keras-hub-nightly 0.16.1.dev202410170342__tar.gz → 0.16.1.dev202410190340__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (384) hide show
  1. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/layers/__init__.py +2 -4
  3. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/models/__init__.py +4 -8
  4. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +3 -3
  5. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/densenet/densenet_presets.py +3 -3
  6. keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/mit/__init__.py +6 -0
  7. keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py → keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/mit/mit_backbone.py +3 -7
  8. keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py → keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/mit/mit_image_classifier.py +2 -4
  9. keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py → keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/mit/mit_image_classifier_preprocessor.py +2 -6
  10. keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py → keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/mit/mit_image_converter.py +1 -1
  11. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +1 -1
  12. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -6
  13. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +5 -5
  14. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -13
  15. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/preprocessor.py +16 -0
  16. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/resnet/resnet_backbone.py +1 -1
  17. keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/resnet/resnet_presets.py +223 -0
  18. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_image_segmenter.py +1 -1
  19. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_presets.py +3 -3
  20. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
  21. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/task.py +5 -2
  22. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vae/vae_backbone.py +13 -1
  23. keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/vgg/__init__.py +5 -0
  24. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vgg/vgg_backbone.py +1 -1
  25. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vgg/vgg_image_classifier.py +4 -15
  26. keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/vgg/vgg_image_classifier_preprocessor.py +12 -0
  27. keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/vgg/vgg_image_converter.py +8 -0
  28. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vit_det/vit_det_backbone.py +2 -2
  29. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/pipeline_model.py +3 -3
  30. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/timm/preset_loader.py +3 -1
  31. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/version_utils.py +1 -1
  32. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  33. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub_nightly.egg-info/SOURCES.txt +9 -7
  34. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/setup.py +1 -1
  35. keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/mix_transformer/__init__.py +0 -12
  36. keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/resnet/resnet_presets.py +0 -82
  37. keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/vgg/__init__.py +0 -1
  38. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/README.md +0 -0
  39. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/__init__.py +0 -0
  40. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/__init__.py +0 -0
  41. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/bounding_box/__init__.py +0 -0
  42. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/metrics/__init__.py +0 -0
  43. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/samplers/__init__.py +0 -0
  44. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/tokenizers/__init__.py +0 -0
  45. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/api/utils/__init__.py +0 -0
  46. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/__init__.py +0 -0
  47. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/api_export.py +0 -0
  48. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/__init__.py +0 -0
  49. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/converters.py +0 -0
  50. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/formats.py +0 -0
  51. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/iou.py +0 -0
  52. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/to_dense.py +0 -0
  53. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  54. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/utils.py +0 -0
  55. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/bounding_box/validate_format.py +0 -0
  56. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/__init__.py +0 -0
  57. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/__init__.py +0 -0
  58. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  59. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  60. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  61. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  62. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  63. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  64. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  65. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  66. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  67. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  68. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  69. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  70. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  71. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  72. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  73. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  74. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  75. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  76. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  77. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  78. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  79. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/metrics/__init__.py +0 -0
  80. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/metrics/bleu.py +0 -0
  81. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/metrics/edit_distance.py +0 -0
  82. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/metrics/perplexity.py +0 -0
  83. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/metrics/rouge_base.py +0 -0
  84. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/metrics/rouge_l.py +0 -0
  85. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/metrics/rouge_n.py +0 -0
  86. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/__init__.py +0 -0
  87. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/__init__.py +0 -0
  88. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  89. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  90. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  91. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/albert_presets.py +0 -0
  92. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  93. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  94. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  95. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/backbone.py +0 -0
  96. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bart/__init__.py +0 -0
  97. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  98. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bart/bart_presets.py +0 -0
  99. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  100. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  101. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  102. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/__init__.py +0 -0
  103. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  104. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  105. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  106. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/bert_presets.py +0 -0
  107. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  108. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  109. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  110. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/__init__.py +0 -0
