keras-hub-nightly 0.19.0.dev202501070352__tar.gz → 0.19.0.dev202501090358__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (428) hide show
  1. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/PKG-INFO +13 -2
  2. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/mmdit.py +254 -58
  3. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +15 -2
  4. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +12 -0
  5. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/version_utils.py +1 -1
  6. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/PKG-INFO +13 -2
  7. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/setup.py +1 -1
  8. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/README.md +0 -0
  9. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/__init__.py +0 -0
  10. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/__init__.py +0 -0
  11. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/bounding_box/__init__.py +0 -0
  12. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/layers/__init__.py +0 -0
  13. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/metrics/__init__.py +0 -0
  14. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/models/__init__.py +0 -0
  15. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/samplers/__init__.py +0 -0
  16. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/tokenizers/__init__.py +0 -0
  17. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/api/utils/__init__.py +0 -0
  18. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/__init__.py +0 -0
  19. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/api_export.py +0 -0
  20. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/__init__.py +0 -0
  21. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/converters.py +0 -0
  22. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/formats.py +0 -0
  23. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/iou.py +0 -0
  24. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/to_dense.py +0 -0
  25. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  26. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/utils.py +0 -0
  27. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/bounding_box/validate_format.py +0 -0
  28. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/__init__.py +0 -0
  29. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/__init__.py +0 -0
  30. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  31. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  32. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  33. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  34. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  35. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  36. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  37. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  38. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  39. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  40. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  41. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  42. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  43. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  44. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  45. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  46. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  47. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  48. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  49. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  50. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  51. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  52. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/__init__.py +0 -0
  53. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/bleu.py +0 -0
  54. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/edit_distance.py +0 -0
  55. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/perplexity.py +0 -0
  56. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/rouge_base.py +0 -0
  57. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/rouge_l.py +0 -0
  58. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/metrics/rouge_n.py +0 -0
  59. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/__init__.py +0 -0
  60. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/__init__.py +0 -0
  61. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  62. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  63. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  64. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_presets.py +0 -0
  65. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  66. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  67. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  68. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/backbone.py +0 -0
  69. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/__init__.py +0 -0
  70. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  71. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_presets.py +0 -0
  72. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  73. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  74. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  75. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/__init__.py +0 -0
  76. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet.py +0 -0
  77. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_backbone.py +0 -0
  78. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_image_converter.py +0 -0
  79. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_preprocessor.py +0 -0
  80. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/basnet/basnet_presets.py +0 -0
  81. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/__init__.py +0 -0
  82. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  83. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  84. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  85. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_presets.py +0 -0
  86. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  87. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  88. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  89. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/__init__.py +0 -0
  90. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  91. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  92. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  93. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  94. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  95. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  96. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  97. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/causal_lm.py +0 -0
  98. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/__init__.py +0 -0
  100. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  101. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  102. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  103. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  104. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_presets.py +0 -0
  105. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  106. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  107. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  108. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  109. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  110. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  111. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  112. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  113. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  114. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  115. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  116. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  117. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  118. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  119. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  120. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  121. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  122. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  123. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  124. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  125. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  126. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  127. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  128. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  129. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  130. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/__init__.py +0 -0
  131. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  132. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  133. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  134. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  135. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  136. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  137. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  138. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  139. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  140. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  141. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  142. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  143. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  144. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  145. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/cba.py +0 -0
  146. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  147. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  148. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  149. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  150. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  151. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  152. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  153. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/__init__.py +0 -0
  154. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  155. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/electra_presets.py +0 -0
  156. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  157. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/__init__.py +0 -0
  158. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  159. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  160. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  161. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  162. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  163. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  165. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/__init__.py +0 -0
  166. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  167. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  168. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  169. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  170. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  171. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  172. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  173. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  174. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/__init__.py +0 -0
  175. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_layers.py +0 -0
  176. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_maths.py +0 -0
  177. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_model.py +0 -0
  178. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_presets.py +0 -0
  179. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  180. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  181. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/__init__.py +0 -0
  182. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  183. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  184. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  185. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  186. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  187. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  188. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  189. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  190. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/__init__.py +0 -0
  191. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  192. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  193. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  194. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  195. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  196. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  197. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  198. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  199. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  200. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  201. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  202. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  203. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  204. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_classifier.py +0 -0
  205. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  206. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_object_detector.py +0 -0
  207. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_object_detector_preprocessor.py +0 -0
  208. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_segmenter.py +0 -0
  209. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  210. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/image_to_image.py +0 -0
  211. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/inpaint.py +0 -0
  212. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/__init__.py +0 -0
  213. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_attention.py +0 -0
