keras-hub-nightly 0.16.1.dev202410080341__tar.gz → 0.16.1.dev202410100339__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (378) hide show
  1. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/layers/__init__.py +3 -0
  3. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/models/__init__.py +11 -0
  4. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/image_converter.py +2 -1
  5. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/image_to_image.py +411 -0
  6. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/inpaint.py +513 -0
  7. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/__init__.py +12 -0
  8. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +4 -0
  9. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py +16 -0
  10. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py +8 -0
  11. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +9 -5
  12. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/mix_transformer_presets.py +151 -0
  13. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/preprocessor.py +4 -4
  14. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/mmdit.py +308 -177
  15. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +87 -55
  16. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +171 -0
  17. keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +194 -0
  18. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
  19. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +13 -8
  20. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/task.py +1 -1
  21. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/text_to_image.py +89 -36
  22. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tests/test_case.py +3 -1
  23. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/tokenizer.py +7 -7
  24. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/preset_utils.py +7 -7
  25. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/timm/preset_loader.py +1 -3
  26. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/version_utils.py +1 -1
  27. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  28. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/SOURCES.txt +7 -0
  29. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/setup.py +1 -1
  30. keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils/transformers/__init__.py +0 -0
  31. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/README.md +0 -0
  32. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/__init__.py +0 -0
  33. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/__init__.py +0 -0
  34. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/bounding_box/__init__.py +0 -0
  35. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/metrics/__init__.py +0 -0
  36. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/samplers/__init__.py +0 -0
  37. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/tokenizers/__init__.py +0 -0
  38. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/utils/__init__.py +0 -0
  39. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/__init__.py +0 -0
  40. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/api_export.py +0 -0
  41. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/__init__.py +0 -0
  42. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/converters.py +0 -0
  43. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/formats.py +0 -0
  44. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/iou.py +0 -0
  45. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/to_dense.py +0 -0
  46. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  47. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/utils.py +0 -0
  48. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/validate_format.py +0 -0
  49. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/__init__.py +0 -0
  50. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/__init__.py +0 -0
  51. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  52. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  53. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  54. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  55. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  56. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  57. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  58. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  59. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  60. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  61. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  62. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  63. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  64. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  65. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  66. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  67. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  68. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  69. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  70. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  71. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/__init__.py +0 -0
  72. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/bleu.py +0 -0
  73. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/edit_distance.py +0 -0
  74. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/perplexity.py +0 -0
  75. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/rouge_base.py +0 -0
  76. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/rouge_l.py +0 -0
  77. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/rouge_n.py +0 -0
  78. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/__init__.py +0 -0
  79. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/__init__.py +0 -0
  80. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  81. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  82. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  83. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_presets.py +0 -0
  84. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  85. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  86. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  87. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/backbone.py +0 -0
  88. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/__init__.py +0 -0
  89. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  90. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_presets.py +0 -0
  91. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  92. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  94. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/__init__.py +0 -0
  95. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  96. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  97. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  98. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_presets.py +0 -0
  99. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  100. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  101. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  102. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/__init__.py +0 -0
  103. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  104. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  105. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  106. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  107. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  108. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  109. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  110. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/causal_lm.py +0 -0
  111. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  112. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/__init__.py +0 -0
  113. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  114. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  115. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  116. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  117. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  118. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  119. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  120. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  121. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  122. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  123. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  124. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  125. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  126. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  127. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  128. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  129. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  130. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  131. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
  132. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
  133. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
  134. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
  135. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
  136. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
  137. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
  138. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/__init__.py +0 -0
