keras-hub-nightly 0.19.0.dev202412170354__tar.gz → 0.19.0.dev202412190352__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/PKG-INFO +1 -1
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/layers/__init__.py +3 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/models/__init__.py +3 -0
- keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/__init__.py +5 -0
- keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet.py +122 -0
- keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_backbone.py +366 -0
- keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_image_converter.py +8 -0
- keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_preprocessor.py +14 -0
- keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_presets.py +3 -0
- keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/vit/vit_presets.py +126 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/SOURCES.txt +6 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/setup.py +1 -1
- keras_hub_nightly-0.19.0.dev202412170354/keras_hub/src/models/vit/vit_presets.py +0 -49
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/README.md +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/rms_normalization.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_vision_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/clip/clip_vision_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/cba.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/efficientnet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_maths.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_model.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_text_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/flux/flux_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_object_detector.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/image_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/inpaint.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mit/mit_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/prediction_head.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_object_detector.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_object_detector_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/retinanet/retinanet_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_image_segmenter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/segformer/segformer_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/text_to_image.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vae/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vae/vae_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vae/vae_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_image_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_image_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit/vit_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit_det/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tests/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_efficientnet.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/timm/preset_loader.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/convert_vit.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/setup.cfg +0 -0
{keras_hub_nightly-0.19.0.dev202412170354 → keras_hub_nightly-0.19.0.dev202412190352}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.19.0.
|
3
|
+
Version: 0.19.0.dev202412190352
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -35,6 +35,9 @@ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
|
|
35
35
|
from keras_hub.src.layers.preprocessing.random_deletion import RandomDeletion
|
36
36
|
from keras_hub.src.layers.preprocessing.random_swap import RandomSwap
|
37
37
|
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
38
|
+
from keras_hub.src.models.basnet.basnet_image_converter import (
|
39
|
+
BASNetImageConverter,
|
40
|
+
)
|
38
41
|
from keras_hub.src.models.clip.clip_image_converter import CLIPImageConverter
|
39
42
|
from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
|
40
43
|
DeepLabV3ImageConverter,
|
@@ -29,6 +29,9 @@ from keras_hub.src.models.bart.bart_seq_2_seq_lm_preprocessor import (
|
|
29
29
|
BartSeq2SeqLMPreprocessor,
|
30
30
|
)
|
31
31
|
from keras_hub.src.models.bart.bart_tokenizer import BartTokenizer
|
32
|
+
from keras_hub.src.models.basnet.basnet import BASNetImageSegmenter
|
33
|
+
from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
|
34
|
+
from keras_hub.src.models.basnet.basnet_preprocessor import BASNetPreprocessor
|
32
35
|
from keras_hub.src.models.bert.bert_backbone import BertBackbone
|
33
36
|
from keras_hub.src.models.bert.bert_masked_lm import BertMaskedLM
|
34
37
|
from keras_hub.src.models.bert.bert_masked_lm_preprocessor import (
|
@@ -0,0 +1,122 @@
|
|
1
|
+
import keras
|
2
|
+
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
4
|
+
from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
|
5
|
+
from keras_hub.src.models.basnet.basnet_preprocessor import BASNetPreprocessor
|
6
|
+
from keras_hub.src.models.image_segmenter import ImageSegmenter
|
7
|
+
|
8
|
+
|
9
|
+
@keras_hub_export("keras_hub.models.BASNetImageSegmenter")
|
10
|
+
class BASNetImageSegmenter(ImageSegmenter):
|
11
|
+
"""BASNet image segmentation task.
|
12
|
+
|
13
|
+
Args:
|
14
|
+
backbone: A `keras_hub.models.BASNetBackbone` instance.
|
15
|
+
preprocessor: `None`, a `keras_hub.models.Preprocessor` instance,
|
16
|
+
a `keras.Layer` instance, or a callable. If `None` no preprocessing
|
17
|
+
will be applied to the inputs.