  214. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  215. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  216. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  218. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  219. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_presets.py +0 -0
  220. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  221. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/__init__.py +0 -0
  222. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  223. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  224. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  225. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  226. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  227. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/masked_lm.py +0 -0
  228. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  229. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/__init__.py +0 -0
  230. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  231. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  232. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  233. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  234. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  235. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  236. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  238. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/__init__.py +0 -0
  239. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  240. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  241. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  242. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  243. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_layers.py +0 -0
  244. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mit/mit_presets.py +0 -0
  245. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  246. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  247. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  248. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/__init__.py +0 -0
  249. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  250. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  251. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  252. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_presets.py +0 -0
  253. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  254. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  255. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  256. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  257. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  258. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  259. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  260. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  261. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  262. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  263. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/__init__.py +0 -0
  264. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  265. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  266. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  267. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  268. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  269. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  270. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  271. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  272. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  273. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/preprocessor.py +0 -0
  274. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/__init__.py +0 -0
  275. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  276. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  277. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  278. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  279. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  280. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/__init__.py +0 -0
  281. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  282. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  283. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  284. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  285. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  286. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  287. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  288. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  289. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  290. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  291. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  292. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/__init__.py +0 -0
  293. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  294. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  295. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  296. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  297. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  298. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  299. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  300. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/__init__.py +0 -0
  301. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  302. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  303. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  304. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_layers.py +0 -0
  306. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  307. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_presets.py +0 -0
  308. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  309. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  310. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/__init__.py +0 -0
  311. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  312. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  313. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  314. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  315. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  316. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  317. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  319. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  320. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  321. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  322. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  323. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  324. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  325. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/__init__.py +0 -0
  326. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  327. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  328. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  329. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  330. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_presets.py +0 -0
  331. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  332. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  333. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/task.py +0 -0
  334. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/text_classifier.py +0 -0
  335. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  336. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/text_to_image.py +0 -0
  337. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vae/__init__.py +0 -0
  338. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  339. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vae/vae_layers.py +0 -0
  340. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/__init__.py +0 -0
  341. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  342. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  343. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  344. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  345. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  346. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/__init__.py +0 -0
  347. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  348. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  349. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  350. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  351. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_layers.py +0 -0
  352. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit/vit_presets.py +0 -0
  353. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit_det/__init__.py +0 -0
  354. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  355. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  356. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/__init__.py +0 -0
  357. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  358. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  359. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  360. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  361. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  362. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  363. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  364. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  365. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  366. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  367. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  368. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  369. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  370. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  371. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  372. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/__init__.py +0 -0
  373. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  374. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  375. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  376. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  377. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/__init__.py +0 -0
  378. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/beam_sampler.py +0 -0
  379. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  380. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  381. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/random_sampler.py +0 -0
  382. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/sampler.py +0 -0
  383. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/serialization.py +0 -0
  384. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  385. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  386. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tests/__init__.py +0 -0
  387. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tests/test_case.py +0 -0
  388. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/__init__.py +0 -0
  389. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  390. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  391. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  392. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  393. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  394. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  395. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  396. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  397. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/__init__.py +0 -0
  398. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  399. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  400. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/keras_utils.py +0 -0
  401. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/pipeline_model.py +0 -0
  402. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/preset_utils.py +0 -0
  403. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/python_utils.py +0 -0
  404. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/tensor_utils.py +0 -0
  405. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/__init__.py +0 -0
  406. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  407. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  408. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  409. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  410. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  411. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/__init__.py +0 -0
  412. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  413. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  414. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  415. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  416. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  417. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  418. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  419. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  420. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  421. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  422. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  423. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  424. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
  425. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  426. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/requires.txt +0 -0
  427. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  428. {keras_hub_nightly-0.19.0.dev202501070352 → keras_hub_nightly-0.19.0.dev202501090358}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202501070352
3
+ Version: 0.19.0.dev202501090358
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -31,6 +31,17 @@ Requires-Dist: tensorflow-text
31
31
  Provides-Extra: extras
32
32
  Requires-Dist: rouge-score; extra == "extras"
33
33
  Requires-Dist: sentencepiece; extra == "extras"
34
+ Dynamic: author
35
+ Dynamic: author-email
36
+ Dynamic: classifier
37
+ Dynamic: description
38
+ Dynamic: description-content-type
39
+ Dynamic: home-page
40
+ Dynamic: license
41
+ Dynamic: provides-extra
42
+ Dynamic: requires-dist
43
+ Dynamic: requires-python
44
+ Dynamic: summary
34
45
 
