keras-hub-nightly 0.16.1.dev202410080341__tar.gz → 0.16.1.dev202410100339__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/layers/__init__.py +3 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/models/__init__.py +11 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/image_converter.py +2 -1
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/image_to_image.py +411 -0
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/inpaint.py +513 -0
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/__init__.py +12 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +4 -0
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/mix_transformer_classifier_preprocessor.py +16 -0
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/mix_transformer_image_converter.py +8 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +9 -5
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mix_transformer/mix_transformer_presets.py +151 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/preprocessor.py +4 -4
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/mmdit.py +308 -177
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +87 -55
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py +171 -0
- keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py +194 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +13 -8
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/task.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/text_to_image.py +89 -36
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tests/test_case.py +3 -1
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/tokenizer.py +7 -7
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/preset_utils.py +7 -7
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/timm/preset_loader.py +1 -3
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/SOURCES.txt +7 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/setup.py +1 -1
- keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/README.md +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_segmenter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/mix_transformer → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/mobilenet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/mobilenet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/retinanet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vae/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vae/vae_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vae/vae_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/retinanet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/vgg}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/vgg → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/vit_det}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/vit_det → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/models/xlnet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/models/xlnet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/samplers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/samplers → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/tests}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/tests → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/tokenizers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/tokenizers → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils/imagenet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils/imagenet → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils/timm}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341/keras_hub/src/utils/timm → keras_hub_nightly-0.16.1.dev202410100339/keras_hub/src/utils/transformers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/setup.cfg +0 -0
{keras_hub_nightly-0.16.1.dev202410080341 → keras_hub_nightly-0.16.1.dev202410100339}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202410100339
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -40,6 +40,9 @@ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
|
|
40
40
|
from keras_hub.src.models.densenet.densenet_image_converter import (
|
41
41
|
DenseNetImageConverter,
|
42
42
|
)
|
43
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_image_converter import (
|
44
|
+
MiTImageConverter,
|
45
|
+
)
|
43
46
|
from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
|
44
47
|
PaliGemmaImageConverter,
|
45
48
|
)
|
@@ -180,6 +180,8 @@ from keras_hub.src.models.image_segmenter import ImageSegmenter
|
|
180
180
|
from keras_hub.src.models.image_segmenter_preprocessor import (
|
181
181
|
ImageSegmenterPreprocessor,
|
182
182
|
)
|
183
|
+
from keras_hub.src.models.image_to_image import ImageToImage
|
184
|
+
from keras_hub.src.models.inpaint import Inpaint
|
183
185
|
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
|
184
186
|
from keras_hub.src.models.llama3.llama3_causal_lm import Llama3CausalLM
|
185
187
|
from keras_hub.src.models.llama3.llama3_causal_lm_preprocessor import (
|
@@ -206,6 +208,9 @@ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
|
|
206
208
|
from keras_hub.src.models.mix_transformer.mix_transformer_classifier import (
|
207
209
|
MiTImageClassifier,
|
208
210
|
)
|
211
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_classifier_preprocessor import (
|
212
|
+
MiTImageClassifierPreprocessor,
|
213
|
+
)
|
209
214
|
from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
|
210
215
|
from keras_hub.src.models.mobilenet.mobilenet_image_classifier import (
|
211
216
|
MobileNetImageClassifier,
|
@@ -270,6 +275,12 @@ from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
|
|
270
275
|
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_backbone import (
|
271
276
|
StableDiffusion3Backbone,
|
272
277
|
)
|
278
|
+
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_image_to_image import (
|
279
|
+
StableDiffusion3ImageToImage,
|
280
|
+
)
|
281
|
+
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_inpaint import (
|
282
|
+
StableDiffusion3Inpaint,
|
283
|
+
)
|
273
284
|
from keras_hub.src.models.stable_diffusion_3.stable_diffusion_3_text_to_image import (
|
274
285
|
StableDiffusion3TextToImage,
|
275
286
|
)
|
@@ -145,8 +145,9 @@ class ImageConverter(PreprocessingLayer):
|
|
145
145
|
|
146
146
|
@preprocessing_function
|
147
147
|
def call(self, inputs):
|
148
|
+
x = inputs
|
148
149
|
if self.image_size is not None:
|
149
|
-
x = self.resizing(
|
150
|
+
x = self.resizing(x)
|
150
151
|
if self.scale is not None:
|
151
152
|
x = x * self._expand_non_channel_dims(self.scale, x)
|
152
153
|
if self.offset is not None:
|
@@ -0,0 +1,411 @@
|
|
1
|
+
import itertools
|
2
|
+
from functools import partial
|
3
|
+
|
4
|
+
import keras
|
5
|
+
from keras import ops
|
6
|
+
from keras import random
|
7
|
+
|
8
|
+
from keras_hub.src.api_export import keras_hub_export
|
9
|
+
from keras_hub.src.models.task import Task
|
10
|
+
from keras_hub.src.utils.keras_utils import standardize_data_format
|
11
|
+
|
12
|
+
try:
|
13
|
+
import tensorflow as tf
|
14
|
+
except ImportError:
|
15
|
+
tf = None
|
16
|
+
|
17
|
+
|
18
|
+
@keras_hub_export("keras_hub.models.ImageToImage")
|
19
|
+
class ImageToImage(Task):
|
20
|
+
"""Base class for image-to-image tasks.