|
18
|
+
|
19
|
+
Example:
|
20
|
+
```python
|
21
|
+
import keras_hub
|
22
|
+
|
23
|
+
images = np.ones(shape=(1, 288, 288, 3))
|
24
|
+
labels = np.zeros(shape=(1, 288, 288, 1))
|
25
|
+
|
26
|
+
image_encoder = keras_hub.models.ResNetBackbone.from_preset(
|
27
|
+
"resnet_18_imagenet",
|
28
|
+
load_weights=False
|
29
|
+
)
|
30
|
+
backbone = keras_hub.models.BASNetBackbone(
|
31
|
+
image_encoder,
|
32
|
+
num_classes=1,
|
33
|
+
image_shape=[288, 288, 3]
|
34
|
+
)
|
35
|
+
model = keras_hub.models.BASNetImageSegmenter(backbone)
|
36
|
+
|
37
|
+
# Evaluate the model
|
38
|
+
pred_labels = model(images)
|
39
|
+
|
40
|
+
# Train the model
|
41
|
+
model.compile(
|
42
|
+
optimizer="adam",
|
43
|
+
loss=keras.losses.BinaryCrossentropy(from_logits=False),
|
44
|
+
metrics=["accuracy"],
|
45
|
+
)
|
46
|
+
model.fit(images, labels, epochs=3)
|
47
|
+
```
|
48
|
+
"""
|
49
|
+
|
50
|
+
backbone_cls = BASNetBackbone
|
51
|
+
preprocessor_cls = BASNetPreprocessor
|
52
|
+
|
53
|
+
def __init__(
|
54
|
+
self,
|
55
|
+
backbone,
|
56
|
+
preprocessor=None,
|
57
|
+
**kwargs,
|
58
|
+
):
|
59
|
+
# === Functional Model ===
|
60
|
+
x = backbone.input
|
61
|
+
outputs = backbone(x)
|
62
|
+
# only return the refinement module's output as final prediction
|
63
|
+
outputs = outputs["refine_out"]
|
64
|
+
super().__init__(inputs=x, outputs=outputs, **kwargs)
|
65
|
+
|
66
|
+
# === Config ===
|
67
|
+
self.backbone = backbone
|
68
|
+
self.preprocessor = preprocessor
|
69
|
+
|
70
|
+
def compute_loss(self, x, y, y_pred, *args, **kwargs):
|
71
|
+
# train BASNet's prediction and refinement module outputs against the
|
72
|
+
# same ground truth data
|
73
|
+
outputs = self.backbone(x)
|
74
|
+
losses = []
|
75
|
+
for output in outputs.values():
|
76
|
+
losses.append(super().compute_loss(x, y, output, *args, **kwargs))
|
77
|
+
return keras.ops.sum(losses, axis=0)
|
78
|
+
|
79
|
+
def compile(
|
80
|
+
self,
|
81
|
+
optimizer="auto",
|
82
|
+
loss="auto",
|
83
|
+
metrics="auto",
|
84
|
+
**kwargs,
|
85
|
+
):
|
86
|
+
"""Configures the `BASNet` task for training.
|
87
|
+
|
88
|
+
`BASNet` extends the default compilation signature
|
89
|
+
of `keras.Model.compile` with defaults for `optimizer` and `loss`. To
|
90
|
+
override these defaults, pass any value to these arguments during
|
91
|
+
compilation.
|
92
|
+
|
93
|
+
Args:
|
94
|
+
optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
|
95
|
+
instance. Defaults to `"auto"`, which uses the default
|
96
|
+
optimizer for `BASNet`. See `keras.Model.compile` and
|
97
|
+
`keras.optimizers` for more info on possible `optimizer`
|
98
|
+
values.
|
99
|
+
loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
|
100
|
+
Defaults to `"auto"`, in which case the default loss
|
101
|
+
computation of `BASNet` will be applied.
|
102
|
+
See `keras.Model.compile` and `keras.losses` for more info on
|
103
|
+
possible `loss` values.
|
104
|
+
metrics: `"auto"`, or a list of metrics to be evaluated by
|
105
|
+
the model during training and testing. Defaults to `"auto"`,
|
106
|
+
where a `keras.metrics.Accuracy` will be applied to track the
|
107
|
+
accuracy of the model during training.
|
108
|
+
See `keras.Model.compile` and `keras.metrics` for
|
109
|
+
more info on possible `metrics` values.
|
110
|
+
**kwargs: See `keras.Model.compile` for a full list of arguments
|
111
|
+
supported by the compile method.