  111. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  112. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  113. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  114. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  115. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  116. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  117. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  118. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/causal_lm.py +0 -0
  119. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  120. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/clip/__init__.py +0 -0
  121. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  122. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  123. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  124. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  125. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  126. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  127. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  128. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  129. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  130. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  131. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  133. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  134. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  135. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  136. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  137. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  138. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  139. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  140. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  141. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  142. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  143. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  144. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  145. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/densenet/__init__.py +0 -0
  146. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  147. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  148. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  149. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  150. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  151. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  152. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  153. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  154. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  155. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  156. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  157. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  158. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  159. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  160. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  161. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  162. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/electra/__init__.py +0 -0
  163. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  164. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/electra/electra_presets.py +0 -0
  165. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  166. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/__init__.py +0 -0
  167. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  168. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  169. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  170. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  171. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  172. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  173. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  174. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/__init__.py +0 -0
  175. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  176. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  177. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  178. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  179. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  180. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  181. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  182. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  183. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/__init__.py +0 -0
  184. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  185. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  186. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  187. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  188. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  189. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  190. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  191. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  192. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt2/__init__.py +0 -0
  193. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  194. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  195. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  196. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  197. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  198. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  199. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  200. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  201. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  202. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  203. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  204. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  205. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  206. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/image_classifier.py +0 -0
  207. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  208. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/image_segmenter.py +0 -0
  209. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  210. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/image_to_image.py +0 -0
  211. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/inpaint.py +0 -0
  212. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/__init__.py +0 -0
  213. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_attention.py +0 -0
  214. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  215. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  216. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  218. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  219. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_presets.py +0 -0
  220. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  221. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama3/__init__.py +0 -0
  222. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  223. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  224. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  225. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  226. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  227. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/masked_lm.py +0 -0
  228. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  229. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/__init__.py +0 -0
  230. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  231. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  232. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  233. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  234. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  235. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  236. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  237. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  238. /keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/mix_transformer/mix_transformer_layers.py → /keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/mit/mit_layers.py +0 -0
  239. /keras_hub_nightly-0.16.1.dev202410170342/keras_hub/src/models/mix_transformer/mix_transformer_presets.py → /keras_hub_nightly-0.16.1.dev202410190340/keras_hub/src/models/mit/mit_presets.py +0 -0
  240. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  241. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  242. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/opt/__init__.py +0 -0
  243. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  244. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  245. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  246. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/opt/opt_presets.py +0 -0
