype=None,
|
791
983
|
**kwargs,
|
@@ -799,6 +991,7 @@ class MMDiT(Backbone):
|
|
799
991
|
image_width = latent_shape[1] // patch_size
|
800
992
|
output_dim = latent_shape[-1]
|
801
993
|
output_dim_in_final = patch_size**2 * output_dim
|
994
|
+
dual_attention_indices = dual_attention_indices or ()
|
802
995
|
data_format = standardize_data_format(data_format)
|
803
996
|
if data_format != "channels_last":
|
804
997
|
raise NotImplementedError(
|
@@ -840,6 +1033,7 @@ class MMDiT(Backbone):
|
|
840
1033
|
mlp_ratio,
|
841
1034
|
use_context_projection=not (i == num_layers - 1),
|
842
1035
|
qk_norm=qk_norm,
|
1036
|
+
use_dual_attention=i in dual_attention_indices,
|
843
1037
|
dtype=dtype,
|
844
1038
|
name=f"joint_block_{i}",
|
845
1039
|
)
|
@@ -910,6 +1104,7 @@ class MMDiT(Backbone):
|
|
910
1104
|
self.context_shape = context_shape
|
911
1105
|
self.pooled_projection_shape = pooled_projection_shape
|
912
1106
|
self.qk_norm = qk_norm
|
1107
|
+
self.dual_attention_indices = dual_attention_indices
|
913
1108
|
|
914
1109
|
def get_config(self):
|
915
1110
|
config = super().get_config()
|
@@ -925,6 +1120,7 @@ class MMDiT(Backbone):
|
|
925
1120
|
"context_shape": self.context_shape,
|
926
1121
|
"pooled_projection_shape": self.pooled_projection_shape,
|
927
1122
|
"qk_norm": self.qk_norm,
|
1123
|
+
"dual_attention_indices": self.dual_attention_indices,
|
928
1124
|
}
|
929
1125
|
)
|
930
1126
|
return config
|
@@ -205,7 +205,10 @@ class StableDiffusion3Backbone(Backbone):
|
|
205
205
|
mmdit_qk_norm: Optional str. Whether to normalize the query and key
|
206
206
|
tensors for each transformer in MMDiT. Available options are `None`
|
207
207
|
and `"rms_norm"`. Typically, this is set to `None` for 3.0 version
|
208
|
-
and to `"rms_norm" for 3.5 version.
|
208
|
+
and to `"rms_norm"` for 3.5 version.
|
209
|
+
mmdit_dual_attention_indices: Optional tuple. Specifies the indices of
|
210
|
+
the blocks that serve as dual attention blocks. Typically, this is
|
211
|
+
for 3.5 version. Defaults to `None`.
|
209
212
|
vae: The VAE used for transformations between pixel space and latent
|
210
213
|
space.
|
211
214
|
clip_l: The CLIP text encoder for encoding the inputs.