|
112
|
+
"""
|
113
|
+
if loss == "auto":
|
114
|
+
loss = keras.losses.BinaryCrossentropy()
|
115
|
+
if metrics == "auto":
|
116
|
+
metrics = [keras.metrics.Accuracy()]
|
117
|
+
super().compile(
|
118
|
+
optimizer=optimizer,
|
119
|
+
loss=loss,
|
120
|
+
metrics=metrics,
|
121
|
+
**kwargs,
|
122
|
+
)
|
@@ -0,0 +1,366 @@
|
|
1
|
+
import keras
|
2
|
+
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
4
|
+
from keras_hub.src.models.backbone import Backbone
|
5
|
+
from keras_hub.src.models.resnet.resnet_backbone import (
|
6
|
+
apply_basic_block as resnet_basic_block,
|
7
|
+
)
|
8
|
+
|
9
|
+
|
10
|
+
@keras_hub_export("keras_hub.models.BASNetBackbone")
|
11
|
+
class BASNetBackbone(Backbone):
|
12
|
+
"""BASNet architecture for semantic segmentation.
|
13
|
+
|
14
|
+
A Keras model implementing the BASNet architecture described in [BASNet:
|
15
|
+
Boundary-Aware Segmentation Network for Mobile and Web Applications](
|
16
|
+
https://arxiv.org/abs/2101.04704). BASNet uses a predict-refine
|
17
|
+
architecture for highly accurate image segmentation.
|
18
|
+
|
19
|
+
Args:
|
20
|
+
image_encoder: A `keras_hub.models.ResNetBackbone` instance. The
|
21
|
+
backbone network for the model that is used as a feature extractor
|
22
|
+
for BASNet prediction encoder. Currently supported backbones are
|
23
|
+
ResNet18 and ResNet34.
|
24
|
+
(Note: Do not specify `image_shape` within the backbone.
|
25
|
+
Please provide these while initializing the 'BASNetBackbone' model)
|
26
|
+
num_classes: int, the number of classes for the segmentation model.
|
27
|
+
image_shape: optional shape tuple, defaults to (None, None, 3).
|
28
|
+
projection_filters: int, number of filters in the convolution layer
|
29
|
+
projecting low-level features from the `backbone`.
|
30
|
+
prediction_heads: (Optional) List of `keras.layers.Layer` defining
|
31
|
+
the prediction module head for the model. If not provided, a
|
32
|
+
default head is created with a Conv2D layer followed by resizing.
|
33
|
+
refinement_head: (Optional) a `keras.layers.Layer` defining the
|
34
|
+
refinement module head for the model. If not provided, a default
|
35
|
+
head is created with a Conv2D layer.
|
36
|
+
dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
|
37
|
+
to use for the model's computations and weights.
|
38
|
+
"""
|
39
|
+
|
40
|
+
def __init__(
|
41
|
+
self,
|
42
|
+
image_encoder,
|
43
|
+
num_classes,
|
44
|
+
image_shape=(None, None, 3),
|
45
|
+
projection_filters=64,
|
46
|
+
prediction_heads=None,
|
47
|
+
refinement_head=None,
|
48
|
+
dtype=None,
|
49
|
+
**kwargs,
|
50
|
+
):
|
51
|
+
if not isinstance(image_encoder, keras.layers.Layer) or not isinstance(
|
52
|
+
image_encoder, keras.Model
|
53
|
+
):
|
54
|
+
raise ValueError(
|
55
|
+
"Argument `image_encoder` must be a `keras.layers.Layer`"
|
56
|
+
f" instance or `keras.Model`. Received instead"
|
57
|
+
f" image_encoder={image_encoder} (of type"
|
58
|
+
f" {type(image_encoder)})."
|
59
|
+
)
|
60
|
+
|
61
|
+
if tuple(image_encoder.image_shape) != (None, None, 3):
|
62
|
+
raise ValueError(
|
63
|
+
"Do not specify `image_shape` within the"
|
64
|
+
" `BASNetBackbone`'s image_encoder. \nPlease provide"
|
65
|
+
" `image_shape` while initializing the 'BASNetBackbone' model."