  247. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  248. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  249. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  250. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  251. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  252. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  253. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  254. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/__init__.py +0 -0
  255. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  256. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  257. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  258. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  259. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  260. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  261. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  262. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  263. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  264. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/resnet/__init__.py +0 -0
  265. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  266. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  267. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  268. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/retinanet/__init__.py +0 -0
  269. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  270. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  271. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  272. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  273. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  274. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/__init__.py +0 -0
  275. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  276. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  277. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  278. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  279. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  280. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  281. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  282. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/__init__.py +0 -0
  283. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  284. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  285. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  286. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_layers.py +0 -0
  287. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  288. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  289. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  290. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  291. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  292. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  293. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  294. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  295. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  296. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  297. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  298. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  299. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  300. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  301. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/__init__.py +0 -0
  302. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  303. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  304. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  305. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  306. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/t5_presets.py +0 -0
  307. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  308. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  309. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/text_classifier.py +0 -0
  310. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  311. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/text_to_image.py +0 -0
  312. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vae/__init__.py +0 -0
  313. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vae/vae_layers.py +0 -0
  314. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  315. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vit_det/__init__.py +0 -0
  316. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  317. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/__init__.py +0 -0
  318. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  319. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  320. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  321. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  322. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  323. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  324. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  325. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  326. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  327. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  328. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  329. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  330. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  331. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  332. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  333. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlnet/__init__.py +0 -0
  334. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  335. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  336. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  337. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  338. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/__init__.py +0 -0
  339. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/beam_sampler.py +0 -0
  340. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  341. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  342. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/random_sampler.py +0 -0
  343. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/sampler.py +0 -0
  344. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/serialization.py +0 -0
  345. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  346. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  347. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tests/__init__.py +0 -0
  348. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tests/test_case.py +0 -0
  349. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/__init__.py +0 -0
  350. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  351. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  352. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  353. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  354. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  355. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  356. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  357. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  358. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/__init__.py +0 -0
  359. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  360. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  361. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/keras_utils.py +0 -0
  362. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/preset_utils.py +0 -0
  363. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/python_utils.py +0 -0
  364. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/tensor_utils.py +0 -0
  365. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/timm/__init__.py +0 -0
  366. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  367. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  368. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  369. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/__init__.py +0 -0
  370. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  371. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  372. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  373. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  374. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  375. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  376. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  377. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  378. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  379. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  380. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  381. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  382. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub_nightly.egg-info/requires.txt +0 -0
