keras-hub-nightly 0.16.1.dev202410150342__tar.gz → 0.16.1.dev202410170342__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (379) hide show
  1. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/causal_lm.py +37 -1
  3. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +1 -1
  4. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/gemma_backbone.py +11 -3
  5. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_backbone.py +118 -0
  6. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_causal_lm.py +3 -1
  7. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_causal_lm.py +3 -1
  8. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +3 -1
  9. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_causal_lm.py +3 -1
  10. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tests/test_case.py +9 -0
  11. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/version_utils.py +1 -1
  12. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  13. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/setup.py +1 -1
  14. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/README.md +0 -0
  15. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/__init__.py +0 -0
  16. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/__init__.py +0 -0
  17. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/bounding_box/__init__.py +0 -0
  18. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/layers/__init__.py +0 -0
  19. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/metrics/__init__.py +0 -0
  20. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/models/__init__.py +0 -0
  21. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/samplers/__init__.py +0 -0
  22. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/tokenizers/__init__.py +0 -0
  23. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/api/utils/__init__.py +0 -0
  24. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/__init__.py +0 -0
  25. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/api_export.py +0 -0
  26. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/__init__.py +0 -0
  27. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/converters.py +0 -0
  28. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/formats.py +0 -0
  29. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/iou.py +0 -0
  30. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/to_dense.py +0 -0
  31. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  32. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/utils.py +0 -0
  33. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/bounding_box/validate_format.py +0 -0
  34. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/__init__.py +0 -0
  35. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/__init__.py +0 -0
  36. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  37. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  38. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  39. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  40. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  41. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  42. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  43. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  44. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  45. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  46. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  47. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  48. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  49. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  50. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  51. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  52. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  53. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  54. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  55. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  56. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  57. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/metrics/__init__.py +0 -0
  58. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/metrics/bleu.py +0 -0
  59. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/metrics/edit_distance.py +0 -0
  60. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/metrics/perplexity.py +0 -0
  61. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/metrics/rouge_base.py +0 -0
  62. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/metrics/rouge_l.py +0 -0
  63. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/metrics/rouge_n.py +0 -0
  64. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/__init__.py +0 -0
  65. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/__init__.py +0 -0
  66. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  67. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  68. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  69. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/albert_presets.py +0 -0
  70. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  71. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  72. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  73. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/backbone.py +0 -0
  74. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bart/__init__.py +0 -0
  75. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  76. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bart/bart_presets.py +0 -0
  77. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  78. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  79. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  80. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/__init__.py +0 -0
  81. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  82. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  83. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  84. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/bert_presets.py +0 -0
  85. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  86. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  87. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  88. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/__init__.py +0 -0
  89. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  90. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  91. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  92. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  94. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  95. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  96. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  97. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/clip/__init__.py +0 -0
  98. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  99. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  100. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  101. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  102. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  103. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  104. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  105. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  106. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  107. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  108. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  109. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  110. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  111. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  112. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  113. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  114. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  115. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  116. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  117. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  118. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  119. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  120. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  121. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  122. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/densenet/__init__.py +0 -0
  123. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  124. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  125. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  126. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  127. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  128. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  129. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  130. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  131. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  133. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  134. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  135. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  136. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  137. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  138. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  139. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  140. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/electra/__init__.py +0 -0
  141. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  142. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/electra/electra_presets.py +0 -0
  143. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  144. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/__init__.py +0 -0
  145. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  146. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  147. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  149. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  150. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  151. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  152. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/__init__.py +0 -0
  153. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  154. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  155. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  156. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  157. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  158. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  159. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  160. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  161. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/__init__.py +0 -0
  162. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  163. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  164. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  165. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  166. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  167. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  168. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  169. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt2/__init__.py +0 -0
  170. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  171. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  172. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  173. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  174. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  175. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  176. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  177. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  178. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  179. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  180. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  181. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  182. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  183. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/image_classifier.py +0 -0
  184. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  185. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/image_segmenter.py +0 -0
  186. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  187. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/image_to_image.py +0 -0
  188. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/inpaint.py +0 -0
  189. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/__init__.py +0 -0
  190. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_attention.py +0 -0