|
66
|
+
)
|
67
|
+
|
68
|
+
# === Functional Model ===
|
69
|
+
inputs = keras.layers.Input(shape=image_shape)
|
70
|
+
x = inputs
|
71
|
+
|
72
|
+
if prediction_heads is None:
|
73
|
+
prediction_heads = []
|
74
|
+
for size in (1, 2, 4, 8, 16, 32, 32):
|
75
|
+
head_layers = [
|
76
|
+
keras.layers.Conv2D(
|
77
|
+
num_classes,
|
78
|
+
kernel_size=(3, 3),
|
79
|
+
padding="same",
|
80
|
+
dtype=dtype,
|
81
|
+
)
|
82
|
+
]
|
83
|
+
if size != 1:
|
84
|
+
head_layers.append(
|
85
|
+
keras.layers.UpSampling2D(
|
86
|
+
size=size, interpolation="bilinear", dtype=dtype
|
87
|
+
)
|
88
|
+
)
|
89
|
+
prediction_heads.append(keras.Sequential(head_layers))
|
90
|
+
|
91
|
+
if refinement_head is None:
|
92
|
+
refinement_head = keras.Sequential(
|
93
|
+
[
|
94
|
+
keras.layers.Conv2D(
|
95
|
+
num_classes,
|
96
|
+
kernel_size=(3, 3),
|
97
|
+
padding="same",
|
98
|
+
dtype=dtype,
|
99
|
+
),
|
100
|
+
]
|
101
|
+
)
|
102
|
+
|
103
|
+
# Prediction model.
|
104
|
+
predict_model = basnet_predict(
|
105
|
+
x, image_encoder, projection_filters, prediction_heads, dtype=dtype
|
106
|
+
)
|
107
|
+
|
108
|
+
# Refinement model.
|
109
|
+
refine_model = basnet_rrm(
|
110
|
+
predict_model, projection_filters, refinement_head, dtype=dtype
|
111
|
+
)
|
112
|
+
|
113
|
+
outputs = refine_model.outputs # Combine outputs.
|
114
|
+
outputs.extend(predict_model.outputs)
|
115
|
+
|
116
|
+
output_names = ["refine_out"] + [
|
117
|
+
f"predict_out_{i}" for i in range(1, len(outputs))
|
118
|
+
]
|
119
|
+
|
120
|
+
outputs = {
|
121
|
+
output_name: keras.layers.Activation(
|
122
|
+
"sigmoid", name=output_name, dtype=dtype
|
123
|
+
)(output)
|
124
|
+
for output, output_name in zip(outputs, output_names)
|
125
|
+
}
|
126
|
+
|
127
|
+
super().__init__(inputs=inputs, outputs=outputs, dtype=dtype, **kwargs)
|
128
|
+
|
129
|
+
# === Config ===
|
130
|
+
self.image_encoder = image_encoder
|
131
|
+
self.num_classes = num_classes
|
132
|
+
self.image_shape = image_shape
|
133
|
+
self.projection_filters = projection_filters
|
134
|
+
self.prediction_heads = prediction_heads
|
135
|
+
self.refinement_head = refinement_head
|
136
|
+
|
137
|
+
def get_config(self):
|
138
|
+
config = super().get_config()
|
139
|
+
config.update(
|
140
|
+
{
|
141
|
+
"image_encoder": keras.saving.serialize_keras_object(
|
142
|
+
self.image_encoder
|
143
|
+
),
|
144
|
+
"num_classes": self.num_classes,
|
145
|
+
"image_shape": self.image_shape,
|
146
|
+
"projection_filters": self.projection_filters,
|
147
|
+
"prediction_heads": [
|
148
|
+
keras.saving.serialize_keras_object(prediction_head)
|
149
|
+
for prediction_head in self.prediction_heads
|
150
|
+
],
|
151
|
+
"refinement_head": keras.saving.serialize_keras_object(
|
152
|
+
self.refinement_head
|
153
|
+
),
|
154
|
+
}
|
155
|
+
)
|
156
|
+
return config
|
157
|
+
|
158
|
+
@classmethod
|
159
|
+
def from_config(cls, config):
|
160
|
+
if "image_encoder" in config:
|
161
|
+
config["image_encoder"] = keras.layers.deserialize(
|
162
|
+
config["image_encoder"]
|
163
|
+
)
|
164
|
+
if "prediction_heads" in config and isinstance(
|
165
|
+
config["prediction_heads"], list
|
166
|
+
):
|
167
|
+
for i in range(len(config["prediction_heads"])):
|
168
|
+
if isinstance(config["prediction_heads"][i], dict):
|
169
|
+
config["prediction_heads"][i] = keras.layers.deserialize(
|
170
|
+
config["prediction_heads"][i]
|
171
|
+
)
|
172
|
+
|
173
|
+
if "refinement_head" in config and isinstance(
|
174
|
+
config["refinement_head"], dict
|
175
|
+
):
|
176
|
+
config["refinement_head"] = keras.layers.deserialize(
|
177
|
+
config["refinement_head"]
|
178
|
+
)
|
179
|
+
return super().from_config(config)
|
180
|
+
|
181
|
+
|
182
|
+
def convolution_block(x_input, filters, dilation=1, dtype=None):
|
183
|
+
"""Apply convolution + batch normalization + ReLU activation.