  383. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  384. {keras_hub_nightly-0.16.1.dev202410170342 → keras_hub_nightly-0.16.1.dev202410190340}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410170342
3
+ Version: 0.16.1.dev202410190340
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -40,9 +40,7 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
40
40
  from keras_hub.src.models.densenet.densenet_image_converter import (
41
41
  DenseNetImageConverter,
42
42
  )
43
- from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
44
- MiTImageConverter,
45
- )
43
+ from keras_hub.src.models.mit.mit_image_converter import MiTImageConverter
46
44
  from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
47
45
  PaliGemmaImageConverter,
48
46
  )
@@ -52,7 +50,7 @@ from keras_hub.src.models.resnet.resnet_image_converter import (
52
50
  from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
53
51
  from keras_hub.src.models.sam.sam_mask_decoder import SAMMaskDecoder
54
52
  from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
55
- from keras_hub.src.models.vgg.vgg_image_classifier import VGGImageConverter
53
+ from keras_hub.src.models.vgg.vgg_image_converter import VGGImageConverter
56
54
  from keras_hub.src.models.whisper.whisper_audio_converter import (
57
55
  WhisperAudioConverter,
58
56
  )
@@ -202,13 +202,9 @@ from keras_hub.src.models.mistral.mistral_causal_lm_preprocessor import (
202
202
  MistralCausalLMPreprocessor,
203
203
  )
204
204
  from keras_hub.src.models.mistral.mistral_tokenizer import MistralTokenizer
205
- from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
206
- MiTBackbone,
207
- )
208
- from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
209
- MiTImageClassifier,
210
- )
211
- from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
205
+ from keras_hub.src.models.mit.mit_backbone import MiTBackbone
206
+ from keras_hub.src.models.mit.mit_image_classifier import MiTImageClassifier
207
+ from keras_hub.src.models.mit.mit_image_classifier_preprocessor import (
212
208
  MiTImageClassifierPreprocessor,
213
209
  )
214
210
  from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
@@ -299,7 +295,7 @@ from keras_hub.src.models.text_classifier_preprocessor import (
299
295
  from keras_hub.src.models.text_to_image import TextToImage
300
296
  from keras_hub.src.models.vgg.vgg_backbone import VGGBackbone
301
297
  from keras_hub.src.models.vgg.vgg_image_classifier import VGGImageClassifier
302
- from keras_hub.src.models.vgg.vgg_image_classifier import (
298
+ from keras_hub.src.models.vgg.vgg_image_classifier_preprocessor import (
303
299
  VGGImageClassifierPreprocessor,
304
300
  )
305
301
  from keras_hub.src.models.vit_det.vit_det_backbone import ViTDetBackbone
@@ -1,7 +1,7 @@
1
1
  """DeepLabV3 preset configurations."""
2
2
 
3
3
  backbone_presets = {
4
- "deeplabv3_plus_resnet50_pascalvoc": {
4
+ "deeplab_v3_plus_resnet50_pascalvoc": {
5
5
  "metadata": {
6
6
  "description": (
7
7
  "DeepLabV3+ model with ResNet50 as image encoder and trained on "
@@ -10,9 +10,9 @@ backbone_presets = {
10
10
  ),
11
11
  "params": 39190656,
12
12
  "official_name": "DeepLabV3",
13
- "path": "deeplabv3",
13
+ "path": "deeplab_v3",
14
14
  "model_card": "https://arxiv.org/abs/1802.02611",
15
15
  },
16
- "kaggle_handle": "kaggle://keras/deeplabv3/keras/deeplab_v3_plus_resnet50_pascalvoc/3",
16
+ "kaggle_handle": "kaggle://keras/deeplabv3plus/keras/deeplab_v3_plus_resnet50_pascalvoc/3",
17
17
  },
18
18
  }
@@ -12,7 +12,7 @@ backbone_presets = {
12
12
  "path": "densenet",
13
13
  "model_card": "https://arxiv.org/abs/1608.06993",
14
14
  },
15
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/1",
15
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_121_imagenet/2",
16
16
  },
17
17
  "densenet_169_imagenet": {
18
18
  "metadata": {
@@ -25,7 +25,7 @@ backbone_presets = {
25
25
  "path": "densenet",
26
26
  "model_card": "https://arxiv.org/abs/1608.06993",
27
27
  },
28
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/1",
28
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_169_imagenet/2",
29
29
  },
30
30
  "densenet_201_imagenet": {
31
31
  "metadata": {
@@ -38,6 +38,6 @@ backbone_presets = {
38
38
  "path": "densenet",
39
39
  "model_card": "https://arxiv.org/abs/1608.06993",
40
40
  },
41
- "kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/1",
41
+ "kaggle_handle": "kaggle://keras/densenet/keras/densenet_201_imagenet/2",
42
42
  },
43
43
  }
@@ -0,0 +1,6 @@
1
+ from keras_hub.src.models.mit.mit_backbone import MiTBackbone
2
+ from keras_hub.src.models.mit.mit_image_classifier import MiTImageClassifier
3
+ from keras_hub.src.models.mit.mit_presets import backbone_presets
4
+ from keras_hub.src.utils.preset_utils import register_presets
5
+
6
+ register_presets(backbone_presets, MiTBackbone)
@@ -4,12 +4,8 @@ from keras import ops
4
4
 
5
5
  from keras_hub.src.api_export import keras_hub_export
6
6
  from keras_hub.src.models.feature_pyramid_backbone import FeaturePyramidBackbone
7
- from keras_hub.src.models.mix_transformer.mix_transformer_layers import (
8
- HierarchicalTransformerEncoder,
9
- )
10
- from keras_hub.src.models.mix_transformer.mix_transformer_layers import (
11
- OverlappingPatchingAndEmbedding,
12
- )
7
+ from keras_hub.src.models.mit.mit_layers import HierarchicalTransformerEncoder
8
+ from keras_hub.src.models.mit.mit_layers import OverlappingPatchingAndEmbedding
13
9
 
14
10
 
15
11
  @keras_hub_export("keras_hub.models.MiTBackbone")
@@ -61,7 +57,7 @@ class MiTBackbone(FeaturePyramidBackbone):
61
57
  ```python
62
58
  images = np.ones(shape=(1, 96, 96, 3))
63
59
  labels = np.zeros(shape=(1, 96, 96, 1))
64
- backbone = keras_hub.models.MiTBackbone.from_preset("mit_b0_imagenet")
60
+ backbone = keras_hub.models.MiTBackbone.from_preset("mit_b0_ade20k_512")
65
61
 
66
62
  # Evaluate model
67
63
  model(images)
@@ -1,9 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
  from keras_hub.src.models.image_classifier import ImageClassifier
3
- from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
4
- MiTBackbone,
5
- )
6
- from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
3
+ from keras_hub.src.models.mit.mit_backbone import MiTBackbone
4
+ from keras_hub.src.models.mit.mit_image_classifier_preprocessor import (
7
5
  MiTImageClassifierPreprocessor,
8
6
  )
9
7
 
@@ -2,12 +2,8 @@ from keras_hub.src.api_export import keras_hub_export
2
2
  from keras_hub.src.models.image_classifier_preprocessor import (
3
3
  ImageClassifierPreprocessor,
4
4
  )
5
- from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
6
- MiTBackbone,
7
- )
8
- from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
9
- MiTImageConverter,
10
- )
5
+ from keras_hub.src.models.mit.mit_backbone import MiTBackbone
6
+ from keras_hub.src.models.mit.mit_image_converter import MiTImageConverter
11
7
 
12
8
 
13
9
  @keras_hub_export("keras_hub.models.MiTImageClassifierPreprocessor")
@@ -1,6 +1,6 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
  from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
- from keras_hub.src.models.mix_transformer import MiTBackbone
3
+ from keras_hub.src.models.mit import MiTBackbone
4
4
 
5
5
 
6
6
  @keras_hub_export("keras_hub.layers.MiTImageConverter")
@@ -96,7 +96,7 @@ class MobileNetBackbone(Backbone):
96
96
  stackwise_activation,
97
97
  output_num_filters,
98
98
  inverted_res_block,
99
- image_shape=(224, 224, 3),
99
+ image_shape=(None, None, 3),
100
100
  input_activation="hard_swish",
101
101
  output_activation="hard_swish",
102
102
  depth_multiplier=1.0,
@@ -61,8 +61,6 @@ class PaliGemmaBackbone(Backbone):
61
61
  vit_classifier_activation: activation function. The activation that
62
62
  is used for final output classification in the vision transformer.
63
63
  vit_name: string. The name used for vision transformer layers.
64
- include_rescaling: bool. If true, the image input will be rescaled from
65
- the range `[0, 255]`, to the range `[0, 1]`.
66
64
  layer_norm_epsilon: float. The epsilon value user for every layer norm
67
65
  in all transformer blocks.
68
66
  dropout: float. Dropout probability for the Transformer decoder blocks.