|
21
|
+
|
22
|
+
`ImageToImage` tasks wrap a `keras_hub.models.Backbone` and
|
23
|
+
a `keras_hub.models.Preprocessor` to create a model that can be used for
|
24
|
+
generation and generative fine-tuning.
|
25
|
+
|
26
|
+
`ImageToImage` tasks provide an additional, high-level `generate()` function
|
27
|
+
which can be used to generate image by token with a (image, string) in,
|
28
|
+
image out signature.
|
29
|
+
|
30
|
+
All `ImageToImage` tasks include a `from_preset()` constructor which can be
|
31
|
+
used to load a pre-trained config and weights.
|
32
|
+
|
33
|
+
Example:
|
34
|
+
|
35
|
+
```python
|
36
|
+
# Load a Stable Diffusion 3 backbone with pre-trained weights.
|
37
|
+
reference_image = np.ones((1024, 1024, 3), dtype="float32")
|
38
|
+
image_to_image = keras_hub.models.ImageToImage.from_preset(
|
39
|
+
"stable_diffusion_3_medium",
|
40
|
+
)
|
41
|
+
image_to_image.generate(
|
42
|
+
reference_image,
|
43
|
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
44
|
+
)
|
45
|
+
|
46
|
+
# Load a Stable Diffusion 3 backbone at bfloat16 precision.
|
47
|
+
image_to_image = keras_hub.models.ImageToImage.from_preset(
|
48
|
+
"stable_diffusion_3_medium",
|
49
|
+
dtype="bfloat16",
|
50
|
+
)
|
51
|
+
image_to_image.generate(
|
52
|
+
reference_image,
|
53
|
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
54
|
+
)
|
55
|
+
```
|
56
|
+
"""
|
57
|
+
|
58
|
+
def __init__(self, *args, **kwargs):
|
59
|
+
super().__init__(*args, **kwargs)
|
60
|
+
# Default compilation.
|
61
|
+
self.compile()
|
62
|
+
|
63
|
+
@property
|
64
|
+
def support_negative_prompts(self):
|
65
|
+
"""Whether the model supports `negative_prompts` key in `generate()`."""
|
66
|
+
return bool(True)
|
67
|
+
|
68
|
+
@property
|
69
|
+
def image_shape(self):
|
70
|
+
return tuple(self.backbone.image_shape)
|
71
|
+
|
72
|
+
@property
|
73
|
+
def latent_shape(self):
|
74
|
+
return tuple(self.backbone.latent_shape)
|
75
|
+
|
76
|
+
def compile(
|
77
|
+
self,
|
78
|
+
optimizer="auto",
|
79
|
+
loss="auto",
|
80
|
+
*,
|
81
|
+
metrics="auto",
|
82
|
+
**kwargs,
|
83
|
+
):
|
84
|
+
"""Configures the `ImageToImage` task for training.
|
85
|
+
|
86
|
+
The `ImageToImage` task extends the default compilation signature of
|
87
|
+
`keras.Model.compile` with defaults for `optimizer`, `loss`, and
|
88
|
+
`metrics`. To override these defaults, pass any value
|
89
|
+
to these arguments during compilation.