  139. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  140. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  141. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  142. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  143. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  144. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  145. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  146. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  147. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  149. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  150. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  151. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  152. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  153. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  154. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  155. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  156. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/__init__.py +0 -0
  157. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  158. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/electra_presets.py +0 -0
  159. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  160. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/__init__.py +0 -0
  161. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  162. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  163. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  164. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  165. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  166. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  167. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  168. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/__init__.py +0 -0
  169. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  170. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  171. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  172. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  173. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  174. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  175. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  176. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  177. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/__init__.py +0 -0
  178. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  179. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  180. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  181. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  182. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  183. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  184. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  185. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  186. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/__init__.py +0 -0
  187. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  188. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  189. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  190. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  191. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  192. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  193. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  194. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  195. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  196. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  197. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  198. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  199. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  200. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_classifier.py +0 -0
  201. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  202. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_segmenter.py +0 -0
  203. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  204. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/__init__.py +0 -0
  205. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_attention.py +0 -0
  206. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  207. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  208. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  209. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  210. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  211. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_presets.py +0 -0
  212. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  213. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/__init__.py +0 -0
  214. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  215. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  216. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  217. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  218. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  219. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/masked_lm.py +0 -0
  220. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  221. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/__init__.py +0 -0
  222. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  223. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  224. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  225. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  227. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  228. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  229. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  230. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
  231. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/mix_transformer → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mobilenet}/__init__.py +0 -0
  232. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  233. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  234. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/__init__.py +0 -0
  235. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  236. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  237. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  238. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_presets.py +0 -0
  239. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  240. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  241. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  242. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  243. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  244. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  245. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  246. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  247. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  248. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  249. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/__init__.py +0 -0
  250. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  251. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  252. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  253. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  254. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  255. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  256. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  257. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  258. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  259. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/__init__.py +0 -0
  260. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  261. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  262. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  263. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  264. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  265. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/mobilenet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/retinanet}/__init__.py +0 -0
  266. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  267. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  268. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  269. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  270. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  271. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/__init__.py +0 -0
  272. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  273. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  274. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  275. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  276. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  277. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  278. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  279. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/__init__.py +0 -0
  280. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  281. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  282. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  283. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  284. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_layers.py +0 -0
  285. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  286. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_presets.py +0 -0
  287. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  288. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  289. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  290. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  291. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  292. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  293. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  294. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  295. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/__init__.py +0 -0
  296. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  297. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  298. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  299. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  300. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_presets.py +0 -0
