keras-hub-nightly 0.19.0.dev202412170354__tar.gz → 0.19.0.dev202412190352__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (429) hide show
  1. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/layers/__init__.py +3 -0
  3. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/models/__init__.py +3 -0
  4. keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/__init__.py +5 -0
  5. keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet.py +122 -0
  6. keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_backbone.py +366 -0
  7. keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_image_converter.py +8 -0
  8. keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_preprocessor.py +14 -0
  9. keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_presets.py +3 -0
  10. keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/vit/vit_presets.py +126 -0
  11. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/version_utils.py +1 -1
  12. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  13. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/SOURCES.txt +6 -0
  14. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/setup.py +1 -1
  15. keras_hub_nightly-0.19.0.dev202412170354/keras_hub/src/models/vit/vit_presets.py +0 -49
  16. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/README.md +0 -0
  17. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/__init__.py +0 -0
  18. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/__init__.py +0 -0
  19. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/bounding_box/__init__.py +0 -0
  20. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/metrics/__init__.py +0 -0
  21. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/samplers/__init__.py +0 -0
  22. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/tokenizers/__init__.py +0 -0
  23. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/utils/__init__.py +0 -0
  24. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/__init__.py +0 -0
  25. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/api_export.py +0 -0
  26. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/__init__.py +0 -0
  27. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/converters.py +0 -0
  28. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/formats.py +0 -0
  29. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/iou.py +0 -0
  30. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/to_dense.py +0 -0
  31. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  32. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/utils.py +0 -0
  33. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/validate_format.py +0 -0
  34. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/__init__.py +0 -0
  35. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/__init__.py +0 -0
  36. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  37. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  38. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  39. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  40. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  41. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  42. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
  43. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  44. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  45. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  46. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  47. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  48. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  49. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  50. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  51. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  52. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  53. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  54. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  55. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  56. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  57. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  58. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/__init__.py +0 -0
  59. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/bleu.py +0 -0
  60. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/edit_distance.py +0 -0
  61. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/perplexity.py +0 -0
  62. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/rouge_base.py +0 -0
  63. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/rouge_l.py +0 -0
  64. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/rouge_n.py +0 -0
  65. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/__init__.py +0 -0
  66. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/__init__.py +0 -0
  67. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  68. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  69. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  70. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_presets.py +0 -0
  71. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  72. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  73. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  74. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/backbone.py +0 -0
  75. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/__init__.py +0 -0
  76. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  77. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_presets.py +0 -0
  78. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  79. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  80. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  81. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/__init__.py +0 -0
  82. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  83. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  84. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  85. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_presets.py +0 -0
  86. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  87. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  88. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  89. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/__init__.py +0 -0
  90. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  91. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  92. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  93. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  94. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  95. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  96. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  97. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/causal_lm.py +0 -0
  98. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/__init__.py +0 -0
  100. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_backbone.py +0 -0
  101. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  102. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
  103. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  104. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_presets.py +0 -0
  105. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  106. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  107. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
  108. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
  109. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  110. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  111. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  112. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  113. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  114. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  115. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  116. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  117. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  118. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  119. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  120. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  121. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  122. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  123. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  124. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  125. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  126. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  127. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  128. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  129. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  130. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/__init__.py +0 -0
  131. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  132. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  133. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  134. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  135. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  136. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  137. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  138. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  139. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  140. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  141. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  142. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  143. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  144. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  145. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/cba.py +0 -0
  146. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  147. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
  148. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
  149. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
  150. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
  151. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  152. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  153. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/__init__.py +0 -0
  154. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  155. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/electra_presets.py +0 -0
  156. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  157. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/__init__.py +0 -0