35
46
  # KerasHub: Multi-framework Pretrained Models
36
47
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
@@ -15,9 +15,8 @@ class AdaptiveLayerNormalization(layers.Layer):
15
15
 
16
16
  Args:
17
17
  embedding_dim: int. The size of each embedding vector.
18
- residual_modulation: bool. Whether to output the modulation parameters
19
- of the residual connection within the block of the diffusion
20
- transformers. Defaults to `False`.
18
+ num_modulations: int. The number of the modulation parameters. The
19
+ available values are `2`, `6` and `9`. Defaults to `2`.
21
20
  **kwargs: other keyword arguments passed to `keras.layers.Layer`,
22
21
  including `name`, `dtype` etc.
23
22
 
@@ -28,11 +27,17 @@ class AdaptiveLayerNormalization(layers.Layer):
28
27
  https://arxiv.org/abs/2212.09748).
29
28
  """
30
29
 
31
- def __init__(self, hidden_dim, residual_modulation=False, **kwargs):
30
+ def __init__(self, hidden_dim, num_modulations=2, **kwargs):
32
31
  super().__init__(**kwargs)
33
- self.hidden_dim = int(hidden_dim)
34
- self.residual_modulation = bool(residual_modulation)
35
- num_modulations = 6 if self.residual_modulation else 2
32
+ hidden_dim = int(hidden_dim)
33
+ num_modulations = int(num_modulations)
34
+ if num_modulations not in (2, 6, 9):
35
+ raise ValueError(
36
+ "`num_modulations` must be `2`, `6` or `9`. "
37
+ f"Received: num_modulations={num_modulations}"
38
+ )
39
+ self.hidden_dim = hidden_dim
40
+ self.num_modulations = num_modulations
36
41
 
37
42
  self.silu = layers.Activation("silu", dtype=self.dtype_policy)
38
43
  self.dense = layers.Dense(
@@ -52,40 +57,84 @@ class AdaptiveLayerNormalization(layers.Layer):
52
57
  self.norm.build(inputs_shape)
53
58
 
54
59
  def call(self, inputs, embeddings, training=None):
55
- x = inputs
60
+ hidden_states = inputs
56
61
  emb = self.dense(self.silu(embeddings), training=training)
57
- if self.residual_modulation:
58
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
59
- ops.split(emb, 6, axis=1)
60
- )
62
+ if self.num_modulations == 9:
63
+ (
64
+ shift_msa,
65
+ scale_msa,
66
+ gate_msa,
67
+ shift_mlp,
68
+ scale_mlp,
69
+ gate_mlp,
70
+ shift_msa2,
71
+ scale_msa2,
72
+ gate_msa2,
73
+ ) = ops.split(emb, self.num_modulations, axis=1)
74
+ elif self.num_modulations == 6:
75
+ (
76
+ shift_msa,
77
+ scale_msa,
78
+ gate_msa,
79
+ shift_mlp,
80
+ scale_mlp,
81
+ gate_mlp,
82
+ ) = ops.split(emb, self.num_modulations, axis=1)
61
83
  else:
62
- shift_msa, scale_msa = ops.split(emb, 2, axis=1)
84
+ shift_msa, scale_msa = ops.split(emb, self.num_modulations, axis=1)
85
+
63
86
  scale_msa = ops.expand_dims(scale_msa, axis=1)
64
87
  shift_msa = ops.expand_dims(shift_msa, axis=1)
65
- x = ops.add(
66
- ops.multiply(
67
- self.norm(x, training=training),
68
- ops.add(1.0, scale_msa),
69
- ),
70
- shift_msa,
88
+ norm_hidden_states = ops.cast(
89
+ self.norm(hidden_states, training=training), scale_msa.dtype
90
+ )
91
+ hidden_states = ops.add(
92
+ ops.multiply(norm_hidden_states, ops.add(1.0, scale_msa)), shift_msa
71
93
  )
72
- if self.residual_modulation:
73
- return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
94
+
95
+ if self.num_modulations == 9:
96
+ scale_msa2 = ops.expand_dims(scale_msa2, axis=1)
97
+ shift_msa2 = ops.expand_dims(shift_msa2, axis=1)
98
+ hidden_states2 = ops.add(
99
+ ops.multiply(norm_hidden_states, ops.add(1.0, scale_msa2)),
100
+ shift_msa2,
101
+ )
102
+ return (
103
+ hidden_states,
104
+ gate_msa,
105
+ shift_mlp,
106
+ scale_mlp,
107
+ gate_mlp,
108
+ hidden_states2,
109
+ gate_msa2,
110
+ )
111
+ elif self.num_modulations == 6:
112
+ return hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp
74
113
  else:
75
- return x
114
+ return hidden_states
76
115
 
77
116
  def get_config(self):
78
117
  config = super().get_config()
79
118
  config.update(
80
119
  {
81
120
  "hidden_dim": self.hidden_dim,
82
- "residual_modulation": self.residual_modulation,
121
+ "num_modulations": self.num_modulations,
83
122
  }
84
123
  )
85
124
  return config
86
125
 
87
126
  def compute_output_shape(self, inputs_shape, embeddings_shape):
88
- if self.residual_modulation:
127
+ if self.num_modulations == 9:
128
+ return (
129
+ inputs_shape,
130
+ embeddings_shape,
131
+ embeddings_shape,
132
+ embeddings_shape,
133
+ embeddings_shape,
134
+ inputs_shape,
135
+ embeddings_shape,
136
+ )
137
+ elif self.num_modulations == 6:
89
138
  return (
90
139
  inputs_shape,
91
140
  embeddings_shape,
@@ -345,6 +394,27 @@ class TimestepEmbedding(layers.Layer):
345
394
  return output_shape
346
395
 