|
90
|
+
|
91
|
+
Args:
|
92
|
+
optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
|
93
|
+
instance. Defaults to `"auto"`, which uses the default optimizer
|
94
|
+
for the given model and task. See `keras.Model.compile` and
|
95
|
+
`keras.optimizers` for more info on possible `optimizer` values.
|
96
|
+
loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
|
97
|
+
Defaults to `"auto"`, where a
|
98
|
+
`keras.losses.MeanSquaredError` loss will be applied. See
|
99
|
+
`keras.Model.compile` and `keras.losses` for more info on
|
100
|
+
possible `loss` values.
|
101
|
+
metrics: `"auto"`, or a list of metrics to be evaluated by
|
102
|
+
the model during training and testing. Defaults to `"auto"`,
|
103
|
+
where a `keras.metrics.MeanSquaredError` will be applied to
|
104
|
+
track the loss of the model during training. See
|
105
|
+
`keras.Model.compile` and `keras.metrics` for more info on
|
106
|
+
possible `metrics` values.
|
107
|
+
**kwargs: See `keras.Model.compile` for a full list of arguments
|
108
|
+
supported by the compile method.
|
109
|
+
"""
|
110
|
+
# Ref: https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L410-L414
|
111
|
+
if optimizer == "auto":
|
112
|
+
optimizer = keras.optimizers.AdamW(
|
113
|
+
1e-4, weight_decay=1e-2, epsilon=1e-8, clipnorm=1.0
|
114
|
+
)
|
115
|
+
if loss == "auto":
|
116
|
+
loss = keras.losses.MeanSquaredError()
|
117
|
+
if metrics == "auto":
|
118
|
+
metrics = [keras.metrics.MeanSquaredError()]
|
119
|
+
super().compile(
|
120
|
+
optimizer=optimizer,
|
121
|
+
loss=loss,
|
122
|
+
metrics=metrics,
|
123
|
+
**kwargs,
|
124
|
+
)
|
125
|
+
self.generate_function = None
|
126
|
+
|
127
|
+
def generate_step(self, *args, **kwargs):
|
128
|
+
"""Run generation on batches of input."""
|
129
|
+
raise NotImplementedError
|
130
|
+
|
131
|
+
def make_generate_function(self):
|
132
|
+
"""Create or return the compiled generation function."""
|
133
|
+
if self.generate_function is not None:
|
134
|
+
return self.generate_function
|
135
|
+
|
136
|
+
self.generate_function = self.generate_step
|
137
|
+
if keras.config.backend() == "torch":
|
138
|
+
import torch
|
139
|
+
|
140
|
+
def wrapped_function(*args, **kwargs):
|
141
|
+
with torch.no_grad():
|
142
|
+
return self.generate_step(*args, **kwargs)
|
143
|
+
|
144
|
+
self.generate_function = wrapped_function
|
145
|
+
elif keras.config.backend() == "tensorflow" and not self.run_eagerly:
|
146
|
+
self.generate_function = tf.function(
|
147
|
+
self.generate_step, jit_compile=self.jit_compile
|
148
|
+
)
|
149
|
+
elif keras.config.backend() == "jax" and not self.run_eagerly:
|
150
|
+
import jax
|
151
|
+
|
152
|
+
@partial(jax.jit)
|
153
|
+
def compiled_function(state, *args, **kwargs):
|
154
|
+
(
|
155
|
+
trainable_variables,
|
156
|
+
non_trainable_variables,
|
157
|
+
) = state
|
158
|
+
mapping = itertools.chain(
|
159
|
+
zip(self.trainable_variables, trainable_variables),
|
160
|
+
zip(self.non_trainable_variables, non_trainable_variables),
|
161
|
+
)
|
162
|
+
|
163
|
+
with keras.StatelessScope(state_mapping=mapping):
|
164
|
+
outputs = self.generate_step(*args, **kwargs)
|
165
|
+
return outputs
|
166
|
+
|
167
|
+
def wrapped_function(*args, **kwargs):
|
168
|
+
# Create an explicit tuple of all variable state.
|
169
|
+
state = (
|
170
|
+
# Use the explicit variable.value to preserve the
|
171
|
+
# sharding spec of distribution.
|
172
|
+
[v.value for v in self.trainable_variables],
|
173
|
+
[v.value for v in self.non_trainable_variables],
|
174
|
+
)
|
175
|
+
outputs = compiled_function(state, *args, **kwargs)
|
176
|
+
return outputs
|
177
|
+
|
178
|
+
self.generate_function = wrapped_function
|
179
|
+
return self.generate_function
|
180
|
+
|
181
|
+
def _normalize_generate_inputs(self, inputs):
|
182
|
+
"""Normalize user input to the generate function.