  158. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  159. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  160. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  161. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  162. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  163. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  165. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/__init__.py +0 -0
  166. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  167. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  168. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  169. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  170. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  171. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  172. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  173. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  174. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/__init__.py +0 -0
  175. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_layers.py +0 -0
  176. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_maths.py +0 -0
  177. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_model.py +0 -0
  178. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_presets.py +0 -0
  179. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
  180. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
  181. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/__init__.py +0 -0
  182. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  183. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  184. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  185. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  186. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  187. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  188. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  189. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  190. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/__init__.py +0 -0
  191. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  192. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  193. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  194. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  195. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  196. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  197. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  198. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  199. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  200. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  201. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  202. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  203. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  204. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_classifier.py +0 -0
  205. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  206. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_object_detector.py +0 -0
  207. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_object_detector_preprocessor.py +0 -0
  208. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_segmenter.py +0 -0
  209. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  210. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_to_image.py +0 -0
  211. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/inpaint.py +0 -0
  212. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/__init__.py +0 -0
  213. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_attention.py +0 -0
  214. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  215. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  216. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  218. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  219. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_presets.py +0 -0
  220. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  221. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/__init__.py +0 -0
  222. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  223. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  224. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  225. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  226. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  227. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/masked_lm.py +0 -0
  228. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  229. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/__init__.py +0 -0
  230. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  231. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  232. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  233. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  234. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  235. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  236. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  238. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/__init__.py +0 -0
  239. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_backbone.py +0 -0
  240. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
  241. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
  242. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
  243. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_layers.py +0 -0
  244. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_presets.py +0 -0
  245. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  246. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  247. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  248. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/__init__.py +0 -0
  249. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  250. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  251. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  252. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_presets.py +0 -0
  253. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  254. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  255. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  256. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  257. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  258. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  259. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  260. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  261. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  262. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  263. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/__init__.py +0 -0
  264. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  265. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  266. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  267. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  268. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  269. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  270. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  271. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  272. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  273. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/preprocessor.py +0 -0
  274. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/__init__.py +0 -0
  275. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  276. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  277. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  278. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  279. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  280. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/__init__.py +0 -0
  281. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  282. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  283. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  284. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  285. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
  286. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
  287. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
  288. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  289. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
  290. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
  291. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
  292. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/__init__.py +0 -0
  293. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  294. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  295. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  296. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  297. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  298. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  299. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  300. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/__init__.py +0 -0
  301. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  302. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  303. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  304. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_layers.py +0 -0
  306. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  307. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_presets.py +0 -0
  308. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  309. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  310. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/__init__.py +0 -0
  311. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
  312. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
  313. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
  314. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
  315. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
  316. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  317. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  319. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  320. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  321. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  322. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  323. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  324. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  325. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  326. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  327. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  328. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/__init__.py +0 -0
  329. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  330. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  331. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  332. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  333. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_presets.py +0 -0