|
184
|
+
|
185
|
+
Args:
|
186
|
+
x_input: Input keras tensor.
|
187
|
+
filters: int, number of output filters in the convolution.
|
188
|
+
dilation: int, dilation rate for the convolution operation.
|
189
|
+
Defaults to 1.
|
190
|
+
dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
|
191
|
+
to use for the model's computations and weights.
|
192
|
+
|
193
|
+
Returns:
|
194
|
+
A tensor with convolution, batch normalization, and ReLU
|
195
|
+
activation applied.
|
196
|
+
"""
|
197
|
+
x = keras.layers.Conv2D(
|
198
|
+
filters, (3, 3), padding="same", dilation_rate=dilation, dtype=dtype
|
199
|
+
)(x_input)
|
200
|
+
x = keras.layers.BatchNormalization(dtype=dtype)(x)
|
201
|
+
return keras.layers.Activation("relu", dtype=dtype)(x)
|
202
|
+
|
203
|
+
|
204
|
+
def get_resnet_block(_resnet, block_num):
|
205
|
+
"""Extract and return a specific ResNet block.
|
206
|
+
|
207
|
+
Args:
|
208
|
+
_resnet: `keras.Model`. ResNet model instance.
|
209
|
+
block_num: int, block number to extract.
|
210
|
+
|
211
|
+
Returns:
|
212
|
+
A Keras Model representing the specified ResNet block.
|
213
|
+
"""
|
214
|
+
|
215
|
+
extractor_levels = ["P2", "P3", "P4", "P5"]
|
216
|
+
num_blocks = _resnet.stackwise_num_blocks
|
217
|
+
if block_num == 0:
|
218
|
+
x = _resnet.get_layer("pool1_pool").output
|
219
|
+
else:
|
220
|
+
x = _resnet.pyramid_outputs[extractor_levels[block_num - 1]]
|
221
|
+
y = _resnet.get_layer(
|
222
|
+
f"stack{block_num}_block{num_blocks[block_num]-1}_add"
|
223
|
+
).output
|
224
|
+
return keras.models.Model(
|
225
|
+
inputs=x,
|
226
|
+
outputs=y,
|
227
|
+
name=f"resnet_block{block_num + 1}",
|
228
|
+
)
|
229
|
+
|
230
|
+
|
231
|
+
def basnet_predict(x_input, backbone, filters, segmentation_heads, dtype=None):
|
232
|
+
"""BASNet Prediction Module.
|
233
|
+
|
234
|
+
This module outputs a coarse label map by integrating heavy
|
235
|
+
encoder, bridge, and decoder blocks.
|
236
|
+
|
237
|
+
Args:
|
238
|
+
x_input: Input keras tensor.
|
239
|
+
backbone: `keras.Model`. The backbone network used as a feature
|
240
|
+
extractor for BASNet prediction encoder.
|
241
|
+
filters: int, the number of filters.
|
242
|
+
segmentation_heads: List of `keras.layers.Layer`, A list of Keras
|
243
|
+
layers serving as the segmentation head for prediction module.
|
244
|
+
dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
|
245
|
+
to use for the model's computations and weights.
|
246
|
+
|
247
|
+
|
248
|
+
Returns:
|
249
|
+
A Keras Model that integrates the encoder, bridge, and decoder
|
250
|
+
blocks for coarse label map prediction.
|
251
|
+
"""
|
252
|
+
num_stages = 6
|
253
|
+
|
254
|
+
x = x_input
|
255
|
+
|
256
|
+
# -------------Encoder--------------
|
257
|
+
x = keras.layers.Conv2D(
|
258
|
+
filters, kernel_size=(3, 3), padding="same", dtype=dtype
|
259
|
+
)(x)
|
260
|
+
|
261
|
+
encoder_blocks = []
|
262
|
+
for i in range(num_stages):
|
263
|
+
if i < 4: # First four stages are adopted from ResNet backbone.