  191. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  192. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  193. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  194. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_presets.py +0 -0
  195. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  196. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama3/__init__.py +0 -0
  197. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  198. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  199. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  200. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  201. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  202. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/masked_lm.py +0 -0
  203. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  204. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/__init__.py +0 -0
  205. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  206. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  207. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  208. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  209. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  210. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  211. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  212. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
  213. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
  214. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -0
  215. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py +0 -0
  216. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py +0 -0
  217. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
  218. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mix_transformer/mix_transformer_presets.py +0 -0
  219. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  220. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  221. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  222. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/opt/__init__.py +0 -0
  223. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  224. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  225. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/opt/opt_presets.py +0 -0
  227. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  228. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  229. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  230. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  231. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  232. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  233. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  234. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  235. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  236. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/__init__.py +0 -0
  237. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  238. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  239. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  240. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  241. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  242. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  243. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  244. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  245. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/preprocessor.py +0 -0
  246. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/resnet/__init__.py +0 -0
  247. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  248. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  249. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  250. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  251. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  252. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/retinanet/__init__.py +0 -0
  253. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  254. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  255. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  256. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  257. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  258. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/__init__.py +0 -0
  259. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  260. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  261. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  262. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  263. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  264. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  265. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  266. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/__init__.py +0 -0
  267. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  268. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  269. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  270. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  271. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_layers.py +0 -0
  272. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  273. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_presets.py +0 -0
  274. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  275. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  276. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  277. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  278. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  279. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  280. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  281. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  282. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +0 -0
  283. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +0 -0
  284. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  285. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  286. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  287. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  288. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/__init__.py +0 -0
  289. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  290. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  291. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  292. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  293. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/t5_presets.py +0 -0
  294. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  295. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  296. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/task.py +0 -0
  297. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/text_classifier.py +0 -0
  298. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  299. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/text_to_image.py +0 -0
  300. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vae/__init__.py +0 -0
  301. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  302. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vae/vae_layers.py +0 -0
  303. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vgg/__init__.py +0 -0
  304. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  305. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  306. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vgg/vgg_presets.py +0 -0
  307. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vit_det/__init__.py +0 -0
  308. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  309. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  310. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/__init__.py +0 -0
  311. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  312. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  313. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  314. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  315. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  316. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  317. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  318. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  319. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  320. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  321. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  322. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  323. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  324. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  325. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  326. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlnet/__init__.py +0 -0
  327. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  328. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  329. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  330. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  331. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/__init__.py +0 -0
  332. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/beam_sampler.py +0 -0
  333. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  334. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  335. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/random_sampler.py +0 -0
  336. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/sampler.py +0 -0
  337. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/serialization.py +0 -0
  338. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  339. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  340. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tests/__init__.py +0 -0
  341. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/__init__.py +0 -0
  342. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  343. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  344. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  345. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  346. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  347. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  348. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  349. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  350. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/__init__.py +0 -0
  351. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  352. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  353. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/keras_utils.py +0 -0
  354. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/pipeline_model.py +0 -0
  355. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/preset_utils.py +0 -0
  356. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/python_utils.py +0 -0
  357. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/tensor_utils.py +0 -0
  358. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/timm/__init__.py +0 -0
  359. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  360. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  361. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/timm/convert_vgg.py +0 -0
  362. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  363. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/__init__.py +0 -0
  364. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  365. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  366. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  367. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  368. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  369. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  370. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  371. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  372. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  373. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  374. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  375. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
  376. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  377. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub_nightly.egg-info/requires.txt +0 -0
  378. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  379. {keras_hub_nightly-0.16.1.dev202410150342 → keras_hub_nightly-0.16.1.dev202410170342}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410150342
3
+ Version: 0.16.1.dev202410170342
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -274,6 +274,7 @@ class CausalLM(Task):
274
274
  inputs,
275
275
  max_length=None,
276
276
  stop_token_ids="auto",
277
+ strip_prompt=False,
277
278
  ):
278
279
  """Generate text given prompt `inputs`.
279
280
 