  334. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  335. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  336. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/task.py +0 -0
  337. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/text_classifier.py +0 -0
  338. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  339. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/text_to_image.py +0 -0
  340. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vae/__init__.py +0 -0
  341. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  342. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vae/vae_layers.py +0 -0
  343. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/__init__.py +0 -0
  344. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  345. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  346. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
  347. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
  348. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  349. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/__init__.py +0 -0
  350. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_backbone.py +0 -0
  351. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
  352. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
  353. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
  354. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_layers.py +0 -0
  355. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit_det/__init__.py +0 -0
  356. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  357. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  358. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/__init__.py +0 -0
  359. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  360. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  361. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  362. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  363. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  364. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  365. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  366. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  367. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  368. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  369. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  370. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  371. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  372. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  373. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  374. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/__init__.py +0 -0
  375. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  376. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  377. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  378. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  379. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/__init__.py +0 -0
  380. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/beam_sampler.py +0 -0
  381. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  382. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  383. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/random_sampler.py +0 -0
  384. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/sampler.py +0 -0
  385. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/serialization.py +0 -0
  386. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  387. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  388. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tests/__init__.py +0 -0
  389. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tests/test_case.py +0 -0
  390. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/__init__.py +0 -0
  391. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  392. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  393. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  394. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  395. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  396. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  397. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  398. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  399. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/__init__.py +0 -0
  400. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  401. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  402. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/keras_utils.py +0 -0
  403. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/pipeline_model.py +0 -0
  404. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/preset_utils.py +0 -0
  405. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/python_utils.py +0 -0
  406. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/tensor_utils.py +0 -0
  407. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/__init__.py +0 -0
  408. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  409. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
  410. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  411. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  412. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  413. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/__init__.py +0 -0
  414. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  415. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  416. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  417. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  418. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  419. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  420. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  421. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  422. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  423. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
  424. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  425. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  426. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  427. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/requires.txt +0 -0
  428. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  429. {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.19.0.dev202412170354
3
+ Version: 0.19.0.dev202412190352
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -35,6 +35,9 @@ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
35
35
  from keras_hub.src.layers.preprocessing.random_deletion import RandomDeletion
36
36
  from keras_hub.src.layers.preprocessing.random_swap import RandomSwap
37
37
  from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
38
+ from keras_hub.src.models.basnet.basnet_image_converter import (
39
+ BASNetImageConverter,
40
+ )
38
41
  from keras_hub.src.models.clip.clip_image_converter import CLIPImageConverter
39
42
  from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
40
43
  DeepLabV3ImageConverter,
@@ -29,6 +29,9 @@ from keras_hub.src.models.bart.bart_seq_2_seq_lm_preprocessor import (
29
29
  BartSeq2SeqLMPreprocessor,
30
30
  )
31
31
  from keras_hub.src.models.bart.bart_tokenizer import BartTokenizer
32
+ from keras_hub.src.models.basnet.basnet import BASNetImageSegmenter
33
+ from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
34
+ from keras_hub.src.models.basnet.basnet_preprocessor import BASNetPreprocessor
32
35
  from keras_hub.src.models.bert.bert_backbone import BertBackbone
33
36
  from keras_hub.src.models.bert.bert_masked_lm import BertMaskedLM
34
37
  from keras_hub.src.models.bert.bert_masked_lm_preprocessor import (
@@ -0,0 +1,5 @@
1
+ from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
2
+ from keras_hub.src.models.basnet.basnet_presets import basnet_presets
3
+ from keras_hub.src.utils.preset_utils import register_presets
4
+
5
+ register_presets(basnet_presets, BASNetBackbone)
@@ -0,0 +1,122 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
5
+ from keras_hub.src.models.basnet.basnet_preprocessor import BASNetPreprocessor
6
+ from keras_hub.src.models.image_segmenter import ImageSegmenter
7
+
8
+
9
+ @keras_hub_export("keras_hub.models.BASNetImageSegmenter")
10
+ class BASNetImageSegmenter(ImageSegmenter):
11
+ """BASNet image segmentation task.
12
+
13
+ Args:
14
+ backbone: A `keras_hub.models.BASNetBackbone` instance.
15
+ preprocessor: `None`, a `keras_hub.models.Preprocessor` instance,
16
+ a `keras.Layer` instance, or a callable. If `None` no preprocessing
17
+ will be applied to the inputs.
18
+
19
+ Example:
20
+ ```python
21
+ import keras_hub
22
+
23
+ images = np.ones(shape=(1, 288, 288, 3))
24
+ labels = np.zeros(shape=(1, 288, 288, 1))
25
+
26
+ image_encoder = keras_hub.models.ResNetBackbone.from_preset(
27
+ "resnet_18_imagenet",
28
+ load_weights=False
29
+ )
30
+ backbone = keras_hub.models.BASNetBackbone(
31
+ image_encoder,
32
+ num_classes=1,
33
+ image_shape=[288, 288, 3]
34
+ )
35
+ model = keras_hub.models.BASNetImageSegmenter(backbone)
36
+
37
+ # Evaluate the model
38
+ pred_labels = model(images)
39
+
40
+ # Train the model
41
+ model.compile(
42
+ optimizer="adam",
43
+ loss=keras.losses.BinaryCrossentropy(from_logits=False),
44
+ metrics=["accuracy"],
45
+ )
46
+ model.fit(images, labels, epochs=3)
47
+ ```
48
+ """
49
+
50
+ backbone_cls = BASNetBackbone
51
+ preprocessor_cls = BASNetPreprocessor
52
+
53
+ def __init__(
54
+ self,
55
+ backbone,
56
+ preprocessor=None,
57
+ **kwargs,
58
+ ):
59
+ # === Functional Model ===
60
+ x = backbone.input
61
+ outputs = backbone(x)
62
+ # only return the refinement module's output as final prediction
63
+ outputs = outputs["refine_out"]
64
+ super().__init__(inputs=x, outputs=outputs, **kwargs)
65
+
66
+ # === Config ===
67
+ self.backbone = backbone
68
+ self.preprocessor = preprocessor
69
+
70
+ def compute_loss(self, x, y, y_pred, *args, **kwargs):
71
+ # train BASNet's prediction and refinement module outputs against the
72
+ # same ground truth data
73
+ outputs = self.backbone(x)
74
+ losses = []
75
+ for output in outputs.values():
76
+ losses.append(super().compute_loss(x, y, output, *args, **kwargs))
77
+ return keras.ops.sum(losses, axis=0)
78
+
79
+ def compile(
80
+ self,
81
+ optimizer="auto",
82
+ loss="auto",
83
+ metrics="auto",
84
+ **kwargs,
85
+ ):
86
+ """Configures the `BASNet` task for training.