|
264
|
+
x = get_resnet_block(backbone, i)(x)
|
265
|
+
encoder_blocks.append(x)
|
266
|
+
else: # Last 2 stages consist of three basic resnet blocks.
|
267
|
+
x = keras.layers.MaxPool2D(
|
268
|
+
pool_size=(2, 2), strides=(2, 2), dtype=dtype
|
269
|
+
)(x)
|
270
|
+
for j in range(3):
|
271
|
+
x = resnet_basic_block(
|
272
|
+
x,
|
273
|
+
filters=x.shape[3],
|
274
|
+
conv_shortcut=False,
|
275
|
+
name=f"v1_basic_block_{i + 1}_{j + 1}",
|
276
|
+
dtype=dtype,
|
277
|
+
)
|
278
|
+
encoder_blocks.append(x)
|
279
|
+
|
280
|
+
# -------------Bridge-------------
|
281
|
+
x = convolution_block(x, filters=filters * 8, dilation=2, dtype=dtype)
|
282
|
+
x = convolution_block(x, filters=filters * 8, dilation=2, dtype=dtype)
|
283
|
+
x = convolution_block(x, filters=filters * 8, dilation=2, dtype=dtype)
|
284
|
+
encoder_blocks.append(x)
|
285
|
+
|
286
|
+
# -------------Decoder-------------
|
287
|
+
decoder_blocks = []
|
288
|
+
for i in reversed(range(num_stages)):
|
289
|
+
if i != (num_stages - 1): # Except first, scale other decoder stages.
|
290
|
+
x = keras.layers.UpSampling2D(
|
291
|
+
size=2, interpolation="bilinear", dtype=dtype
|
292
|
+
)(x)
|
293
|
+
|
294
|
+
x = keras.layers.concatenate([encoder_blocks[i], x], axis=-1)
|
295
|
+
x = convolution_block(x, filters=filters * 8, dtype=dtype)
|
296
|
+
x = convolution_block(x, filters=filters * 8, dtype=dtype)
|
297
|
+
x = convolution_block(x, filters=filters * 8, dtype=dtype)
|
298
|
+
decoder_blocks.append(x)
|
299
|
+
|
300
|
+
decoder_blocks.reverse() # Change order from last to first decoder stage.
|
301
|
+
decoder_blocks.append(encoder_blocks[-1]) # Copy bridge to decoder.
|
302
|
+
|
303
|
+
# -------------Side Outputs--------------
|
304
|
+
decoder_blocks = [
|
305
|
+
segmentation_head(decoder_block) # Prediction segmentation head.
|
306
|
+
for segmentation_head, decoder_block in zip(
|
307
|
+
segmentation_heads, decoder_blocks
|
308
|
+
)
|
309
|
+
]
|
310
|
+
|
311
|
+
return keras.models.Model(inputs=[x_input], outputs=decoder_blocks)
|
312
|
+
|
313
|
+
|
314
|
+
def basnet_rrm(base_model, filters, segmentation_head, dtype=None):
|
315
|
+
"""BASNet Residual Refinement Module (RRM).
|
316
|
+
|
317
|
+
This module outputs a fine label map by integrating light encoder,
|
318
|
+
bridge, and decoder blocks.
|
319
|
+
|
320
|
+
Args:
|
321
|
+
base_model: Keras model used as the base or coarse label map.
|
322
|
+
filters: int, the number of filters.
|
323
|
+
segmentation_head: a `keras.layers.Layer`, A Keras layer serving
|
324
|
+
as the segmentation head for refinement module.
|
325
|
+
dtype: `None` or str or `keras.mixed_precision.DTypePolicy`. The dtype
|
326
|
+
to use for the model's computations and weights.
|
327
|
+
|
328
|
+
Returns:
|
329
|
+
A Keras Model that constructs the Residual Refinement Module (RRM).