347
396
 
397
+ def get_qk_norm(qk_norm=None, q_norm_name="q_norm", k_norm_name="k_norm"):
398
+ """Helper function to instantiate `LayerNormalization` layers."""
399
+ q_norm = None
400
+ k_norm = None
401
+ if qk_norm is None:
402
+ pass
403
+ elif qk_norm == "rms_norm":
404
+ q_norm = layers.LayerNormalization(
405
+ epsilon=1e-6, rms_scaling=True, dtype="float32", name=q_norm_name
406
+ )
407
+ k_norm = layers.LayerNormalization(
408
+ epsilon=1e-6, rms_scaling=True, dtype="float32", name=k_norm_name
409
+ )
410
+ else:
411
+ raise NotImplementedError(
412
+ "Supported `qk_norm` are `'rms_norm'` and `None`. "
413
+ f"Received: qk_norm={qk_norm}."
414
+ )
415
+ return q_norm, k_norm
416
+
417
+
348
418
  class DismantledBlock(layers.Layer):
349
419
  """A dismantled block used to compute pre- and post-attention.
350
420
 
@@ -356,6 +426,8 @@ class DismantledBlock(layers.Layer):
356
426
  the end of the block.
357
427
  qk_norm: Optional str. Whether to normalize the query and key tensors.
358
428
  Available options are `None` and `"rms_norm"`. Defaults to `None`.
429
+ use_dual_attention: bool. Whether to use a dual attention in the
430
+ block. Defaults to `False`.
359
431
  **kwargs: other keyword arguments passed to `keras.layers.Layer`,
360
432
  including `name`, `dtype` etc.
361
433
  """
@@ -367,6 +439,7 @@ class DismantledBlock(layers.Layer):
367
439
  mlp_ratio=4.0,
368
440
  use_projection=True,
369
441
  qk_norm=None,
442
+ use_dual_attention=False,
370
443
  **kwargs,
371
444
  ):
372
445
  super().__init__(**kwargs)
@@ -375,6 +448,7 @@ class DismantledBlock(layers.Layer):
375
448
  self.mlp_ratio = mlp_ratio
376
449
  self.use_projection = use_projection
377
450
  self.qk_norm = qk_norm
451
+ self.use_dual_attention = use_dual_attention
378
452
 
379
453
  head_dim = hidden_dim // num_heads
380
454
  self.head_dim = head_dim
@@ -384,7 +458,7 @@ class DismantledBlock(layers.Layer):
384
458
  if use_projection:
385
459
  self.ada_layer_norm = AdaptiveLayerNormalization(
386
460
  hidden_dim,
387
- residual_modulation=True,
461
+ num_modulations=9 if use_dual_attention else 6,
388
462
  dtype=self.dtype_policy,
389
463
  name="ada_layer_norm",
390
464
  )
@@ -395,18 +469,10 @@ class DismantledBlock(layers.Layer):
395
469
  self.attention_qkv = layers.Dense(
396
470
  hidden_dim * 3, dtype=self.dtype_policy, name="attention_qkv"
397
471
  )
398
- if qk_norm is not None and qk_norm == "rms_norm":
399
- self.q_norm = layers.LayerNormalization(
400
- epsilon=1e-6, rms_scaling=True, dtype="float32", name="q_norm"
401
- )
402
- self.k_norm = layers.LayerNormalization(
403
- epsilon=1e-6, rms_scaling=True, dtype="float32", name="q_norm"
404
- )
405
- elif qk_norm is not None:
406
- raise NotImplementedError(
407
- "Supported `qk_norm` are `'rms_norm'` and `None`. "
408
- f"Received: qk_norm={qk_norm}."
409
- )
472
+ q_norm, k_norm = get_qk_norm(qk_norm)
473
+ if q_norm is not None:
474
+ self.q_norm = q_norm
475
+ self.k_norm = k_norm
410
476
  if use_projection:
411
477
  self.attention_proj = layers.Dense(
412
478
  hidden_dim, dtype=self.dtype_policy, name="attention_proj"
@@ -426,6 +492,19 @@ class DismantledBlock(layers.Layer):
426
492
  name="mlp",
427
493
  )
428
494
 