87
+
88
+ `BASNet` extends the default compilation signature
89
+ of `keras.Model.compile` with defaults for `optimizer` and `loss`. To
90
+ override these defaults, pass any value to these arguments during
91
+ compilation.
92
+
93
+ Args:
94
+ optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
95
+ instance. Defaults to `"auto"`, which uses the default
96
+ optimizer for `BASNet`. See `keras.Model.compile` and
97
+ `keras.optimizers` for more info on possible `optimizer`
98
+ values.
99
+ loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
100
+ Defaults to `"auto"`, in which case the default loss
101
+ computation of `BASNet` will be applied.
102
+ See `keras.Model.compile` and `keras.losses` for more info on
103
+ possible `loss` values.
104
+ metrics: `"auto"`, or a list of metrics to be evaluated by
105
+ the model during training and testing. Defaults to `"auto"`,
106
+ where a `keras.metrics.Accuracy` will be applied to track the
107
+ accuracy of the model during training.
108
+ See `keras.Model.compile` and `keras.metrics` for
109
+ more info on possible `metrics` values.
110
+ **kwargs: See `keras.Model.compile` for a full list of arguments
111
+ supported by the compile method.
112
+ """
113
+ if loss == "auto":
114
+ loss = keras.losses.BinaryCrossentropy()
115
+ if metrics == "auto":
116
+ metrics = [keras.metrics.Accuracy()]
117
+ super().compile(
118
+ optimizer=optimizer,
119
+ loss=loss,
120
+ metrics=metrics,
121
+ **kwargs,
122
+ )
@@ -0,0 +1,366 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.backbone import Backbone
5
+ from keras_hub.src.models.resnet.resnet_backbone import (
6
+ apply_basic_block as resnet_basic_block,
7
+ )
8
+
9
+
10
+ @keras_hub_export("keras_hub.models.BASNetBackbone")
11
+ class BASNetBackbone(Backbone):
12
+ """BASNet architecture for semantic segmentation.
13
+
14
+ A Keras model implementing the BASNet architecture described in [BASNet:
15
+ Boundary-Aware Segmentation Network for Mobile and Web Applications](
16
+ https://arxiv.org/abs/2101.04704). BASNet uses a predict-refine
17
+ architecture for highly accurate image segmentation.
18
+
19
+ Args:
20
+ image_encoder: A `keras_hub.models.ResNetBackbone` instance. The
21
+ backbone network for the model that is used as a feature extractor
22
+ for BASNet prediction encoder. Currently supported backbones are
23
+ ResNet18 and ResNet34.
24
+ (Note: Do not specify `image_shape` within the backbone.
25
+ Please provide these while initializing the 'BASNetBackbone' model)
26
+ num_classes: int, the number of classes for the segmentation model.
27
+ image_shape: optional shape tuple, defaults to (None, None, 3).
28
+ projection_filters: int, number of filters in the convolution layer
29
+ projecting low-level features from the `backbone`.
30
+ prediction_heads: (Optional) List of `keras.layers.Layer` defining
31
+ the prediction module head for the model. If not provided, a
32
+ default head is created with a Conv2D layer followed by resizing.
33
+ refinement_head: (Optional) a `keras.layers.Layer` defining the
34
+ refinement module head for the model. If not provided, a default
35
+ head is created with a Conv2D layer.
36
+ dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
37
+ to use for the model's computations and weights.
38
+ """
39
+
40
+ def __init__(
41
+ self,
42
+ image_encoder,
43
+ num_classes,
44
+ image_shape=(None, None, 3),
45
+ projection_filters=64,
46
+ prediction_heads=None,
47
+ refinement_head=None,
48
+ dtype=None,
49
+ **kwargs,
50
+ ):
51
+ if not isinstance(image_encoder, keras.layers.Layer) or not isinstance(
52
+ image_encoder, keras.Model
53
+ ):
54
+ raise ValueError(
55
+ "Argument `image_encoder` must be a `keras.layers.Layer`"
56
+ f" instance or `keras.Model`. Received instead"
57
+ f" image_encoder={image_encoder} (of type"
58
+ f" {type(image_encoder)})."