@@ -121,7 +119,6 @@ class PaliGemmaBackbone(Backbone):
121
119
  vit_pooling=None,
122
120
  vit_classifier_activation=None,
123
121
  vit_name=None,
124
- include_rescaling=True,
125
122
  layer_norm_epsilon=1e-6,
126
123
  dropout=0,
127
124
  dtype=None,
@@ -145,7 +142,6 @@ class PaliGemmaBackbone(Backbone):
145
142
  vit_intermediate_dim = vit_intermediate_dim or 4304
146
143
  self.vit_encoder = PaliGemmaVit(
147
144
  image_size=image_size,
148
- include_rescaling=include_rescaling,
149
145
  patch_size=vit_patch_size,
150
146
  num_heads=vit_num_heads,
151
147
  hidden_dim=vit_hidden_dim,
@@ -215,7 +211,6 @@ class PaliGemmaBackbone(Backbone):
215
211
  # === Config ===
216
212
  self.vocabulary_size = vocabulary_size
217
213
  self.image_size = image_size
218
- self.include_rescaling = include_rescaling
219
214
  self.num_layers = num_layers
220
215
  self.num_query_heads = num_query_heads
221
216
  self.num_key_value_heads = num_key_value_heads
@@ -242,7 +237,6 @@ class PaliGemmaBackbone(Backbone):
242
237
  {
243
238
  "vocabulary_size": self.vocabulary_size,
244
239
  "image_size": self.image_size,
245
- "include_rescaling": self.include_rescaling,
246
240
  "num_layers": self.num_layers,
247
241
  "num_query_heads": self.num_query_heads,
248
242
  "num_key_value_heads": self.num_key_value_heads,
@@ -12,7 +12,7 @@ backbone_presets = {
12
12
  "path": "pali_gemma",
13
13
  "model_card": "https://www.kaggle.com/models/google/paligemma",
14
14
  },
15
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_224/2",
15
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_224/3",
16
16
  },
17
17
  "pali_gemma_3b_mix_448": {
18
18
  "metadata": {
@@ -24,7 +24,7 @@ backbone_presets = {
24
24
  "path": "pali_gemma",
25
25
  "model_card": "https://www.kaggle.com/models/google/paligemma",
26
26
  },
27
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_448/2",
27
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_mix_448/3",
28
28
  },
29
29
  "pali_gemma_3b_224": {
30
30
  "metadata": {
@@ -36,7 +36,7 @@ backbone_presets = {
36
36
  "path": "pali_gemma",
37
37
  "model_card": "https://www.kaggle.com/models/google/paligemma",
38
38
  },
39
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_224/2",
39
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_224/3",
40
40
  },
41
41
  "pali_gemma_3b_448": {
42
42
  "metadata": {
@@ -48,7 +48,7 @@ backbone_presets = {
48
48
  "path": "pali_gemma",
49
49
  "model_card": "https://www.kaggle.com/models/google/paligemma",
50
50
  },
51
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_448/2",
51
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_448/3",
52
52
  },
53
53
  "pali_gemma_3b_896": {
54
54
  "metadata": {
@@ -60,6 +60,6 @@ backbone_presets = {
60
60
  "path": "pali_gemma",
61
61
  "model_card": "https://www.kaggle.com/models/google/paligemma",
62
62
  },
63
- "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/2",
63
+ "kaggle_handle": "kaggle://keras/paligemma/keras/pali_gemma_3b_896/3",
64
64
  },
65
65
  }
@@ -410,8 +410,6 @@ class PaliGemmaVit(keras.Model):
410
410
  Args:
411
411
  image_size: int. The height/width of the image. Both height and width is
412
412
  expected to be the same.
413
- include_rescaling: bool. If true, the image input will be rescaled from
414
- the range `[0, 255]`, to the range `[0, 1]`.
415
413
  patch_size: int. The size of each square patch in the input image.
416
414
  num_heads: int. The number of attention heads for the vision(image)
417
415
  transformer encoder.
@@ -452,7 +450,6 @@ class PaliGemmaVit(keras.Model):
452
450
  num_layers,
453
451
  intermediate_dim,
454
452
  num_classes,
455
- include_rescaling=True,
456
453
  pooling=None,
457
454
  classifier_activation=None,
458
455
  dtype=None,
@@ -463,14 +460,6 @@ class PaliGemmaVit(keras.Model):
463
460
  shape=(image_size, image_size, 3), name="images"
464
461
  )
465
462
  x = image_input # Intermediate result.
466
- # TODO we have moved this rescaling to preprocessing layers for most
467
- # models. We should consider removing it here, though it would break
468
- # compatibility.