|
330
|
+
"""
|
331
|
+
num_stages = 4
|
332
|
+
|
333
|
+
x_input = base_model.output[0]
|
334
|
+
|
335
|
+
# -------------Encoder--------------
|
336
|
+
x = keras.layers.Conv2D(
|
337
|
+
filters, kernel_size=(3, 3), padding="same", dtype=dtype
|
338
|
+
)(x_input)
|
339
|
+
|
340
|
+
encoder_blocks = []
|
341
|
+
for _ in range(num_stages):
|
342
|
+
x = convolution_block(x, filters=filters)
|
343
|
+
encoder_blocks.append(x)
|
344
|
+
x = keras.layers.MaxPool2D(
|
345
|
+
pool_size=(2, 2), strides=(2, 2), dtype=dtype
|
346
|
+
)(x)
|
347
|
+
|
348
|
+
# -------------Bridge--------------
|
349
|
+
x = convolution_block(x, filters=filters, dtype=dtype)
|
350
|
+
|
351
|
+
# -------------Decoder--------------
|
352
|
+
for i in reversed(range(num_stages)):
|
353
|
+
x = keras.layers.UpSampling2D(
|
354
|
+
size=2, interpolation="bilinear", dtype=dtype
|
355
|
+
)(x)
|
356
|
+
x = keras.layers.concatenate([encoder_blocks[i], x], axis=-1)
|
357
|
+
x = convolution_block(x, filters=filters)
|
358
|
+
|
359
|
+
x = segmentation_head(x) # Refinement segmentation head.
|
360
|
+
|
361
|
+
# ------------- refined = coarse + residual
|
362
|
+
x = keras.layers.Add(dtype=dtype)(
|
363
|
+
[x_input, x]
|
364
|
+
) # Add prediction + refinement output
|
365
|
+
|
366
|
+
return keras.models.Model(inputs=base_model.input, outputs=[x])
|
keras_hub_nightly-0.19.0.dev202412190352/keras_hub/src/models/basnet/basnet_image_converter.py
ADDED
@@ -0,0 +1,8 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
3
|
+
from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
|
4
|
+
|
5
|
+
|
6
|
+
@keras_hub_export("keras_hub.layers.BASNetImageConverter")
|
7
|
+
class BASNetImageConverter(ImageConverter):
|
8
|
+
backbone_cls = BASNetBackbone
|
@@ -0,0 +1,14 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.basnet.basnet_backbone import BASNetBackbone
|
3
|
+
from keras_hub.src.models.basnet.basnet_image_converter import (
|
4
|
+
BASNetImageConverter,
|
5
|
+
)
|
6
|
+
from keras_hub.src.models.image_segmenter_preprocessor import (
|
7
|
+
ImageSegmenterPreprocessor,
|
8
|
+
)
|
9
|
+
|
10
|
+
|
11
|
+
@keras_hub_export("keras_hub.models.BASNetPreprocessor")
|
12
|
+
class BASNetPreprocessor(ImageSegmenterPreprocessor):
|
13
|
+
backbone_cls = BASNetBackbone
|
14
|
+
image_converter_cls = BASNetImageConverter
|
@@ -0,0 +1,126 @@
|
|
1
|
+
"""ViT model preset configurations."""