59
+ )
60
+
61
+ if tuple(image_encoder.image_shape) != (None, None, 3):
62
+ raise ValueError(
63
+ "Do not specify `image_shape` within the"
64
+ " `BASNetBackbone`'s image_encoder. \nPlease provide"
65
+ " `image_shape` while initializing the 'BASNetBackbone' model."
66
+ )
67
+
68
+ # === Functional Model ===
69
+ inputs = keras.layers.Input(shape=image_shape)
70
+ x = inputs
71
+
72
+ if prediction_heads is None:
73
+ prediction_heads = []
74
+ for size in (1, 2, 4, 8, 16, 32, 32):
75
+ head_layers = [
76
+ keras.layers.Conv2D(
77
+ num_classes,
78
+ kernel_size=(3, 3),
79
+ padding="same",
80
+ dtype=dtype,
81
+ )
82
+ ]
83
+ if size != 1:
84
+ head_layers.append(
85
+ keras.layers.UpSampling2D(
86
+ size=size, interpolation="bilinear", dtype=dtype
87
+ )
88
+ )
89
+ prediction_heads.append(keras.Sequential(head_layers))
90
+
91
+ if refinement_head is None:
92
+ refinement_head = keras.Sequential(
93
+ [
94
+ keras.layers.Conv2D(
95
+ num_classes,
96
+ kernel_size=(3, 3),
97
+ padding="same",
98
+ dtype=dtype,
99
+ ),
100
+ ]
101
+ )
102
+
103
+ # Prediction model.
104
+ predict_model = basnet_predict(
105
+ x, image_encoder, projection_filters, prediction_heads, dtype=dtype
106
+ )
107
+
108
+ # Refinement model.
109
+ refine_model = basnet_rrm(
110
+ predict_model, projection_filters, refinement_head, dtype=dtype
111
+ )
112
+
113
+ outputs = refine_model.outputs # Combine outputs.
114
+ outputs.extend(predict_model.outputs)
115
+
116
+ output_names = ["refine_out"] + [
117
+ f"predict_out_{i}" for i in range(1, len(outputs))
118
+ ]
119
+
120
+ outputs = {
121
+ output_name: keras.layers.Activation(
122
+ "sigmoid", name=output_name, dtype=dtype
123
+ )(output)
124
+ for output, output_name in zip(outputs, output_names)
125
+ }
126
+
127
+ super().__init__(inputs=inputs, outputs=outputs, dtype=dtype, **kwargs)
128
+
129
+ # === Config ===
130
+ self.image_encoder = image_encoder
131
+ self.num_classes = num_classes
132
+ self.image_shape = image_shape
133
+ self.projection_filters = projection_filters
134
+ self.prediction_heads = prediction_heads
135
+ self.refinement_head = refinement_head
136
+
137
+ def get_config(self):
138
+ config = super().get_config()
139
+ config.update(
140
+ {
141
+ "image_encoder": keras.saving.serialize_keras_object(
142
+ self.image_encoder
143
+ ),
144
+ "num_classes": self.num_classes,
145
+ "image_shape": self.image_shape,
146
+ "projection_filters": self.projection_filters,
147
+ "prediction_heads": [
148
+ keras.saving.serialize_keras_object(prediction_head)
149
+ for prediction_head in self.prediction_heads
150
+ ],
151
+ "refinement_head": keras.saving.serialize_keras_object(
152
+ self.refinement_head
153
+ ),
154
+ }
155
+ )
156
+ return config
157
+
158
+ @classmethod
159
+ def from_config(cls, config):
160
+ if "image_encoder" in config:
161
+ config["image_encoder"] = keras.layers.deserialize(
162
+ config["image_encoder"]
163
+ )
164
+ if "prediction_heads" in config and isinstance(
165
+ config["prediction_heads"], list
166
+ ):
167
+ for i in range(len(config["prediction_heads"])):
168
+ if isinstance(config["prediction_heads"][i], dict):
169
+ config["prediction_heads"][i] = keras.layers.deserialize(
170
+ config["prediction_heads"][i]
171
+ )
172
+
173
+ if "refinement_head" in config and isinstance(
174
+ config["refinement_head"], dict
175
+ ):
176
+ config["refinement_head"] = keras.layers.deserialize(
177
+ config["refinement_head"]
178
+ )
179
+ return super().from_config(config)
180
+
181
+
182
+ def convolution_block(x_input, filters, dilation=1, dtype=None):
183
+ """Apply convolution + batch normalization + ReLU activation.