469
- if include_rescaling:
470
- rescaling = keras.layers.Rescaling(
471
- scale=1.0 / 127.5, offset=-1.0, name="rescaling"
472
- )
473
- x = rescaling(image_input)
474
463
  x = PaliGemmaVitEncoder(
475
464
  hidden_dim=hidden_dim,
476
465
  num_layers=num_layers,
@@ -520,7 +509,6 @@ class PaliGemmaVit(keras.Model):
520
509
  self.pooling = pooling
521
510
  self.num_classes = num_classes
522
511
  self.image_size = image_size
523
- self.include_rescaling = include_rescaling
524
512
  self.patch_size = patch_size
525
513
  self.classifier_activation = keras.activations.get(
526
514
  classifier_activation
@@ -549,7 +537,6 @@ class PaliGemmaVit(keras.Model):
549
537
  self.classifier_activation
550
538
  ),
551
539
  "image_size": self.image_size,
552
- "include_rescaling": self.include_rescaling,
553
540
  "patch_size": self.patch_size,
554
541
  }
555
542
  )
@@ -71,6 +71,22 @@ class Preprocessor(PreprocessingLayer):
71
71
  def image_converter(self, value):
72
72
  self._image_converter = value
73
73
 
74
+ @property
75
+ def image_size(self):
76
+ """Shortcut to get/set the image size of the image converter."""
77
+ if self.image_converter is None:
78
+ return None
79
+ return self.image_converter.image_size
80
+
81
+ @image_size.setter
82
+ def image_size(self, value):
83
+ if self.image_converter is None:
84
+ raise ValueError(
85
+ "Cannot set `image_size` on preprocessor if `image_converter` "
86
+ " is `None`."
87
+ )
88
+ self.image_converter.image_size = value
89
+
74
90
  def get_config(self):
75
91
  config = super().get_config()
76
92
  if self.tokenizer:
@@ -68,7 +68,7 @@ class ResNetBackbone(FeaturePyramidBackbone):
68
68
  input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
69
69
 
70
70
  # Pretrained ResNet backbone.
71
- model = keras_hub.models.ResNetBackbone.from_preset("resnet50")
71
+ model = keras_hub.models.ResNetBackbone.from_preset("resnet_50_imagenet")
72
72
  model(input_data)
73
73
 
74
74
  # Randomly initialized ResNetV2 backbone with a custom config.
@@ -0,0 +1,223 @@
1
+ """ResNet preset configurations."""
2
+
3
+ backbone_presets = {
4
+ "resnet_18_imagenet": {
5
+ "metadata": {
6
+ "description": (
7
+ "18-layer ResNet model pre-trained on the ImageNet 1k dataset "
8
+ "at a 224x224 resolution."
9
+ ),
10
+ "params": 11186112,
11
+ "official_name": "ResNet",
12
+ "path": "resnet",
13
+ "model_card": "https://arxiv.org/abs/2110.00476",
14
+ },
15
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_18_imagenet/2",
16
+ },
17
+ "resnet_50_imagenet": {
18
+ "metadata": {
19
+ "description": (
20
+ "50-layer ResNet model pre-trained on the ImageNet 1k dataset "
21
+ "at a 224x224 resolution."
22
+ ),
23
+ "params": 23561152,
24
+ "official_name": "ResNet",
25
+ "path": "resnet",
26
+ "model_card": "https://arxiv.org/abs/2110.00476",
27
+ },
28
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_50_imagenet/2",
29
+ },
30
+ "resnet_101_imagenet": {
31
+ "metadata": {
32
+ "description": (
33
+ "101-layer ResNet model pre-trained on the ImageNet 1k dataset "
34
+ "at a 224x224 resolution."
35
+ ),
36
+ "params": 42605504,
37
+ "official_name": "ResNet",
38
+ "path": "resnet",
39
+ "model_card": "https://arxiv.org/abs/2110.00476",
40
+ },
41
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_101_imagenet/2",
42
+ },
43
+ "resnet_152_imagenet": {
44
+ "metadata": {
45
+ "description": (
46
+ "152-layer ResNet model pre-trained on the ImageNet 1k dataset "
47
+ "at a 224x224 resolution."
48
+ ),
49
+ "params": 58295232,
50
+ "official_name": "ResNet",
51
+ "path": "resnet",
52
+ "model_card": "https://arxiv.org/abs/2110.00476",
53
+ },
54
+ "kaggle_handle": "kaggle://keras/resnetv1/keras/resnet_152_imagenet/2",
55
+ },
56
+ "resnet_v2_50_imagenet": {
57
+ "metadata": {
58
+ "description": (
59
+ "50-layer ResNetV2 model pre-trained on the ImageNet 1k "
60
+ "dataset at a 224x224 resolution."