  301. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  302. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  303. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/text_classifier.py +0 -0
  304. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  305. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vae/__init__.py +0 -0
  306. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vae/vae_backbone.py +0 -0
  307. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vae/vae_layers.py +0 -0
  308. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/retinanet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/vgg}/__init__.py +0 -0
  309. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  310. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  311. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/vgg → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/vit_det}/__init__.py +0 -0
  312. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  313. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  314. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/__init__.py +0 -0
  315. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  316. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  317. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  318. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  319. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  320. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  321. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  322. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  323. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  324. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  325. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  326. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  327. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  328. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  329. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  330. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/vit_det → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/xlnet}/__init__.py +0 -0
  331. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  332. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  333. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  334. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  335. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/xlnet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/samplers}/__init__.py +0 -0
  336. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/beam_sampler.py +0 -0
  337. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  338. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  339. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/random_sampler.py +0 -0
  340. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/sampler.py +0 -0
  341. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/serialization.py +0 -0
  342. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  343. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  344. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/samplers → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/tests}/__init__.py +0 -0
  345. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/tests → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/tokenizers}/__init__.py +0 -0
  346. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  347. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  348. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  349. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  350. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  351. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  352. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  353. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/tokenizers → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils}/__init__.py +0 -0
  354. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  355. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  356. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/keras_utils.py +0 -0
  357. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/pipeline_model.py +0 -0
  358. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/python_utils.py +0 -0
  359. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/tensor_utils.py +0 -0
  360. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils/imagenet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils/timm}/__init__.py +0 -0
  361. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  362. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  363. {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils/timm → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils/transformers}/__init__.py +0 -0
  364. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  365. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  366. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  367. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  368. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  369. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  370. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  371. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  372. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  373. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  374. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  375. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  376. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/requires.txt +0 -0
  377. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  378. {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410080341
3
+ Version: 0.16.1.dev202410100339
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -40,6 +40,9 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
40
40
  from keras_hub.src.models.densenet.densenet_image_converter import (
41
41
  DenseNetImageConverter,
42
42
  )
43
+ from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
44
+ MiTImageConverter,
45
+ )
43
46
  from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
44
47
  PaliGemmaImageConverter,
45
48
  )
@@ -180,6 +180,8 @@ from keras_hub.src.models.image_segmenter import ImageSegmenter
180
180
  from keras_hub.src.models.image_segmenter_preprocessor import (
181
181
  ImageSegmenterPreprocessor,
182
182
  )
183
+ from keras_hub.src.models.image_to_image import ImageToImage
184
+ from keras_hub.src.models.inpaint import Inpaint
183
185
  from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
184
186
  from keras_hub.src.models.llama3.llama3_causal_lm import Llama3CausalLM
185
187
  from keras_hub.src.models.llama3.llama3_causal_lm_preprocessor import (
@@ -206,6 +208,9 @@ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
206
208
  from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
207
209
  MiTImageClassifier,
208
210
  )
211
+ from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
212
+ MiTImageClassifierPreprocessor,
213
+ )
209
214
  from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
210
215
  from keras_hub.src.models.mobilenet.mobilenet_image_classifier import (
211
216
  MobileNetImageClassifier,
@@ -270,6 +275,12 @@ from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
270
275
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
271
276
  StableDiffusion3Backbone,
272
277
  )
278
+ from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_image_to_image import (
279
+ StableDiffusion3ImageToImage,
280
+ )
281
+ from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_inpaint import (
282
+ StableDiffusion3Inpaint,
283
+ )
273
284
  from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_text_to_image import (
274
285
  StableDiffusion3TextToImage,
275
286
  )
@@ -145,8 +145,9 @@ class ImageConverter(PreprocessingLayer):
145
145
 
146
146
  @preprocessing_function
147
147
  def call(self, inputs):
148
+ x = inputs
148
149
  if self.image_size is not None:
149
- x = self.resizing(inputs)
150
+ x = self.resizing(x)
150
151
  if self.scale is not None:
151
152
  x = x * self._expand_non_channel_dims(self.scale, x)
152
153
  if self.offset is not None:
@@ -0,0 +1,411 @@
1
+ import itertools
2
+ from functools import partial
3
+
4
+ import keras
5
+ from keras import ops
6
+ from keras import random
7
+
8
+ from keras_hub.src.api_export import keras_hub_export
9
+ from keras_hub.src.models.task import Task
10
+ from keras_hub.src.utils.keras_utils import standardize_data_format
11
+
12
+ try:
13
+ import tensorflow as tf
14
+ except ImportError:
15
+ tf = None
16
+
17
+
18
+ @keras_hub_export("keras_hub.models.ImageToImage")
19
+ class ImageToImage(Task):
20
+ """Base class for image-to-image tasks.
21
+
22
+ `ImageToImage` tasks wrap a `keras_hub.models.Backbone` and
23
+ a `keras_hub.models.Preprocessor` to create a model that can be used for
24
+ generation and generative fine-tuning.
25
+
26
+ `ImageToImage` tasks provide an additional, high-level `generate()` function
27
+ which can be used to generate image by token with a (image, string) in,
28
+ image out signature.
29
+
30
+ All `ImageToImage` tasks include a `from_preset()` constructor which can be
31
+ used to load a pre-trained config and weights.
32
+
33
+ Example:
34
+
35
+ ```python
36
+ # Load a Stable Diffusion 3 backbone with pre-trained weights.
37
+ reference_image = np.ones((1024, 1024, 3), dtype="float32")
38
+ image_to_image = keras_hub.models.ImageToImage.from_preset(
39
+ "stable_diffusion_3_medium",
40
+ )
41
+ image_to_image.generate(
42
+ reference_image,
43
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
+ )
45
+
46
+ # Load a Stable Diffusion 3 backbone at bfloat16 precision.