184
+
185
+ Args:
186
+ x_input: Input keras tensor.
187
+ filters: int, number of output filters in the convolution.
188
+ dilation: int, dilation rate for the convolution operation.
189
+ Defaults to 1.
190
+ dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
191
+ to use for the model's computations and weights.
192
+
193
+ Returns:
194
+ A tensor with convolution, batch normalization, and ReLU
195
+ activation applied.
196
+ """
197
+ x = keras.layers.Conv2D(
198
+ filters, (3, 3), padding="same", dilation_rate=dilation, dtype=dtype
199
+ )(x_input)
200
+ x = keras.layers.BatchNormalization(dtype=dtype)(x)
201
+ return keras.layers.Activation("relu", dtype=dtype)(x)
202
+
203
+
204
+ def get_resnet_block(_resnet, block_num):
205
+ """Extract and return a specific ResNet block.
206
+
207
+ Args:
208
+ _resnet: `keras.Model`. ResNet model instance.
209
+ block_num: int, block number to extract.
210
+
211
+ Returns:
212
+ A Keras Model representing the specified ResNet block.
213
+ """
214
+
215
+ extractor_levels = ["P2", "P3", "P4", "P5"]
216
+ num_blocks = _resnet.stackwise_num_blocks
217
+ if block_num == 0:
218
+ x = _resnet.get_layer("pool1_pool").output
219
+ else:
220
+ x = _resnet.pyramid_outputs[extractor_levels[block_num - 1]]
221
+ y = _resnet.get_layer(
222
+ f"stack{block_num}_block{num_blocks[block_num]-1}_add"
223
+ ).output
224
+ return keras.models.Model(
225
+ inputs=x,
226
+ outputs=y,
227
+ name=f"resnet_block{block_num + 1}",
228
+ )
229
+
230
+
231
+ def basnet_predict(x_input, backbone, filters, segmentation_heads, dtype=None):
232
+ """BASNet Prediction Module.
233
+
234
+ This module outputs a coarse label map by integrating heavy
235
+ encoder, bridge, and decoder blocks.
236
+
237
+ Args:
238
+ x_input: Input keras tensor.
239
+ backbone: `keras.Model`. The backbone network used as a feature
240
+ extractor for BASNet prediction encoder.
241
+ filters: int, the number of filters.
242
+ segmentation_heads: List of `keras.layers.Layer`, A list of Keras
243
+ layers serving as the segmentation head for prediction module.
244
+ dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
245
+ to use for the model's computations and weights.
246
+
247
+
248
+ Returns:
249
+ A Keras Model that integrates the encoder, bridge, and decoder
250
+ blocks for coarse label map prediction.
251
+ """
252
+ num_stages = 6
253
+
254
+ x = x_input
255
+
256
+ # -------------Encoder--------------
257
+ x = keras.layers.Conv2D(
258
+ filters, kernel_size=(3, 3), padding="same", dtype=dtype
259
+ )(x)
260
+
261
+ encoder_blocks = []
262
+ for i in range(num_stages):
263
+ if i < 4: # First four stages are adopted from ResNet backbone.
264
+ x = get_resnet_block(backbone, i)(x)
265
+ encoder_blocks.append(x)
266
+ else: # Last 2 stages consist of three basic resnet blocks.
267
+ x = keras.layers.MaxPool2D(
268
+ pool_size=(2, 2), strides=(2, 2), dtype=dtype
269
+ )(x)
270
+ for j in range(3):
271
+ x = resnet_basic_block(
272
+ x,
273
+ filters=x.shape[3],
274
+ conv_shortcut=False,
275
+ name=f"v1_basic_block_{i + 1}_{j + 1}",
276
+ dtype=dtype,
277
+ )
278
+ encoder_blocks.append(x)
279
+
280
+ # -------------Bridge-------------
281
+ x = convolution_block(x, filters=filters * 8, dilation=2, dtype=dtype)
282
+ x = convolution_block(x, filters=filters * 8, dilation=2, dtype=dtype)
283
+ x = convolution_block(x, filters=filters * 8, dilation=2, dtype=dtype)
284
+ encoder_blocks.append(x)
285
+
286
+ # -------------Decoder-------------
287
+ decoder_blocks = []
288
+ for i in reversed(range(num_stages)):
289
+ if i != (num_stages - 1): # Except first, scale other decoder stages.