61
+ ),
62
+ "params": 23561152,
63
+ "official_name": "ResNet",
64
+ "path": "resnet",
65
+ "model_card": "https://arxiv.org/abs/2110.00476",
66
+ },
67
+ "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_50_imagenet/2",
68
+ },
69
+ "resnet_v2_101_imagenet": {
70
+ "metadata": {
71
+ "description": (
72
+ "101-layer ResNetV2 model pre-trained on the ImageNet 1k "
73
+ "dataset at a 224x224 resolution."
74
+ ),
75
+ "params": 42605504,
76
+ "official_name": "ResNet",
77
+ "path": "resnet",
78
+ "model_card": "https://arxiv.org/abs/2110.00476",
79
+ },
80
+ "kaggle_handle": "kaggle://keras/resnetv2/keras/resnet_v2_101_imagenet/2",
81
+ },
82
+ "resnet_vd_18_imagenet": {
83
+ "metadata": {
84
+ "description": (
85
+ "18-layer ResNetVD (ResNet with bag of tricks) model "
86
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
87
+ "resolution."
88
+ ),
89
+ "params": 11722824,
90
+ "official_name": "ResNet",
91
+ "path": "resnet",
92
+ "model_card": "https://arxiv.org/abs/1812.01187",
93
+ },
94
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_18_imagenet",
95
+ },
96
+ "resnet_vd_34_imagenet": {
97
+ "metadata": {
98
+ "description": (
99
+ "34-layer ResNetVD (ResNet with bag of tricks) model "
100
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
101
+ "resolution."
102
+ ),
103
+ "params": 21838408,
104
+ "official_name": "ResNet",
105
+ "path": "resnet",
106
+ "model_card": "https://arxiv.org/abs/1812.01187",
107
+ },
108
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_34_imagenet",
109
+ },
110
+ "resnet_vd_50_imagenet": {
111
+ "metadata": {
112
+ "description": (
113
+ "50-layer ResNetVD (ResNet with bag of tricks) model "
114
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
115
+ "resolution."
116
+ ),
117
+ "params": 25629512,
118
+ "official_name": "ResNet",
119
+ "path": "resnet",
120
+ "model_card": "https://arxiv.org/abs/1812.01187",
121
+ },
122
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_imagenet",
123
+ },
124
+ "resnet_vd_50_ssld_imagenet": {
125
+ "metadata": {
126
+ "description": (
127
+ "50-layer ResNetVD (ResNet with bag of tricks) model "
128
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
129
+ "resolution with knowledge distillation."
130
+ ),
131
+ "params": 25629512,
132
+ "official_name": "ResNet",
133
+ "path": "resnet",
134
+ "model_card": "https://arxiv.org/abs/1812.01187",
135
+ },
136
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_ssld_imagenet",
137
+ },
138
+ "resnet_vd_50_ssld_v2_imagenet": {
139
+ "metadata": {
140
+ "description": (
141
+ "50-layer ResNetVD (ResNet with bag of tricks) model "
142
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
143
+ "resolution with knowledge distillation and AutoAugment."
144
+ ),
145
+ "params": 25629512,
146
+ "official_name": "ResNet",
147
+ "path": "resnet",
148
+ "model_card": "https://arxiv.org/abs/1812.01187",
149
+ },
150
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_ssld_v2_imagenet",
151
+ },
152
+ "resnet_vd_50_ssld_v2_fix_imagenet": {
153
+ "metadata": {
154
+ "description": (
155
+ "50-layer ResNetVD (ResNet with bag of tricks) model "
156
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
157
+ "resolution with knowledge distillation, AutoAugment and "
158
+ "additional fine-tuning of the classification head."
159
+ ),
160
+ "params": 25629512,
161
+ "official_name": "ResNet",
162
+ "path": "resnet",
163
+ "model_card": "https://arxiv.org/abs/1812.01187",
164
+ },
165
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_50_ssld_v2_fix_imagenet",
166
+ },
167
+ "resnet_vd_101_imagenet": {
168
+ "metadata": {
169
+ "description": (
170
+ "101-layer ResNetVD (ResNet with bag of tricks) model "
171
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
172
+ "resolution."
173
+ ),
174
+ "params": 44673864,
175
+ "official_name": "ResNet",
176
+ "path": "resnet",
177
+ "model_card": "https://arxiv.org/abs/1812.01187",
178
+ },
179
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_101_imagenet",
180
+ },
181
+ "resnet_vd_101_ssld_imagenet": {
182
+ "metadata": {
183
+ "description": (
184
+ "101-layer ResNetVD (ResNet with bag of tricks) model "
185
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
186
+ "resolution with knowledge distillation."