47
+ image_to_image = keras_hub.models.ImageToImage.from_preset(
48
+ "stable_diffusion_3_medium",
49
+ dtype="bfloat16",
50
+ )
51
+ image_to_image.generate(
52
+ reference_image,
53
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
54
+ )
55
+ ```
56
+ """
57
+
58
+ def __init__(self, *args, **kwargs):
59
+ super().__init__(*args, **kwargs)
60
+ # Default compilation.
61
+ self.compile()
62
+
63
+ @property
64
+ def support_negative_prompts(self):
65
+ """Whether the model supports `negative_prompts` key in `generate()`."""
66
+ return bool(True)
67
+
68
+ @property
69
+ def image_shape(self):
70
+ return tuple(self.backbone.image_shape)
71
+
72
+ @property
73
+ def latent_shape(self):
74
+ return tuple(self.backbone.latent_shape)
75
+
76
+ def compile(
77
+ self,
78
+ optimizer="auto",
79
+ loss="auto",
80
+ *,
81
+ metrics="auto",
82
+ **kwargs,
83
+ ):
84
+ """Configures the `ImageToImage` task for training.
85
+
86
+ The `ImageToImage` task extends the default compilation signature of
87
+ `keras.Model.compile` with defaults for `optimizer`, `loss`, and
88
+ `metrics`. To override these defaults, pass any value
89
+ to these arguments during compilation.
90
+
91
+ Args:
92
+ optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
93
+ instance. Defaults to `"auto"`, which uses the default optimizer
94
+ for the given model and task. See `keras.Model.compile` and
95
+ `keras.optimizers` for more info on possible `optimizer` values.
96
+ loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
97
+ Defaults to `"auto"`, where a
98
+ `keras.losses.MeanSquaredError` loss will be applied. See
99
+ `keras.Model.compile` and `keras.losses` for more info on
100
+ possible `loss` values.
101
+ metrics: `"auto"`, or a list of metrics to be evaluated by
102
+ the model during training and testing. Defaults to `"auto"`,
103
+ where a `keras.metrics.MeanSquaredError` will be applied to
104
+ track the loss of the model during training. See
105
+ `keras.Model.compile` and `keras.metrics` for more info on
106
+ possible `metrics` values.
107
+ **kwargs: See `keras.Model.compile` for a full list of arguments
108
+ supported by the compile method.
109
+ """
110
+ # Ref: https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L410-L414
111
+ if optimizer == "auto":
112
+ optimizer = keras.optimizers.AdamW(
113
+ 1e-4, weight_decay=1e-2, epsilon=1e-8, clipnorm=1.0
114
+ )
115
+ if loss == "auto":
116
+ loss = keras.losses.MeanSquaredError()
117
+ if metrics == "auto":
118
+ metrics = [keras.metrics.MeanSquaredError()]
119
+ super().compile(
120
+ optimizer=optimizer,
121
+ loss=loss,
122
+ metrics=metrics,
123
+ **kwargs,
124
+ )
125
+ self.generate_function = None
126
+
127
+ def generate_step(self, *args, **kwargs):
128
+ """Run generation on batches of input."""
129
+ raise NotImplementedError
130
+
131
+ def make_generate_function(self):
132
+ """Create or return the compiled generation function."""