495
+ if use_dual_attention:
496
+ self.attention_qkv2 = layers.Dense(
497
+ hidden_dim * 3, dtype=self.dtype_policy, name="attention_qkv2"
498
+ )
499
+ q_norm2, k_norm2 = get_qk_norm(qk_norm, "q_norm2", "k_norm2")
500
+ if q_norm is not None:
501
+ self.q_norm2 = q_norm2
502
+ self.k_norm2 = k_norm2
503
+ if use_projection:
504
+ self.attention_proj2 = layers.Dense(
505
+ hidden_dim, dtype=self.dtype_policy, name="attention_proj2"
506
+ )
507
+
429
508
  def build(self, inputs_shape, timestep_embedding):
430
509
  self.ada_layer_norm.build(inputs_shape, timestep_embedding)
431
510
  self.attention_qkv.build(inputs_shape)
@@ -437,6 +516,13 @@ class DismantledBlock(layers.Layer):
437
516
  self.attention_proj.build(inputs_shape)
438
517
  self.norm2.build(inputs_shape)
439
518
  self.mlp.build(inputs_shape)
519
+ if self.use_dual_attention:
520
+ self.attention_qkv2.build(inputs_shape)
521
+ if self.qk_norm is not None:
522
+ self.q_norm2.build([None, None, self.num_heads, self.head_dim])
523
+ self.k_norm2.build([None, None, self.num_heads, self.head_dim])
524
+ if self.use_projection:
525
+ self.attention_proj2.build(inputs_shape)
440
526
 
441
527
  def _modulate(self, inputs, shift, scale):
442
528
  inputs = ops.cast(inputs, self.compute_dtype)
@@ -456,8 +542,12 @@ class DismantledBlock(layers.Layer):
456
542
  )
457
543
  q, k, v = ops.unstack(qkv, 3, axis=2)
458
544
  if self.qk_norm is not None:
459
- q = self.q_norm(q, training=training)
460
- k = self.k_norm(k, training=training)
545
+ q = ops.cast(
546
+ self.q_norm(q, training=training), self.compute_dtype
547
+ )
548
+ k = ops.cast(
549
+ self.k_norm(k, training=training), self.compute_dtype
550
+ )
461
551
  return (q, k, v), (inputs, gate_msa, shift_mlp, scale_mlp, gate_mlp)
462
552
  else:
463
553
  x = self.ada_layer_norm(
@@ -469,8 +559,12 @@ class DismantledBlock(layers.Layer):
469
559
  )
470
560
  q, k, v = ops.unstack(qkv, 3, axis=2)
471
561
  if self.qk_norm is not None:
472
- q = self.q_norm(q, training=training)
473
- k = self.k_norm(k, training=training)
562
+ q = ops.cast(
563
+ self.q_norm(q, training=training), self.compute_dtype
564
+ )
565
+ k = ops.cast(
566
+ self.k_norm(k, training=training), self.compute_dtype
567
+ )
474
568
  return (q, k, v)
475
569
 
476
570
  def _compute_post_attention(
@@ -495,22 +589,95 @@ class DismantledBlock(layers.Layer):
495
589
  )
496
590
  return x
497
591
 
592
+ def _compute_pre_attention_with_dual_attention(
593
+ self, inputs, timestep_embedding, training=None
594
+ ):
595
+ batch_size = ops.shape(inputs)[0]
596
+ x, gate_msa, shift_mlp, scale_mlp, gate_mlp, x2, gate_msa2 = (
597
+ self.ada_layer_norm(inputs, timestep_embedding, training=training)
598
+ )
599
+ # Compute the main attention
600
+ qkv = self.attention_qkv(x, training=training)
601
+ qkv = ops.reshape(
602
+ qkv, (batch_size, -1, 3, self.num_heads, self.head_dim)
603
+ )
604
+ q, k, v = ops.unstack(qkv, 3, axis=2)
605
+ if self.qk_norm is not None:
606
+ q = ops.cast(self.q_norm(q, training=training), self.compute_dtype)
607
+ k = ops.cast(self.k_norm(k, training=training), self.compute_dtype)
608
+ # Compute the dual attention
609
+ qkv2 = self.attention_qkv2(x2, training=training)
610
+ qkv2 = ops.reshape(
611
+ qkv2, (batch_size, -1, 3, self.num_heads, self.head_dim)
612
+ )
613
+ q2, k2, v2 = ops.unstack(qkv2, 3, axis=2)
614
+ if self.qk_norm is not None:
615
+ q2 = ops.cast(
616
+ self.q_norm2(q2, training=training), self.compute_dtype
617
+ )
618
+ k2 = ops.cast(
619
+ self.k_norm2(k2, training=training), self.compute_dtype
620
+ )
621
+ return (
622
+ (q, k, v),
623
+ (q2, k2, v2),
624
+ (inputs, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2),
625
+ )
626
+
627
+ def _compute_post_attention_with_dual_attention(
628
+ self, inputs, inputs2, inputs_intermediates, training=None
629
+ ):
630
+ x, gate_msa, shift_mlp, scale_mlp, gate_mlp, gate_msa2 = (
631
+ inputs_intermediates
632
+ )
633
+ gate_msa = ops.expand_dims(gate_msa, axis=1)
634
+ shift_mlp = ops.expand_dims(shift_mlp, axis=1)
635
+ scale_mlp = ops.expand_dims(scale_mlp, axis=1)
636
+ gate_mlp = ops.expand_dims(gate_mlp, axis=1)
637
+ gate_msa2 = ops.expand_dims(gate_msa2, axis=1)
638
+ attn = self.attention_proj(inputs, training=training)
639
+ x = ops.add(x, ops.multiply(gate_msa, attn))
640
+ attn2 = self.attention_proj2(inputs2, training=training)
641
+ x = ops.add(x, ops.multiply(gate_msa2, attn2))
642
+ x = ops.add(
643
+ x,
644
+ ops.multiply(
645
+ gate_mlp,
646
+ self.mlp(
647
+ self._modulate(self.norm2(x), shift_mlp, scale_mlp),
648
+ training=training,
649
+ ),
650
+ ),
651
+ )
652
+ return x
653
+
498
654
  def call(
499
655
  self,
500
656
  inputs,
501
657
  timestep_embedding=None,
502
658
  inputs_intermediates=None,
659
+ inputs2=None, # For the dual attention.
503
660
  pre_attention=True,
504
661
  training=None,
505
662
  ):
506
663
  if pre_attention:
507
- return self._compute_pre_attention(
508
- inputs, timestep_embedding, training=training
509
- )
664
+ if self.use_dual_attention:
665
+ return self._compute_pre_attention_with_dual_attention(
666
+ inputs, timestep_embedding, training=training
667
+ )
668
+ else:
669
+ return self._compute_pre_attention(
670
+ inputs, timestep_embedding, training=training
671
+ )
510
672
  else:
511
- return self._compute_post_attention(
512
- inputs, inputs_intermediates, training=training
513
- )
673
+ if self.use_dual_attention:
674
+ return self._compute_post_attention_with_dual_attention(
675
+ inputs, inputs2, inputs_intermediates, training=training
676
+ )
677
+ else:
678
+ return self._compute_post_attention(
679
+ inputs, inputs_intermediates, training=training
680
+ )
514
681
 