|
183
|
+
|
184
|
+
This function converts all inputs to tensors, adds a batch dimension if
|
185
|
+
necessary, and returns a iterable "dataset like" object (either an
|
186
|
+
actual `tf.data.Dataset` or a list with a single batch element).
|
187
|
+
|
188
|
+
The input format must be one of the following:
|
189
|
+
- A dict with "images", "prompts" and/or "negative_prompts" keys
|
190
|
+
- A tf.data.Dataset with "images", "prompts" and/or "negative_prompts"
|
191
|
+
keys
|
192
|
+
|
193
|
+
The output will be a dict with "images", "prompts" and/or
|
194
|
+
"negative_prompts" keys.
|
195
|
+
"""
|
196
|
+
if tf and isinstance(inputs, tf.data.Dataset):
|
197
|
+
_inputs = {
|
198
|
+
"images": inputs.map(lambda x: x["images"]).as_numpy_iterator(),
|
199
|
+
"prompts": inputs.map(
|
200
|
+
lambda x: x["prompts"]
|
201
|
+
).as_numpy_iterator(),
|
202
|
+
}
|
203
|
+
if self.support_negative_prompts:
|
204
|
+
_inputs["negative_prompts"] = inputs.map(
|
205
|
+
lambda x: x["negative_prompts"]
|
206
|
+
).as_numpy_iterator()
|
207
|
+
return _inputs, False
|
208
|
+
|
209
|
+
if (
|
210
|
+
not isinstance(inputs, dict)
|
211
|
+
or "images" not in inputs
|
212
|
+
or "prompts" not in inputs
|
213
|
+
):
|
214
|
+
raise ValueError(
|
215
|
+
'`inputs` must be a dict with "images" and "prompts" keys or a'
|
216
|
+
f"tf.data.Dataset. Received: inputs={inputs}"
|
217
|
+
)
|
218
|
+
|
219
|
+
def normalize(x):
|
220
|
+
if isinstance(x, str):
|
221
|
+
return [x], True
|
222
|
+
if tf and isinstance(x, tf.Tensor) and x.shape.rank == 0:
|
223
|
+
return x[tf.newaxis], True
|
224
|
+
return x, False
|
225
|
+
|
226
|
+
def normalize_images(x):
|
227
|
+
data_format = getattr(
|
228
|
+
self.backbone, "data_format", standardize_data_format(None)
|
229
|
+
)
|
230
|
+
input_is_scalar = False
|
231
|
+
x = ops.convert_to_tensor(x)
|
232
|
+
if len(ops.shape(x)) < 4:
|
233
|
+
x = ops.expand_dims(x, axis=0)
|
234
|
+
input_is_scalar = True
|
235
|
+
x = ops.image.resize(
|
236
|
+
x,
|
237
|
+
(self.backbone.height, self.backbone.width),
|
238
|
+
interpolation="nearest",
|
239
|
+
data_format=data_format,
|
240
|
+
)
|
241
|
+
return x, input_is_scalar
|
242
|
+
|
243
|
+
def get_dummy_prompts(x):
|
244
|
+
dummy_prompts = [""] * len(x)
|
245
|
+
if tf and isinstance(x, tf.Tensor):
|
246
|
+
return tf.convert_to_tensor(dummy_prompts)
|
247
|
+
else:
|
248
|
+
return dummy_prompts
|
249
|
+
|
250
|
+
for key in inputs:
|
251
|
+
if key == "images":
|
252
|
+
inputs[key], input_is_scalar = normalize_images(inputs[key])
|
253
|
+
else:
|
254
|
+
inputs[key], input_is_scalar = normalize(inputs[key])
|
255
|
+
|
256
|
+
if self.support_negative_prompts and "negative_prompts" not in inputs:
|
257
|
+
inputs["negative_prompts"] = get_dummy_prompts(inputs["prompts"])
|
258
|
+
|
259
|
+
return [inputs], input_is_scalar
|
260
|
+
|
261
|
+
def _normalize_generate_outputs(self, outputs, input_is_scalar):
|
262
|
+
"""Normalize user output from the generate function.