133
+ if self.generate_function is not None:
134
+ return self.generate_function
135
+
136
+ self.generate_function = self.generate_step
137
+ if keras.config.backend() == "torch":
138
+ import torch
139
+
140
+ def wrapped_function(*args, **kwargs):
141
+ with torch.no_grad():
142
+ return self.generate_step(*args, **kwargs)
143
+
144
+ self.generate_function = wrapped_function
145
+ elif keras.config.backend() == "tensorflow" and not self.run_eagerly:
146
+ self.generate_function = tf.function(
147
+ self.generate_step, jit_compile=self.jit_compile
148
+ )
149
+ elif keras.config.backend() == "jax" and not self.run_eagerly:
150
+ import jax
151
+
152
+ @partial(jax.jit)
153
+ def compiled_function(state, *args, **kwargs):
154
+ (
155
+ trainable_variables,
156
+ non_trainable_variables,
157
+ ) = state
158
+ mapping = itertools.chain(
159
+ zip(self.trainable_variables, trainable_variables),
160
+ zip(self.non_trainable_variables, non_trainable_variables),
161
+ )
162
+
163
+ with keras.StatelessScope(state_mapping=mapping):
164
+ outputs = self.generate_step(*args, **kwargs)
165
+ return outputs
166
+
167
+ def wrapped_function(*args, **kwargs):
168
+ # Create an explicit tuple of all variable state.
169
+ state = (
170
+ # Use the explicit variable.value to preserve the
171
+ # sharding spec of distribution.
172
+ [v.value for v in self.trainable_variables],
173
+ [v.value for v in self.non_trainable_variables],
174
+ )
175
+ outputs = compiled_function(state, *args, **kwargs)
176
+ return outputs
177
+
178
+ self.generate_function = wrapped_function
179
+ return self.generate_function
180
+
181
+ def _normalize_generate_inputs(self, inputs):
182
+ """Normalize user input to the generate function.
183
+
184
+ This function converts all inputs to tensors, adds a batch dimension if
185
+ necessary, and returns a iterable "dataset like" object (either an
186
+ actual `tf.data.Dataset` or a list with a single batch element).
187
+
188
+ The input format must be one of the following:
189
+ - A dict with "images", "prompts" and/or "negative_prompts" keys
190
+ - A tf.data.Dataset with "images", "prompts" and/or "negative_prompts"
191
+ keys
192
+
193
+ The output will be a dict with "images", "prompts" and/or
194
+ "negative_prompts" keys.
195
+ """
196
+ if tf and isinstance(inputs, tf.data.Dataset):
197
+ _inputs = {
198
+ "images": inputs.map(lambda x: x["images"]).as_numpy_iterator(),
199
+ "prompts": inputs.map(
200
+ lambda x: x["prompts"]
201
+ ).as_numpy_iterator(),
202
+ }
203
+ if self.support_negative_prompts:
204
+ _inputs["negative_prompts"] = inputs.map(
205
+ lambda x: x["negative_prompts"]
206
+ ).as_numpy_iterator()
207
+ return _inputs, False
208
+
209
+ if (
210
+ not isinstance(inputs, dict)
211
+ or "images" not in inputs
212
+ or "prompts" not in inputs
213
+ ):
214
+ raise ValueError(
215
+ '`inputs` must be a dict with "images" and "prompts" keys or a'
216
+ f"tf.data.Dataset. Received: inputs={inputs}"
217
+ )
218
+
219
+ def normalize(x):
220
+ if isinstance(x, str):
221
+ return [x], True
222
+ if tf and isinstance(x, tf.Tensor) and x.shape.rank == 0:
223
+ return x[tf.newaxis], True
224
+ return x, False
225
+
226
+ def normalize_images(x):
227
+ data_format = getattr(
228
+ self.backbone, "data_format", standardize_data_format(None)
229
+ )
230
+ input_is_scalar = False
231
+ x = ops.convert_to_tensor(x)
232
+ if len(ops.shape(x)) < 4:
233
+ x = ops.expand_dims(x, axis=0)
234
+ input_is_scalar = True
235
+ x = ops.image.resize(
236
+ x,
237
+ (self.backbone.height, self.backbone.width),
238
+ interpolation="nearest",
239
+ data_format=data_format,
240
+ )
241
+ return x, input_is_scalar
242
+
243
+ def get_dummy_prompts(x):
244
+ dummy_prompts = [""] * len(x)
245
+ if tf and isinstance(x, tf.Tensor):
246
+ return tf.convert_to_tensor(dummy_prompts)
247
+ else:
248
+ return dummy_prompts
249
+
250
+ for key in inputs:
251
+ if key == "images":
252
+ inputs[key], input_is_scalar = normalize_images(inputs[key])
253
+ else:
254
+ inputs[key], input_is_scalar = normalize(inputs[key])
255
+
256
+ if self.support_negative_prompts and "negative_prompts" not in inputs:
257
+ inputs["negative_prompts"] = get_dummy_prompts(inputs["prompts"])
258
+
259
+ return [inputs], input_is_scalar
260
+
261
+ def _normalize_generate_outputs(self, outputs, input_is_scalar):
262
+ """Normalize user output from the generate function.