@@ -309,6 +310,9 @@ class CausalLM(Task):
309
310
  specify a list of token id's the model should stop on. Note that
310
311
  sequences of tokens will each be interpreted as a stop token,
311
312
  multi-token stop sequences are not supported.
313
+ strip_prompt: Optional. By default, generate() returns the full prompt
314
+ followed by its completion generated by the model. If this option
315
+ is set to True, only the newly generated text is returned.
312
316
  """
313
317
  # Setup our three main passes.
314
318
  # 1. Optionally preprocessing strings to dense integer tensors.
@@ -339,6 +343,33 @@ class CausalLM(Task):
339
343
  def generate(x):
340
344
  return generate_function(x, stop_token_ids=stop_token_ids)
341
345
 
346
+ def strip_prompt_function(x, prompt):
347
+ # This function removes the prompt from the generated
348
+ # response, in a batch-friendly fashion.
349
+ y = {}
350
+ prompt_mask = prompt["padding_mask"]
351
+ seq_len = prompt_mask.shape[1]
352
+
353
+ # We need to shift every output sequence by the size of the prompt.
354
+ shifts = -ops.sum(ops.cast(prompt_mask, "int"), axis=1) % seq_len
355
+ ix = ops.arange(seq_len, dtype="int")
356
+ ix = ops.expand_dims(ix, axis=0) - ops.expand_dims(shifts, axis=1)
357
+
358
+ # This produces the desired shift (in fact a rollover).
359
+ def roll_sequence(seq):
360
+ return ops.take_along_axis(seq, ix, axis=1)
361
+
362
+ # The shifting rolls the content over so the prompt is at the end of
363
+ # the sequence and the generated text is at the beginning. We mask
364
+ # it to retain the generated text only.
365
+ y["padding_mask"] = ops.logical_xor(
366
+ roll_sequence(prompt_mask), roll_sequence(x["padding_mask"])
367
+ )
368
+ # we assume the mask is enough and there is no need to zero-out the values
369
+ y["token_ids"] = roll_sequence(x["token_ids"])
370
+
371
+ return y
372
+
342
373
  def postprocess(x):
343
374
  return self.preprocessor.generate_postprocess(x)
344
375
 
@@ -347,7 +378,12 @@ class CausalLM(Task):
347
378
 
348
379
  if self.preprocessor is not None:
349
380
  inputs = [preprocess(x) for x in inputs]
350
- outputs = [generate(x) for x in inputs]
381
+
382
+ if strip_prompt:
383
+ outputs = [strip_prompt_function(generate(x), x) for x in inputs]
384
+ else:
385
+ outputs = [generate(x) for x in inputs]
386
+
351
387
  if self.preprocessor is not None:
352
388
  outputs = [postprocess(x) for x in outputs]
353
389
 
@@ -13,6 +13,6 @@ backbone_presets = {
13
13
  "path": "deeplabv3",
14
14
  "model_card": "https://arxiv.org/abs/1802.02611",
15
15
  },
16
- "kaggle_handle": "kaggle://keras/deeplabv3/keras/deeplabv3_plus_resnet50_pascalvoc/3",
16
+ "kaggle_handle": "kaggle://keras/deeplabv3/keras/deeplab_v3_plus_resnet50_pascalvoc/3",
17
17
  },
18
18
  }
@@ -224,7 +224,7 @@ class GemmaBackbone(Backbone):
224
224
 
225
225
  Example:
226
226
  ```
227
- # Feel free to change the mesh shape to balance data and model parallel
227
+ # Feel free to change the mesh shape to balance data and model parallelism
228
228
  mesh = keras.distribution.DeviceMesh(
229
229
  shape=(1, 8), axis_names=('batch', 'model'),
230
230
  devices=keras.distribution.list_devices())
@@ -232,11 +232,19 @@ class GemmaBackbone(Backbone):
232
232
  mesh, model_parallel_dim_name="model")
233
233
 
234
234
  distribution = keras.distribution.ModelParallel(
235
- mesh, layout_map, batch_dim_name='batch')
235
+ layout_map=layout_map, batch_dim_name='batch')
236
236
  with distribution.scope():
237
237
  gemma_model = keras_hub.models.GemmaCausalLM.from_preset()
238
238
  ```
239
239
 