515
682
  def get_config(self):
516
683
  config = super().get_config()
@@ -521,6 +688,7 @@ class DismantledBlock(layers.Layer):
521
688
  "mlp_ratio": self.mlp_ratio,
522
689
  "use_projection": self.use_projection,
523
690
  "qk_norm": self.qk_norm,
691
+ "use_dual_attention": self.use_dual_attention,
524
692
  }
525
693
  )
526
694
  return config
@@ -542,6 +710,8 @@ class MMDiTBlock(layers.Layer):
542
710
  layer at the end of the context block.
543
711
  qk_norm: Optional str. Whether to normalize the query and key tensors.
544
712
  Available options are `None` and `"rms_norm"`. Defaults to `None`.
713
+ use_dual_attention: bool. Whether to use a dual attention in the
714
+ block. Defaults to `False`.
545
715
  **kwargs: other keyword arguments passed to `keras.layers.Layer`,
546
716
  including `name`, `dtype` etc.
547
717
 
@@ -557,6 +727,7 @@ class MMDiTBlock(layers.Layer):
557
727
  mlp_ratio=4.0,
558
728
  use_context_projection=True,
559
729
  qk_norm=None,
730
+ use_dual_attention=False,
560
731
  **kwargs,
561
732
  ):
562
733
  super().__init__(**kwargs)
@@ -565,6 +736,7 @@ class MMDiTBlock(layers.Layer):
565
736
  self.mlp_ratio = mlp_ratio
566
737
  self.use_context_projection = use_context_projection
567
738
  self.qk_norm = qk_norm
739
+ self.use_dual_attention = use_dual_attention
568
740
 
569
741
  head_dim = hidden_dim // num_heads
570
742
  self.head_dim = head_dim
@@ -576,6 +748,7 @@ class MMDiTBlock(layers.Layer):
576
748
  mlp_ratio=mlp_ratio,
577
749
  use_projection=True,
578
750
  qk_norm=qk_norm,
751
+ use_dual_attention=use_dual_attention,
579
752
  dtype=self.dtype_policy,
580
753
  name="x_block",
581
754
  )
@@ -602,8 +775,6 @@ class MMDiTBlock(layers.Layer):
602
775
  if hasattr(ops, "dot_product_attention") and hasattr(
603
776
  keras.config, "is_flash_attention_enabled"
604
777
  ):
605
- # `ops.dot_product_attention` is slower than the vanilla
606
- # implementation in the tensorflow backend.
607
778
  encoded = ops.dot_product_attention(
608
779
  query,
609
780
  key,
@@ -643,9 +814,14 @@ class MMDiTBlock(layers.Layer):
643
814
  training=training,
644
815
  )
645
816
  context_len = ops.shape(context_qkv[0])[1]
646
- x_qkv, x_intermediates = self.x_block(
647
- x, timestep_embedding=timestep_embedding, training=training
648
- )
817
+ if self.x_block.use_dual_attention:
818
+ x_qkv, x_qkv2, x_intermediates = self.x_block(
819
+ x, timestep_embedding=timestep_embedding, training=training
820
+ )
821
+ else:
822
+ x_qkv, x_intermediates = self.x_block(
823
+ x, timestep_embedding=timestep_embedding, training=training
824
+ )
649
825
  q = ops.concatenate([context_qkv[0], x_qkv[0]], axis=1)
650
826
  k = ops.concatenate([context_qkv[1], x_qkv[1]], axis=1)
651
827
  v = ops.concatenate([context_qkv[2], x_qkv[2]], axis=1)
@@ -656,12 +832,23 @@ class MMDiTBlock(layers.Layer):
656
832
  x_attention = attention[:, context_len:]
657
833
 