290
+ x = keras.layers.UpSampling2D(
291
+ size=2, interpolation="bilinear", dtype=dtype
292
+ )(x)
293
+
294
+ x = keras.layers.concatenate([encoder_blocks[i], x], axis=-1)
295
+ x = convolution_block(x, filters=filters * 8, dtype=dtype)
296
+ x = convolution_block(x, filters=filters * 8, dtype=dtype)
297
+ x = convolution_block(x, filters=filters * 8, dtype=dtype)
298
+ decoder_blocks.append(x)
299
+
300
+ decoder_blocks.reverse() # Change order from last to first decoder stage.
301
+ decoder_blocks.append(encoder_blocks[-1]) # Copy bridge to decoder.
302
+
303
+ # -------------Side Outputs--------------
304
+ decoder_blocks = [
305
+ segmentation_head(decoder_block) # Prediction segmentation head.
306
+ for segmentation_head, decoder_block in zip(
307
+ segmentation_heads, decoder_blocks
308
+ )
309
+ ]
310
+
311
+ return keras.models.Model(inputs=[x_input], outputs=decoder_blocks)
312
+
313
+
314
+ def basnet_rrm(base_model, filters, segmentation_head, dtype=None):
315
+ """BASNet Residual Refinement Module (RRM).
316
+
317
+ This module outputs a fine label map by integrating light encoder,
318
+ bridge, and decoder blocks.
319
+
320
+ Args:
321
+ base_model: Keras model used as the base or coarse label map.
322
+ filters: int, the number of filters.
323
+ segmentation_head: a `keras.layers.Layer`, A Keras layer serving
324
+ as the segmentation head for refinement module.
325
+ dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
326
+ to use for the model's computations and weights.
327
+
328
+ Returns:
329
+ A Keras Model that constructs the Residual Refinement Module (RRM).
330
+ """
331
+ num_stages = 4
332
+
333
+ x_input = base_model.output[0]
334
+
335
+ # -------------Encoder--------------
336
+ x = keras.layers.Conv2D(
337
+ filters, kernel_size=(3, 3), padding="same", dtype=dtype
338
+ )(x_input)
339
+
340
+ encoder_blocks = []
341
+ for _ in range(num_stages):
342
+ x = convolution_block(x, filters=filters)
343
+ encoder_blocks.append(x)
344
+ x = keras.layers.MaxPool2D(
345
+ pool_size=(2, 2), strides=(2, 2), dtype=dtype
346
+ )(x)
347
+
348
+ # -------------Bridge--------------
349
+ x = convolution_block(x, filters=filters, dtype=dtype)
350
+
351
+ # -------------Decoder--------------
352
+ for i in reversed(range(num_stages)):
353
+ x = keras.layers.UpSampling2D(
354
+ size=2, interpolation="bilinear", dtype=dtype
355
+ )(x)
356
+ x = keras.layers.concatenate([encoder_blocks[i], x], axis=-1)
357
+ x = convolution_block(x, filters=filters)
358
+
359
+ x = segmentation_head(x) # Refinement segmentation head.
360
+
361
+ # ------------- refined = coarse + residual
362
+ x = keras.layers.Add(dtype=dtype)(
363
+ [x_input, x]
364
+ ) # Add prediction + refinement output
365
+
366
+ return keras.models.Model(inputs=base_model.input, outputs=[x])
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.layers.BASNetImageConverter")
7
+ class BASNetImageConverter(ImageConverter):
8
+ backbone_cls = BASNetBackbone
@@ -0,0 +1,14 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
3
+ from keras_hub.src.models.basnet.basnet_image_converter import (
4
+ BASNetImageConverter,
5
+ )
6
+ from keras_hub.src.models.image_segmenter_preprocessor import (
7
+ ImageSegmenterPreprocessor,
8
+ )
9
+
10
+
11
+ @keras_hub_export("keras_hub.models.BASNetPreprocessor")
12
+ class BASNetPreprocessor(ImageSegmenterPreprocessor):
13
+ backbone_cls = BASNetBackbone
14
+ image_converter_cls = BASNetImageConverter
@@ -0,0 +1,3 @@
1
+ """BASNet model preset configurations."""
2
+
3
+ basnet_presets = {}
@@ -0,0 +1,126 @@
1
+ """ViT model preset configurations."""