263
+
264
+ This function converts all output to numpy with a value range of
265
+ `[0, 255]`. If a batch dimension was added to the input, it is removed
266
+ from the output.
267
+ """
268
+
269
+ def normalize(x):
270
+ outputs = ops.concatenate(x, axis=0)
271
+ outputs = ops.clip(ops.divide(ops.add(outputs, 1.0), 2.0), 0.0, 1.0)
272
+ outputs = ops.cast(ops.round(ops.multiply(outputs, 255.0)), "uint8")
273
+ outputs = ops.squeeze(outputs, 0) if input_is_scalar else outputs
274
+ return ops.convert_to_numpy(outputs)
275
+
276
+ if isinstance(outputs[0], dict):
277
+ normalized = {}
278
+ for key in outputs[0]:
279
+ normalized[key] = normalize([x[key] for x in outputs])
280
+ return normalized
281
+ return normalize([x for x in outputs])
282
+
283
+ def generate(
284
+ self,
285
+ inputs,
286
+ num_steps,
287
+ guidance_scale,
288
+ strength,
289
+ seed=None,
290
+ ):
291
+ """Generate image based on the provided `inputs`.
292
+
293
+ Typically, `inputs` is a dict with `"images"` and `"prompts"` keys.
294
+ `"images"` are reference images within a value range of
295
+ `[-1.0, 1.0]`, which will be resized to `self.backbone.height` and
296
+ `self.backbone.width`, then encoded into latent space by the VAE
297
+ encoder. `"prompts"` are strings that will be tokenized and encoded by
298
+ the text encoder.
299
+
300
+ Some models support a `"negative_prompts"` key, which helps steer the
301
+ model away from generating certain styles and elements. To enable this,
302
+ add `"negative_prompts"` to the input dict.
303
+
304
+ If `inputs` are a `tf.data.Dataset`, outputs will be generated
305
+ "batch-by-batch" and concatenated. Otherwise, all inputs will be
306
+ processed as batches.
307
+
308
+ Args:
309
+ inputs: python data, tensor data, or a `tf.data.Dataset`. The format
310
+ must be one of the following:
311
+ - A dict with `"images"`, `"prompts"` and/or
312
+ `"negative_prompts"` keys.
313
+ - A `tf.data.Dataset` with `"images"`, `"prompts"` and/or
314
+ `"negative_prompts"` keys.
315
+ num_steps: int. The number of diffusion steps to take.
316
+ guidance_scale: float. The classifier free guidance scale defined in
317
+ [Classifier-Free Diffusion Guidance](
318
+ https://arxiv.org/abs/2207.12598). A higher scale encourages
319
+ generating images more closely related to the prompts, typically
320
+ at the cost of lower image quality.
321
+ strength: float. Indicates the extent to which the reference
322
+ `images` are transformed. Must be between `0.0` and `1.0`. When
323
+ `strength=1.0`, `images` is essentially ignore and added noise
324
+ is maximum and the denoising process runs for the full number of
325
+ iterations specified in `num_steps`.
326
+ seed: optional int. Used as a random seed.