658
834
  # Compute post-attention.
659
- x = self.x_block(
660
- x_attention,
661
- inputs_intermediates=x_intermediates,
662
- pre_attention=False,
663
- training=training,
664
- )
835
+ if self.x_block.use_dual_attention:
836
+ q2, k2, v2 = x_qkv2
837
+ x_attention2 = self._compute_attention(q2, k2, v2)
838
+ x = self.x_block(
839
+ x_attention,
840
+ inputs_intermediates=x_intermediates,
841
+ inputs2=x_attention2,
842
+ pre_attention=False,
843
+ training=training,
844
+ )
845
+ else:
846
+ x = self.x_block(
847
+ x_attention,
848
+ inputs_intermediates=x_intermediates,
849
+ pre_attention=False,
850
+ training=training,
851
+ )
665
852
  if self.use_context_projection:
666
853
  context = self.context_block(
667
854
  context_attention,
@@ -682,6 +869,7 @@ class MMDiTBlock(layers.Layer):
682
869
  "mlp_ratio": self.mlp_ratio,
683
870
  "use_context_projection": self.use_context_projection,
684
871
  "qk_norm": self.qk_norm,
872
+ "use_dual_attention": self.use_dual_attention,
685
873
  }
686
874
  )
687
875
  return config
@@ -761,6 +949,9 @@ class MMDiT(Backbone):
761
949
  qk_norm: Optional str. Whether to normalize the query and key tensors in
762
950
  the intermediate blocks. Available options are `None` and
763
951
  `"rms_norm"`. Defaults to `None`.
952
+ dual_attention_indices: Optional tuple. Specifies the indices of
953
+ the blocks that serve as dual attention blocks. Typically, this is
954
+ for 3.5 version. Defaults to `None`.
764
955
  data_format: `None` or str. If specified, either `"channels_last"` or
765
956
  `"channels_first"`. The ordering of the dimensions in the
766
957
  inputs. `"channels_last"` corresponds to inputs with shape
@@ -786,6 +977,7 @@ class MMDiT(Backbone):
786
977
  context_shape=(None, 4096),
787
978
  pooled_projection_shape=(2048,),
788
979
  qk_norm=None,
980
+ dual_attention_indices=None,
789
981
  data_format=None,
790
982
  dtype=None,
791
983
  **kwargs,
@@ -799,6 +991,7 @@ class MMDiT(Backbone):
799
991
  image_width = latent_shape[1] // patch_size
800
992
  output_dim = latent_shape[-1]
801
993
  output_dim_in_final = patch_size**2 * output_dim
994
+ dual_attention_indices = dual_attention_indices or ()
802
995
  data_format = standardize_data_format(data_format)
803
996
  if data_format != "channels_last":
804
997
  raise NotImplementedError(
@@ -840,6 +1033,7 @@ class MMDiT(Backbone):
840
1033
  mlp_ratio,
841
1034
  use_context_projection=not (i == num_layers - 1),
842
1035
  qk_norm=qk_norm,
1036
+ use_dual_attention=i in dual_attention_indices,
843
1037
  dtype=dtype,
844
1038
  name=f"joint_block_{i}",
845
1039
  )
@@ -910,6 +1104,7 @@ class MMDiT(Backbone):
910
1104
  self.context_shape = context_shape
911
1105
  self.pooled_projection_shape = pooled_projection_shape
912
1106
  self.qk_norm = qk_norm
1107
+ self.dual_attention_indices = dual_attention_indices
913
1108
 