|
@@ -253,6 +256,7 @@ class StableDiffusion3Backbone(Backbone):
|
|
253
256
|
mmdit_depth=4,
|
254
257
|
mmdit_position_size=192,
|
255
258
|
mmdit_qk_norm=None,
|
259
|
+
mmdit_dual_attention_indices=None,
|
256
260
|
vae=vae,
|
257
261
|
clip_l=clip_l,
|
258
262
|
clip_g=clip_g,
|
@@ -268,6 +272,7 @@ class StableDiffusion3Backbone(Backbone):
|
|
268
272
|
mmdit_num_heads,
|
269
273
|
mmdit_position_size,
|
270
274
|
mmdit_qk_norm,
|
275
|
+
mmdit_dual_attention_indices,
|
271
276
|
vae,
|
272
277
|
clip_l,
|
273
278
|
clip_g,
|
@@ -319,6 +324,7 @@ class StableDiffusion3Backbone(Backbone):
|
|
319
324
|
context_shape=context_shape,
|
320
325
|
pooled_projection_shape=pooled_projection_shape,
|
321
326
|
qk_norm=mmdit_qk_norm,
|
327
|
+
dual_attention_indices=mmdit_dual_attention_indices,
|
322
328
|
data_format=data_format,
|
323
329
|
dtype=dtype,
|
324
330
|
name="diffuser",
|
@@ -454,6 +460,7 @@ class StableDiffusion3Backbone(Backbone):
|
|
454
460
|
self.mmdit_num_heads = mmdit_num_heads
|
455
461
|
self.mmdit_position_size = mmdit_position_size
|
456
462
|
self.mmdit_qk_norm = mmdit_qk_norm
|
463
|
+
self.mmdit_dual_attention_indices = mmdit_dual_attention_indices
|
457
464
|
self.latent_channels = latent_channels
|
458
465
|
self.output_channels = output_channels
|
459
466
|
self.num_train_timesteps = num_train_timesteps
|
@@ -590,6 +597,9 @@ class StableDiffusion3Backbone(Backbone):
|
|
590
597
|
"mmdit_num_heads": self.mmdit_num_heads,
|
591
598
|
"mmdit_position_size": self.mmdit_position_size,
|
592
599
|
"mmdit_qk_norm": self.mmdit_qk_norm,
|
600
|
+
"mmdit_dual_attention_indices": (
|
601
|
+
self.mmdit_dual_attention_indices
|
602
|
+
),
|
593
603
|
"vae": layers.serialize(self.vae),
|
594
604
|
"clip_l": layers.serialize(self.clip_l),
|
595
605
|
"clip_g": layers.serialize(self.clip_g),
|
@@ -638,7 +648,10 @@ class StableDiffusion3Backbone(Backbone):
|
|
638
648
|
)
|
639
649
|
|
640
650
|
# To maintain backward compatibility, we need to ensure that
|
641
|
-
# `mmdit_qk_norm` is included in the
|
651
|
+
# `mmdit_qk_norm` and `mmdit_dual_attention_indices` is included in the
|
652
|
+
# config.
|
642
653
|
if "mmdit_qk_norm" not in config:
|
643
654
|
config["mmdit_qk_norm"] = None
|
655
|
+
if "mmdit_dual_attention_indices" not in config:
|
656
|
+
config["mmdit_dual_attention_indices"] = None
|
644
657
|
return cls(**config)
|
@@ -13,6 +13,18 @@ backbone_presets = {
|
|
13
13
|
},
|
14
14
|
"kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/4",
|
15
15
|
},
|
16
|
+
"stable_diffusion_3.5_medium": {
|
17
|
+
"metadata": {
|
18
|
+
"description": (
|
19
|
+
"3 billion parameter, including CLIP L and CLIP G text "
|
20
|
+
"encoders, MMDiT-X generative model, and VAE autoencoder. "
|
21
|
+
"Developed by Stability AI."
|
22
|
+
),
|
23
|
+
"params": 3371793763,
|
24
|
+
"path": "stable_diffusion_3",
|
25
|
+
},
|
26
|
+
"kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3.5_medium/1",
|
27
|
+
},
|
16
28
|
"stable_diffusion_3.5_large": {
|
17
29
|
"metadata": {
|
18
30
|
"description": (
|
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.2
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202501090358
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -31,6 +31,17 @@ Requires-Dist: tensorflow-text
|
|
31
31
|
Provides-Extra: extras
|
32
32
|
Requires-Dist: rouge-score; extra == "extras"
|
33
33
|
Requires-Dist: sentencepiece; extra == "extras"
|
34
|
+
Dynamic: author
|
35
|
+
Dynamic: author-email
|
36
|
+
Dynamic: classifier
|
37
|
+
Dynamic: description
|
38
|
+
Dynamic: description-content-type
|
39
|
+
Dynamic: home-page
|
40
|
+
Dynamic: license
|
41
|
+
Dynamic: provides-extra
|
42
|
+
Dynamic: requires-dist
|
43
|
+
Dynamic: requires-python
|
44
|
+
Dynamic: summary
|
34
45
|
|
35
46
|
# KerasHub: Multi-framework Pretrained Models
|
36
47
|
[](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
|