240
+ To see how the layout map was applied, load the model then run (for one decoder block):
241
+ ```
242
+ embedding_layer = gemma_model.backbone.get_layer("token_embedding")
243
+ decoder_block_1 = gemma_model.backbone.get_layer('decoder_block_1')
244
+ for variable in embedding_layer.weights + decoder_block_1.weights:
245
+ print(f'{variable.path:<58} {str(variable.shape):<16} {str(variable.value.sharding.spec)}')
246
+ ```
247
+
240
248
  Args:
241
249
  device_mesh: The `keras.distribution.DeviceMesh` instance for
242
250
  distribution.
@@ -246,7 +254,7 @@ class GemmaBackbone(Backbone):
246
254
  the data should be partition on.
247
255
  Return:
248
256
  `keras.distribution.LayoutMap` that contains the sharding spec
249
- of all the model weights.
257
+ for all the model weights.
250
258
  """
251
259
  # The weight path and shape of the Gemma backbone is like below (for 2G)
252
260
  # token_embedding/embeddings, (256128, 2048), 524550144
@@ -175,3 +175,121 @@ class LlamaBackbone(Backbone):
175
175
  }
176
176
  )
177
177
  return config
178
+
179
+ @staticmethod
180
+ def get_layout_map(
181
+ device_mesh,
182
+ model_parallel_dim_name="model",
183
+ data_parallel_dim_name="batch",
184
+ ):
185
+ """Get a `keras.distribution.LayoutMap` for model parallel distribution.
186
+
187
+ The returned `LayoutMap` contains the sharding spec for the Llama
188
+ backbone weights, so that you can use it to distribute weights across
189
+ the accelerators.
190
+
191
+ Example:
192
+ ```
193
+ # Feel free to change the mesh shape to balance data and model parallelism
194
+ mesh = keras.distribution.DeviceMesh(
195
+ shape=(1, 8),
196
+ axis_names=('batch', 'model'),
197
+ devices=keras.distribution.list_devices(),
198
+ )
199
+ layout_map = LlamaBackbone.get_layout_map(
200
+ mesh,
201
+ model_parallel_dim_name="model",
202
+ )
203
+
204
+ distribution = keras.distribution.ModelParallel(
205
+ layout_map=layout_map,
206
+ batch_dim_name='batch',
207
+ )
208
+
209
+ with distribution.scope():
210
+ llama_model = keras_hub.models.LlamaCausalLM.from_preset()
211
+ ```
212
+
213
+ To see how the layout map was applied, load the model then run (for one decoder block):
214
+ ```
215
+ embedding_layer = llama_model.backbone.get_layer("token_embedding")
216
+ decoder_block_1 = llama_model.backbone.get_layer('transformer_layer_0')
217
+ for variable in embedding_layer.weights + decoder_block_1.weights:
218
+ print(f'{variable.path:<58} {str(variable.shape):<16} {str(variable.value.sharding.spec)}')
219
+ ```
220
+
221
+ Args:
222
+ device_mesh: The `keras.distribution.DeviceMesh` instance for
223
+ distribution.
224
+ model_parallel_dim_name: The axis name of the device mesh, where
225
+ the weights should be partition on.
226
+ data_parallel_dim_name: The axis name of the device mesh, where
227
+ the data should be partition on.
228
+ Return:
229
+ `keras.distribution.LayoutMap` that contains the sharding spec
230
+ for all the model weights.
231
+ """
232
+ # The weight path and shape of the Llama backbone is like below
233
+ # token_embedding/embeddings (128256, 2048)
234
+ # repeat block for decoder
235
+ # transformer_layer_0/self_attention/query/kernel (2048, 32, 64)
236
+ # transformer_layer_0/self_attention/key/kernel (2048, 8, 64)
237
+ # transformer_layer_0/self_attention/value/kernel (2048, 8, 64)
238
+ # transformer_layer_0/self_attention/attention_output/kernel (32, 64, 2048)
239
+ # transformer_layer_0/self_attention_layernorm/scale (2048,)
240
+ # transformer_layer_0/feedforward_intermediate_dense/kernel (2048, 8192)
241
+ # transformer_layer_0/feedforward_gate_dense/kernel (2048, 8192)
242
+ # transformer_layer_0/feedforward_output_dense/kernel (8192, 2048)
243
+ # transformer_layer_0/feedforward_layernorm/scale (2048,)
244
+
245
+ if not isinstance(device_mesh, keras.distribution.DeviceMesh):
246
+ raise ValueError(
247
+ "Invalid device_mesh type. Expected `keras.distribution.Device`,"
248
+ f" got {type(device_mesh)}"
249
+ )
250
+ if model_parallel_dim_name not in device_mesh.axis_names:
251
+ raise ValueError(
252
+ f"{model_parallel_dim_name} is not found in the "
253
+ f"device_mesh.axis_names. {device_mesh.axis_name=}"
254
+ )
255
+ if data_parallel_dim_name not in device_mesh.axis_names:
256
+ raise ValueError(
257
+ f"{data_parallel_dim_name} is not found in the "
258
+ f"device_mesh.axis_names. {device_mesh.axis_name=}"
259
+ )
260
+ # Note that it is possible to further config the mesh to be 3D, eg
261
+ # (data, seq, model). We leave it as 2D for now for simplicity.
262
+ data_dim = data_parallel_dim_name
263
+ model_dim = model_parallel_dim_name
264
+ # The sharding config is based on the Gemma team training config.
265
+ # See https://arxiv.org/abs/2403.08295
266
+ layout_map = keras.distribution.LayoutMap(device_mesh)
267
+ layout_map["token_embedding/embeddings"] = (model_dim, data_dim)
268
+ layout_map[
269
+ "transformer_layer.*self_attention.*(query|key|value).kernel"
270
+ ] = (
271
+ model_dim,
272
+ data_dim,
273
+ None,
274
+ )
275
+ layout_map["transformer_layer.*attention_output.kernel"] = (
276
+ model_dim,
277
+ None,
278
+ data_dim,
279
+ )
280
+ layout_map[
281
+ "transformer_layer.*feedforward_intermediate_dense.kernel"
282
+ ] = (
283
+ data_dim,
284
+ model_dim,
285
+ )
286
+ layout_map["transformer_layer.*feedforward_gate_dense.kernel"] = (
287
+ data_dim,
288
+ model_dim,
289
+ )
290
+ layout_map["transformer_layer.*feedforward_output_dense.kernel"] = (
291
+ model_dim,
292
+ data_dim,
293
+ )
294
+
295
+ return layout_map
@@ -42,7 +42,9 @@ class LlamaCausalLM(CausalLM):
42
42
  self.preprocessor = preprocessor
43
43
 