2
+
3
+ # Metadata for loading pretrained model weights.
4
+ backbone_presets = {
5
+ "vit_base_patch16_224_imagenet": {
6
+ "metadata": {
7
+ "description": (
8
+ "ViT-B16 model pre-trained on the ImageNet 1k dataset with "
9
+ "image resolution of 224x224 "
10
+ ),
11
+ "params": 85798656,
12
+ "path": "vit",
13
+ },
14
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet/1",
15
+ },
16
+ "vit_base_patch16_384_imagenet": {
17
+ "metadata": {
18
+ "description": (
19
+ "ViT-B16 model pre-trained on the ImageNet 1k dataset with "
20
+ "image resolution of 384x384 "
21
+ ),
22
+ "params": 86090496,
23
+ "path": "vit",
24
+ },
25
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_384_imagenet/1",
26
+ },
27
+ "vit_large_patch16_224_imagenet": {
28
+ "metadata": {
29
+ "description": (
30
+ "ViT-L16 model pre-trained on the ImageNet 1k dataset with "
31
+ "image resolution of 224x224 "
32
+ ),
33
+ "params": 303301632,
34
+ "path": "vit",
35
+ },
36
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet/1",
37
+ },
38
+ "vit_large_patch16_384_imagenet": {
39
+ "metadata": {
40
+ "description": (
41
+ "ViT-L16 model pre-trained on the ImageNet 1k dataset with "
42
+ "image resolution of 384x384 "
43
+ ),
44
+ "params": 303690752,
45
+ "path": "vit",
46
+ },
47
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_384_imagenet/1",
48
+ },
49
+ "vit_base_patch32_384_imagenet": {
50
+ "metadata": {
51
+ "description": (
52
+ "ViT-B32 model pre-trained on the ImageNet 1k dataset with "
53
+ "image resolution of 384x384 "
54
+ ),
55
+ "params": 87528192,
56
+ "path": "vit",
57
+ },
58
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_384_imagenet/1",
59
+ },
60
+ "vit_large_patch32_384_imagenet": {
61
+ "metadata": {
62
+ "description": (
63
+ "ViT-L32 model pre-trained on the ImageNet 1k dataset with "
64
+ "image resolution of 384x384 "
65
+ ),
66
+ "params": 305607680,
67
+ "path": "vit",
68
+ },
69
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_384_imagenet/1",
70
+ },
71
+ "vit_base_patch16_224_imagenet21k": {
72
+ "metadata": {
73
+ "description": (
74
+ "ViT-B16 backbone pre-trained on the ImageNet 21k dataset with "
75
+ "image resolution of 224x224 "
76
+ ),
77
+ "params": 85798656,
78
+ "path": "vit",
79
+ },
80
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet21k/1",
81
+ },
82
+ "vit_base_patch32_224_imagenet21k": {
83
+ "metadata": {
84
+ "description": (
85
+ "ViT-B32 backbone pre-trained on the ImageNet 21k dataset with "
86
+ "image resolution of 224x224 "
87
+ ),
88
+ "params": 87455232,
89
+ "path": "vit",
90
+ },
91
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_224_imagenet21k/1",
92
+ },
93
+ "vit_huge_patch14_224_imagenet21k": {
94
+ "metadata": {
95
+ "description": (
96
+ "ViT-H14 backbone pre-trained on the ImageNet 21k dataset with "
97
+ "image resolution of 224x224 "
98
+ ),
99
+ "params": 630764800,
100
+ "path": "vit",
101
+ },
102
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_huge_patch14_224_imagenet21k/1",
103
+ },
104
+ "vit_large_patch16_224_imagenet21k": {
105
+ "metadata": {
106
+ "description": (
107
+ "ViT-L16 backbone pre-trained on the ImageNet 21k dataset with "
108
+ "image resolution of 224x224 "
109
+ ),
110
+ "params": 303301632,
111
+ "path": "vit",
112
+ },
113
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet21k/1",
114
+ },
115
+ "vit_large_patch32_224_imagenet21k": {
116
+ "metadata": {
117
+ "description": (
118
+ "ViT-L32 backbone pre-trained on the ImageNet 21k dataset with "
119
+ "image resolution of 224x224 "
120
+ ),
121
+ "params": 305510400,
122
+ "path": "vit",
123
+ },
124
+ "kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_224_imagenet21k/1",
125
+ },
126
+ }