|
263
|
+
|
264
|
+
This function converts all output to numpy with a value range of
|
265
|
+
`[0, 255]`. If a batch dimension was added to the input, it is removed
|
266
|
+
from the output.
|
267
|
+
"""
|
268
|
+
|
269
|
+
def normalize(x):
|
270
|
+
outputs = ops.concatenate(x, axis=0)
|
271
|
+
outputs = ops.clip(ops.divide(ops.add(outputs, 1.0), 2.0), 0.0, 1.0)
|
272
|
+
outputs = ops.cast(ops.round(ops.multiply(outputs, 255.0)), "uint8")
|
273
|
+
outputs = ops.squeeze(outputs, 0) if input_is_scalar else outputs
|
274
|
+
return ops.convert_to_numpy(outputs)
|
275
|
+
|
276
|
+
if isinstance(outputs[0], dict):
|
277
|
+
normalized = {}
|
278
|
+
for key in outputs[0]:
|
279
|
+
normalized[key] = normalize([x[key] for x in outputs])
|
280
|
+
return normalized
|
281
|
+
return normalize([x for x in outputs])
|
282
|
+
|
283
|
+
def generate(
|
284
|
+
self,
|
285
|
+
inputs,
|
286
|
+
num_steps,
|
287
|
+
guidance_scale,
|
288
|
+
strength,
|
289
|
+
seed=None,
|
290
|
+
):
|
291
|
+
"""Generate image based on the provided `inputs`.
|
292
|
+
|
293
|
+
Typically, `inputs` is a dict with `"images"` and `"prompts"` keys.
|
294
|
+
`"images"` are reference images within a value range of
|
295
|
+
`[-1.0, 1.0]`, which will be resized to `self.backbone.height` and
|
296
|
+
`self.backbone.width`, then encoded into latent space by the VAE
|
297
|
+
encoder. `"prompts"` are strings that will be tokenized and encoded by
|
298
|
+
the text encoder.
|
299
|
+
|
300
|
+
Some models support a `"negative_prompts"` key, which helps steer the
|
301
|
+
model away from generating certain styles and elements. To enable this,
|
302
|
+
add `"negative_prompts"` to the input dict.
|
303
|
+
|
304
|
+
If `inputs` are a `tf.data.Dataset`, outputs will be generated
|
305
|
+
"batch-by-batch" and concatenated. Otherwise, all inputs will be
|
306
|
+
processed as batches.
|
307
|
+
|
308
|
+
Args:
|
309
|
+
inputs: python data, tensor data, or a `tf.data.Dataset`. The format
|
310
|
+
must be one of the following:
|
311
|
+
- A dict with `"images"`, `"prompts"` and/or
|
312
|
+
`"negative_prompts"` keys.
|
313
|
+
- A `tf.data.Dataset` with `"images"`, `"prompts"` and/or
|
314
|
+
`"negative_prompts"` keys.
|
315
|
+
num_steps: int. The number of diffusion steps to take.
|
316
|
+
guidance_scale: float. The classifier free guidance scale defined in
|
317
|
+
[Classifier-Free Diffusion Guidance](
|
318
|
+
https://arxiv.org/abs/2207.12598). A higher scale encourages
|
319
|
+
generating images more closely related to the prompts, typically
|
320
|
+
at the cost of lower image quality.
|
321
|
+
strength: float. Indicates the extent to which the reference
|
322
|
+
`images` are transformed. Must be between `0.0` and `1.0`. When
|
323
|
+
`strength=1.0`, `images` is essentially ignore and added noise
|
324
|
+
is maximum and the denoising process runs for the full number of
|
325
|
+
iterations specified in `num_steps`.
|
326
|
+
seed: optional int. Used as a random seed.
|
327
|
+
"""
|
328
|
+
num_steps = int(num_steps)
|
329
|
+
guidance_scale = float(guidance_scale)
|
330
|
+
strength = float(strength)
|
331
|
+
if strength < 0.0 or strength > 1.0:
|
332
|
+
raise ValueError(
|
333
|
+
"`strength` must be between `0.0` and `1.0`. "
|
334
|
+
f"Received strength={strength}."