327
+ """
328
+ num_steps = int(num_steps)
329
+ guidance_scale = float(guidance_scale)
330
+ strength = float(strength)
331
+ if strength < 0.0 or strength > 1.0:
332
+ raise ValueError(
333
+ "`strength` must be between `0.0` and `1.0`. "
334
+ f"Received strength={strength}."
335
+ )
336
+ starting_step = int(num_steps * (1.0 - strength))
337
+ starting_step = ops.convert_to_tensor(starting_step, "int32")
338
+ num_steps = ops.convert_to_tensor(num_steps, "int32")
339
+ guidance_scale = ops.convert_to_tensor(guidance_scale)
340
+
341
+ # Check `inputs` format.
342
+ required_keys = ["images", "prompts"]
343
+ if tf and isinstance(inputs, tf.data.Dataset):
344
+ spec = inputs.element_spec
345
+ if not all(key in spec for key in required_keys):
346
+ raise ValueError(
347
+ "Expected a `tf.data.Dataset` with the following keys:"
348
+ f"{required_keys}. Received: inputs.element_spec={spec}"
349
+ )
350
+ else:
351
+ if not isinstance(inputs, dict):
352
+ raise ValueError(
353
+ "Expected a `dict` or `tf.data.Dataset`. "
354
+ f"Received: inputs={inputs} of type {type(inputs)}."
355
+ )
356
+ if not all(key in inputs for key in required_keys):
357
+ raise ValueError(
358
+ "Expected a `dict` with the following keys:"
359
+ f"{required_keys}. "
360
+ f"Received: inputs.keys={list(inputs.keys())}"
361
+ )
362
+
363
+ # Setup our three main passes.
364
+ # 1. Preprocessing strings to dense integer tensors.
365
+ # 2. Generate outputs via a compiled function on dense tensors.
366
+ # 3. Postprocess dense tensors to a value range of `[0, 255]`.
367
+ generate_function = self.make_generate_function()
368
+
369
+ def preprocess(x):
370
+ if self.preprocessor is not None:
371
+ return self.preprocessor.generate_preprocess(x)
372
+ else:
373
+ return x
374
+
375
+ def generate(images, x):
376
+ token_ids = x[0] if self.support_negative_prompts else x
377
+
378
+ # Initialize noises.
379
+ if isinstance(token_ids, dict):
380
+ arbitrary_key = list(token_ids.keys())[0]
381
+ batch_size = ops.shape(token_ids[arbitrary_key])[0]
382
+ else:
383
+ batch_size = ops.shape(token_ids)[0]
384
+ noise_shape = (batch_size,) + self.latent_shape[1:]
385
+ noises = random.normal(noise_shape, dtype="float32", seed=seed)
386
+
387
+ return generate_function(
388
+ images, noises, x, starting_step, num_steps, guidance_scale
389
+ )
390
+
391
+ # Normalize and preprocess inputs.
392
+ inputs, input_is_scalar = self._normalize_generate_inputs(inputs)
393
+ if self.support_negative_prompts:
394
+ images = [x["images"] for x in inputs]
395
+ token_ids = [preprocess(x["prompts"]) for x in inputs]
396
+ negative_token_ids = [
397
+ preprocess(x["negative_prompts"]) for x in inputs
398
+ ]
399
+ # Tuple format: (images, (token_ids, negative_token_ids)).
400
+ inputs = [
401
+ x for x in zip(images, zip(token_ids, negative_token_ids))
402
+ ]
403
+ else:
404
+ images = [x["images"] for x in inputs]
405
+ token_ids = [preprocess(x["prompts"]) for x in inputs]
406
+ # Tuple format: (images, token_ids).
407
+ inputs = [x for x in zip(images, token_ids)]
408
+
409
+ # Image-to-image.
410
+ outputs = [generate(*x) for x in inputs]
411
+ return self._normalize_generate_outputs(outputs, input_is_scalar)