44
44
  # === Functional Model ===
45
- inputs = backbone.inputs
45
+ # This must be "backbone.input" i.e. the full input structure,
46
+ # rather than "backbone.inputs" which is the flattened list of inputs.
47
+ inputs = backbone.input
46
48
  hidden_states = backbone(inputs)
47
49
  outputs = backbone.token_embedding(hidden_states, reverse=True)
48
50
  super().__init__(
@@ -42,7 +42,9 @@ class MistralCausalLM(CausalLM):
42
42
  self.preprocessor = preprocessor
43
43
 
44
44
  # === Functional Model ===
45
- inputs = backbone.inputs
45
+ # This must be "backbone.input" i.e. the full input structure,
46
+ # rather than "backbone.inputs" which is the flattened list of inputs.
47
+ inputs = backbone.input
46
48
  hidden_states = backbone(inputs)
47
49
  outputs = backbone.token_embedding(hidden_states, reverse=True)
48
50
  super().__init__(
@@ -110,7 +110,9 @@ class PaliGemmaCausalLM(CausalLM):
110
110
  self.backbone = backbone
111
111
 
112
112
  # === Functional Model ===
113
- inputs = backbone.inputs
113
+ # This must be "backbone.input" i.e. the full input structure,
114
+ # rather than "backbone.inputs" which is the flattened list of inputs.
115
+ inputs = backbone.input
114
116
  hidden_state = backbone(inputs=inputs)
115
117
  outputs = backbone.token_embedding(hidden_state, reverse=True)
116
118
  outputs = outputs[:, backbone.image_sequence_length :, :]
@@ -41,7 +41,9 @@ class Phi3CausalLM(CausalLM):
41
41
  self.preprocessor = preprocessor
42
42
 
43
43
  # === Functional Model ===
44
- inputs = backbone.inputs
44
+ # This must be "backbone.input" i.e. the full input structure,
45
+ # rather than "backbone.inputs" which is the flattened list of inputs.
46
+ inputs = backbone.input
45
47
  hidden_states = backbone(inputs)
46
48
  outputs = backbone.token_embedding(hidden_states, reverse=True)
47
49
  super().__init__(
@@ -569,6 +569,15 @@ class TestCase(tf.test.TestCase, parameterized.TestCase):
569
569
  ds = tf.data.Dataset.from_tensor_slices(train_data).batch(batch_size)
570
570
  x, y, sw = keras.utils.unpack_x_y_sample_weight(train_data)
571
571
 
572
+ # Test: the tree struct output by the
573
+ # preprocessor must match what model expects.
574
+ preprocessed_data = preprocessor(*train_data)[0]
575
+ tree.assert_same_structure(
576
+ preprocessed_data,
577
+ task._inputs_struct,
578
+ check_types=False,
579
+ )
580
+
572
581
  # Test predict.
573
582
  output = task.predict(x)
574
583
  if expected_output_shape is not None:
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.16.1.dev202410150342"
4
+ __version__ = "0.16.1.dev202410170342"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410150342
3
+ Version: 0.16.1.dev202410170342
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -23,7 +23,7 @@ def get_version(rel_path):
23
23
 
24
24
  HERE = pathlib.Path(__file__).parent
25
25
  README = (HERE / "README.md").read_text()
26
- VERSION = "0.16.1.dev202410150342" # get_version("keras_hub/src/version_utils.py")
26
+ VERSION = "0.16.1.dev202410170342" # get_version("keras_hub/src/version_utils.py")
27
27
 
28
28
  setup(
29
29
  name="keras-hub-nightly", # "keras-hub",