|
335
|
+
)
|
336
|
+
starting_step = int(num_steps * (1.0 - strength))
|
337
|
+
starting_step = ops.convert_to_tensor(starting_step, "int32")
|
338
|
+
num_steps = ops.convert_to_tensor(num_steps, "int32")
|
339
|
+
guidance_scale = ops.convert_to_tensor(guidance_scale)
|
340
|
+
|
341
|
+
# Check `inputs` format.
|
342
|
+
required_keys = ["images", "prompts"]
|
343
|
+
if tf and isinstance(inputs, tf.data.Dataset):
|
344
|
+
spec = inputs.element_spec
|
345
|
+
if not all(key in spec for key in required_keys):
|
346
|
+
raise ValueError(
|
347
|
+
"Expected a `tf.data.Dataset` with the following keys:"
|
348
|
+
f"{required_keys}. Received: inputs.element_spec={spec}"
|
349
|
+
)
|
350
|
+
else:
|
351
|
+
if not isinstance(inputs, dict):
|
352
|
+
raise ValueError(
|
353
|
+
"Expected a `dict` or `tf.data.Dataset`. "
|
354
|
+
f"Received: inputs={inputs} of type {type(inputs)}."
|
355
|
+
)
|
356
|
+
if not all(key in inputs for key in required_keys):
|
357
|
+
raise ValueError(
|
358
|
+
"Expected a `dict` with the following keys:"
|
359
|
+
f"{required_keys}. "
|
360
|
+
f"Received: inputs.keys={list(inputs.keys())}"
|
361
|
+
)
|
362
|
+
|
363
|
+
# Setup our three main passes.
|
364
|
+
# 1. Preprocessing strings to dense integer tensors.
|
365
|
+
# 2. Generate outputs via a compiled function on dense tensors.
|
366
|
+
# 3. Postprocess dense tensors to a value range of `[0, 255]`.
|
367
|
+
generate_function = self.make_generate_function()
|
368
|
+
|
369
|
+
def preprocess(x):
|
370
|
+
if self.preprocessor is not None:
|
371
|
+
return self.preprocessor.generate_preprocess(x)
|
372
|
+
else:
|
373
|
+
return x
|
374
|
+
|
375
|
+
def generate(images, x):
|
376
|
+
token_ids = x[0] if self.support_negative_prompts else x
|
377
|
+
|
378
|
+
# Initialize noises.
|
379
|
+
if isinstance(token_ids, dict):
|
380
|
+
arbitrary_key = list(token_ids.keys())[0]
|
381
|
+
batch_size = ops.shape(token_ids[arbitrary_key])[0]
|
382
|
+
else:
|
383
|
+
batch_size = ops.shape(token_ids)[0]
|
384
|
+
noise_shape = (batch_size,) + self.latent_shape[1:]
|
385
|
+
noises = random.normal(noise_shape, dtype="float32", seed=seed)
|
386
|
+
|
387
|
+
return generate_function(
|
388
|
+
images, noises, x, starting_step, num_steps, guidance_scale
|
389
|
+
)
|
390
|
+
|
391
|
+
# Normalize and preprocess inputs.
|
392
|
+
inputs, input_is_scalar = self._normalize_generate_inputs(inputs)
|
393
|
+
if self.support_negative_prompts:
|
394
|
+
images = [x["images"] for x in inputs]
|
395
|
+
token_ids = [preprocess(x["prompts"]) for x in inputs]
|
396
|
+
negative_token_ids = [
|
397
|
+
preprocess(x["negative_prompts"]) for x in inputs
|
398
|
+
]
|
399
|
+
# Tuple format: (images, (token_ids, negative_token_ids)).
|
400
|
+
inputs = [
|
401
|
+
x for x in zip(images, zip(token_ids, negative_token_ids))
|
402
|
+
]
|
403
|
+
else:
|
404
|
+
images = [x["images"] for x in inputs]
|
405
|
+
token_ids = [preprocess(x["prompts"]) for x in inputs]
|
406
|
+
# Tuple format: (images, token_ids).
|
407
|
+
inputs = [x for x in zip(images, token_ids)]
|
408
|
+
|
409
|
+
# Image-to-image.
|
410
|
+
outputs = [generate(*x) for x in inputs]
|
411
|
+
return self._normalize_generate_outputs(outputs, input_is_scalar)
|