|
2
|
+
|
3
|
+
# Metadata for loading pretrained model weights.
|
4
|
+
backbone_presets = {
|
5
|
+
"vit_base_patch16_224_imagenet": {
|
6
|
+
"metadata": {
|
7
|
+
"description": (
|
8
|
+
"ViT-B16 model pre-trained on the ImageNet 1k dataset with "
|
9
|
+
"image resolution of 224x224 "
|
10
|
+
),
|
11
|
+
"params": 85798656,
|
12
|
+
"path": "vit",
|
13
|
+
},
|
14
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet/1",
|
15
|
+
},
|
16
|
+
"vit_base_patch16_384_imagenet": {
|
17
|
+
"metadata": {
|
18
|
+
"description": (
|
19
|
+
"ViT-B16 model pre-trained on the ImageNet 1k dataset with "
|
20
|
+
"image resolution of 384x384 "
|
21
|
+
),
|
22
|
+
"params": 86090496,
|
23
|
+
"path": "vit",
|
24
|
+
},
|
25
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_384_imagenet/1",
|
26
|
+
},
|
27
|
+
"vit_large_patch16_224_imagenet": {
|
28
|
+
"metadata": {
|
29
|
+
"description": (
|
30
|
+
"ViT-L16 model pre-trained on the ImageNet 1k dataset with "
|
31
|
+
"image resolution of 224x224 "
|
32
|
+
),
|
33
|
+
"params": 303301632,
|
34
|
+
"path": "vit",
|
35
|
+
},
|
36
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet/1",
|
37
|
+
},
|
38
|
+
"vit_large_patch16_384_imagenet": {
|
39
|
+
"metadata": {
|
40
|
+
"description": (
|
41
|
+
"ViT-L16 model pre-trained on the ImageNet 1k dataset with "
|
42
|
+
"image resolution of 384x384 "
|
43
|
+
),
|
44
|
+
"params": 303690752,
|
45
|
+
"path": "vit",
|
46
|
+
},
|
47
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_384_imagenet/1",
|
48
|
+
},
|
49
|
+
"vit_base_patch32_384_imagenet": {
|
50
|
+
"metadata": {
|
51
|
+
"description": (
|
52
|
+
"ViT-B32 model pre-trained on the ImageNet 1k dataset with "
|
53
|
+
"image resolution of 384x384 "
|
54
|
+
),
|
55
|
+
"params": 87528192,
|
56
|
+
"path": "vit",
|
57
|
+
},
|
58
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_384_imagenet/1",
|
59
|
+
},
|
60
|
+
"vit_large_patch32_384_imagenet": {
|
61
|
+
"metadata": {
|
62
|
+
"description": (
|
63
|
+
"ViT-L32 model pre-trained on the ImageNet 1k dataset with "
|
64
|
+
"image resolution of 384x384 "
|
65
|
+
),
|
66
|
+
"params": 305607680,
|
67
|
+
"path": "vit",
|
68
|
+
},
|
69
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_384_imagenet/1",
|
70
|
+
},
|
71
|
+
"vit_base_patch16_224_imagenet21k": {
|
72
|
+
"metadata": {
|
73
|
+
"description": (
|
74
|
+
"ViT-B16 backbone pre-trained on the ImageNet 21k dataset with "
|
75
|
+
"image resolution of 224x224 "
|
76
|
+
),
|
77
|
+
"params": 85798656,
|
78
|
+
"path": "vit",
|
79
|
+
},
|
80
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch16_224_imagenet21k/1",
|
81
|
+
},
|
82
|
+
"vit_base_patch32_224_imagenet21k": {
|
83
|
+
"metadata": {
|
84
|
+
"description": (
|
85
|
+
"ViT-B32 backbone pre-trained on the ImageNet 21k dataset with "
|
86
|
+
"image resolution of 224x224 "
|
87
|
+
),
|
88
|
+
"params": 87455232,
|
89
|
+
"path": "vit",
|
90
|
+
},
|
91
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_base_patch32_224_imagenet21k/1",
|
92
|
+
},
|
93
|
+
"vit_huge_patch14_224_imagenet21k": {
|
94
|
+
"metadata": {
|
95
|
+
"description": (
|
96
|
+
"ViT-H14 backbone pre-trained on the ImageNet 21k dataset with "
|
97
|
+
"image resolution of 224x224 "
|
98
|
+
),
|
99
|
+
"params": 630764800,
|
100
|
+
"path": "vit",
|
101
|
+
},
|
102
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_huge_patch14_224_imagenet21k/1",
|
103
|
+
},
|
104
|
+
"vit_large_patch16_224_imagenet21k": {
|
105
|
+
"metadata": {
|
106
|
+
"description": (
|
107
|
+
"ViT-L16 backbone pre-trained on the ImageNet 21k dataset with "
|
108
|
+
"image resolution of 224x224 "
|
109
|
+
),
|
110
|
+
"params": 303301632,
|
111
|
+
"path": "vit",
|
112
|
+
},
|
113
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch16_224_imagenet21k/1",
|
114
|
+
},
|
115
|
+
"vit_large_patch32_224_imagenet21k": {
|
116
|
+
"metadata": {
|
117
|
+
"description": (
|
118
|
+
"ViT-L32 backbone pre-trained on the ImageNet 21k dataset with "
|
119
|
+
"image resolution of 224x224 "
|
120
|
+
),
|
121
|
+
"params": 305510400,
|
122
|
+
"path": "vit",
|
123
|
+
},
|
124
|
+
"kaggle_handle": "kaggle://keras/vit/keras/vit_large_patch32_224_imagenet21k/1",
|
125
|
+
},
|
126
|
+
}
|