187
+ ),
188
+ "params": 44673864,
189
+ "official_name": "ResNet",
190
+ "path": "resnet",
191
+ "model_card": "https://arxiv.org/abs/1812.01187",
192
+ },
193
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_101_ssld_imagenet",
194
+ },
195
+ "resnet_vd_152_imagenet": {
196
+ "metadata": {
197
+ "description": (
198
+ "152-layer ResNetVD (ResNet with bag of tricks) model "
199
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
200
+ "resolution."
201
+ ),
202
+ "params": 60363592,
203
+ "official_name": "ResNet",
204
+ "path": "resnet",
205
+ "model_card": "https://arxiv.org/abs/1812.01187",
206
+ },
207
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_152_imagenet",
208
+ },
209
+ "resnet_vd_200_imagenet": {
210
+ "metadata": {
211
+ "description": (
212
+ "200-layer ResNetVD (ResNet with bag of tricks) model "
213
+ "pre-trained on the ImageNet 1k dataset at a 224x224 "
214
+ "resolution."
215
+ ),
216
+ "params": 74933064,
217
+ "official_name": "ResNet",
218
+ "path": "resnet",
219
+ "model_card": "https://arxiv.org/abs/1812.01187",
220
+ },
221
+ "kaggle_handle": "kaggle://kerashub/resnetvd/keras/resnet_vd_200_imagenet",
222
+ },
223
+ }
@@ -31,7 +31,7 @@ class SAMImageSegmenter(ImageSegmenter):
31
31
 
32
32
 
33
33
  Args:
34
- backbone: A `keras_hub.models.VGGBackbone` instance.
34
+ backbone: A `keras_hub.models.SAMBackbone` instance.
35
35
 
36
36
  Example:
37
37
  Load pretrained model using `from_preset`.
@@ -9,7 +9,7 @@ backbone_presets = {
9
9
  "path": "sam",
10
10
  "model_card": "https://arxiv.org/abs/2304.02643",
11
11
  },
12
- "kaggle_handle": "kaggle://keras/sam/keras/sam_base_sa1b/2",
12
+ "kaggle_handle": "kaggle://keras/sam/keras/sam_base_sa1b/4",
13
13
  },
14
14
  "sam_large_sa1b": {
15
15
  "metadata": {
@@ -19,7 +19,7 @@ backbone_presets = {
19
19
  "path": "sam",
20
20
  "model_card": "https://arxiv.org/abs/2304.02643",
21
21
  },
22
- "kaggle_handle": "kaggle://keras/sam/keras/sam_large_sa1b/3",
22
+ "kaggle_handle": "kaggle://keras/sam/keras/sam_large_sa1b/4",
23
23
  },
24
24
  "sam_huge_sa1b": {
25
25
  "metadata": {
@@ -29,6 +29,6 @@ backbone_presets = {
29
29
  "path": "sam",
30
30
  "model_card": "https://arxiv.org/abs/2304.02643",
31
31
  },
32
- "kaggle_handle": "kaggle://keras/sam/keras/sam_huge_sa1b/3",
32
+ "kaggle_handle": "kaggle://keras/sam/keras/sam_huge_sa1b/4",
33
33
  },
34
34
  }
@@ -10,7 +10,7 @@ backbone_presets = {
10
10
  ),
11
11
  "params": 2987080931,
12
12
  "official_name": "StableDiffusion3",
13
- "path": "stablediffusion3",
13
+ "path": "stable_diffusion_3",
14
14
  "model_card": "https://arxiv.org/abs/2110.00476",
15
15
  },
16
16
  "kaggle_handle": "kaggle://keras/stablediffusion3/keras/stable_diffusion_3_medium/1",
@@ -280,7 +280,7 @@ class Task(PipelineModel):
280
280
 
281
281
  def highlight_number(x):
282
282
  if x is None:
283
- f"[color(45)]{x}[/]"
283
+ return f"[color(45)]{x}[/]"
284
284
  return f"[color(34)]{x:,}[/]" # Format number with commas.
285
285
 
286
286
  def highlight_symbol(x):
@@ -339,7 +339,10 @@ class Task(PipelineModel):
339
339
  add_layer(layer, info)
340
340
  elif isinstance(layer, ImageConverter):
341
341
  info = "Image size: "
342
- info += highlight_shape(layer.image_size)
342
+ image_size = layer.image_size
343
+ if image_size is None:
344
+ image_size = (None, None)
345
+ info += highlight_shape(image_size)
343
346
  add_layer(layer, info)
344
347
  elif isinstance(layer, AudioConverter):
345
348
  info = "Audio shape: "