914
1109
  def get_config(self):
915
1110
  config = super().get_config()
@@ -925,6 +1120,7 @@ class MMDiT(Backbone):
925
1120
  "context_shape": self.context_shape,
926
1121
  "pooled_projection_shape": self.pooled_projection_shape,
927
1122
  "qk_norm": self.qk_norm,
1123
+ "dual_attention_indices": self.dual_attention_indices,
928
1124
  }
929
1125
  )
930
1126
  return config
@@ -205,7 +205,10 @@ class StableDiffusion3Backbone(Backbone):
205
205
  mmdit_qk_norm: Optional str. Whether to normalize the query and key
206
206
  tensors for each transformer in MMDiT. Available options are `None`
207
207
  and `"rms_norm"`. Typically, this is set to `None` for 3.0 version
208
- and to `"rms_norm" for 3.5 version.
208
+ and to `"rms_norm"` for 3.5 version.
209
+ mmdit_dual_attention_indices: Optional tuple. Specifies the indices of
210
+ the blocks that serve as dual attention blocks. Typically, this is
211
+ for 3.5 version. Defaults to `None`.
209
212
  vae: The VAE used for transformations between pixel space and latent
210
213
  space.
211
214
  clip_l: The CLIP text encoder for encoding the inputs.
@@ -253,6 +256,7 @@ class StableDiffusion3Backbone(Backbone):
253
256
  mmdit_depth=4,
254
257
  mmdit_position_size=192,
255
258
  mmdit_qk_norm=None,
259
+ mmdit_dual_attention_indices=None,
256
260
  vae=vae,
257
261
  clip_l=clip_l,
258
262
  clip_g=clip_g,
@@ -268,6 +272,7 @@ class StableDiffusion3Backbone(Backbone):
268
272
  mmdit_num_heads,
269
273
  mmdit_position_size,
270
274
  mmdit_qk_norm,
275
+ mmdit_dual_attention_indices,
271
276
  vae,
272
277
  clip_l,
273
278
  clip_g,
@@ -319,6 +324,7 @@ class StableDiffusion3Backbone(Backbone):
319
324
  context_shape=context_shape,
320
325
  pooled_projection_shape=pooled_projection_shape,
321
326
  qk_norm=mmdit_qk_norm,
327
+ dual_attention_indices=mmdit_dual_attention_indices,
322
328
  data_format=data_format,
323
329
  dtype=dtype,
324
330
  name="diffuser",
@@ -454,6 +460,7 @@ class StableDiffusion3Backbone(Backbone):
454
460
  self.mmdit_num_heads = mmdit_num_heads
455
461
  self.mmdit_position_size = mmdit_position_size
456
462
  self.mmdit_qk_norm = mmdit_qk_norm
463
+ self.mmdit_dual_attention_indices = mmdit_dual_attention_indices
457
464
  self.latent_channels = latent_channels
458
465
  self.output_channels = output_channels
459
466
  self.num_train_timesteps = num_train_timesteps
@@ -590,6 +597,9 @@ class StableDiffusion3Backbone(Backbone):
590
597
  "mmdit_num_heads": self.mmdit_num_heads,
591
598
  "mmdit_position_size": self.mmdit_position_size,
592
599
  "mmdit_qk_norm": self.mmdit_qk_norm,
600
+ "mmdit_dual_attention_indices": (
601
+ self.mmdit_dual_attention_indices
602
+ ),
593
603
  "vae": layers.serialize(self.vae),
594
604
  "clip_l": layers.serialize(self.clip_l),
595
605
  "clip_g": layers.serialize(self.clip_g),
@@ -638,7 +648,10 @@ class StableDiffusion3Backbone(Backbone):
638
648
  )
639
649
 
640
650
  # To maintain backward compatibility, we need to ensure that
641
- # `mmdit_qk_norm` is included in the config.
651
+ # `mmdit_qk_norm` and `mmdit_dual_attention_indices` is included in the
652
+ # config.
642
653
  if "mmdit_qk_norm" not in config:
643
654
  config["mmdit_qk_norm"] = None
655
+ if "mmdit_dual_attention_indices" not in config:
656
+ config["mmdit_dual_attention_indices"] = None
644
657
  return cls(**config)
@@ -13,6 +13,18 @@ backbone_presets = {
13
13
  },
14
14
  "kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/4",
15
15
  },
16
+ "stable_diffusion_3.5_medium": {
17
+ "metadata": {
18
+ "description": (
19
+ "3 billion parameter, including CLIP L and CLIP G text "
20
+ "encoders, MMDiT-X generative model, and VAE autoencoder. "
21
+ "Developed by Stability AI."
22
+ ),
23
+ "params": 3371793763,
24
+ "path": "stable_diffusion_3",
25
+ },
26
+ "kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3.5_medium/1",
27
+ },
16
28
  "stable_diffusion_3.5_large": {
17
29
  "metadata": {
18
30
  "description": (
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.19.0.dev202501070352"
4
+ __version__ = "0.19.0.dev202501090358"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202501070352
3
+ Version: 0.19.0.dev202501090358
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -31,6 +31,17 @@ Requires-Dist: tensorflow-text
31
31
  Provides-Extra: extras
32
32
  Requires-Dist: rouge-score; extra == "extras"
33
33
  Requires-Dist: sentencepiece; extra == "extras"
34
+ Dynamic: author
35
+ Dynamic: author-email
36
+ Dynamic: classifier
37
+ Dynamic: description
38
+ Dynamic: description-content-type
39
+ Dynamic: home-page
40
+ Dynamic: license
41
+ Dynamic: provides-extra
42
+ Dynamic: requires-dist
43
+ Dynamic: requires-python
44
+ Dynamic: summary
34
45
 
35
46
  # KerasHub: Multi-framework Pretrained Models
36
47
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)