keras-hub-nightly 0.16.1.dev202410030339__tar.gz → 0.16.1.dev202410040340__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (371) hide show
  1. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/layers/__init__.py +3 -0
  3. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/models/__init__.py +9 -0
  4. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/deeplab_v3/__init__.py +7 -0
  5. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py +196 -0
  6. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/deeplab_v3/deeplab_v3_image_converter.py +10 -0
  7. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/deeplab_v3/deeplab_v3_image_segmeter_preprocessor.py +16 -0
  8. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/deeplab_v3/deeplab_v3_layers.py +215 -0
  9. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/deeplab_v3/deeplab_v3_presets.py +4 -0
  10. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/deeplab_v3/deeplab_v3_segmenter.py +109 -0
  11. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/image_segmenter_preprocessor.py +29 -4
  12. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +8 -1
  13. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +57 -93
  14. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
  15. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +5 -3
  16. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/task.py +20 -15
  17. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/vae/__init__.py +1 -0
  18. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/vae/vae_backbone.py +172 -0
  19. keras_hub_nightly-0.16.1.dev202410040340/keras_hub/src/models/vae/vae_layers.py +740 -0
  20. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/version_utils.py +1 -1
  21. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  22. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub_nightly.egg-info/SOURCES.txt +10 -1
  23. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/setup.py +1 -1
  24. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -320
  25. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/README.md +0 -0
  26. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/__init__.py +0 -0
  27. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/__init__.py +0 -0
  28. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/bounding_box/__init__.py +0 -0
  29. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/metrics/__init__.py +0 -0
  30. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/samplers/__init__.py +0 -0
  31. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/tokenizers/__init__.py +0 -0
  32. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/api/utils/__init__.py +0 -0
  33. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/__init__.py +0 -0
  34. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/api_export.py +0 -0
  35. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/__init__.py +0 -0
  36. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/converters.py +0 -0
  37. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/formats.py +0 -0
  38. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/iou.py +0 -0
  39. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/to_dense.py +0 -0
  40. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  41. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/utils.py +0 -0
  42. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/bounding_box/validate_format.py +0 -0
  43. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/__init__.py +0 -0
  44. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/__init__.py +0 -0
  45. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  46. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  47. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  48. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  49. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  50. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  51. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  52. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  53. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  54. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  55. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  56. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  57. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  58. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  59. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  60. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  61. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  62. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  63. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  64. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  65. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  66. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/metrics/__init__.py +0 -0
  67. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/metrics/bleu.py +0 -0
  68. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/metrics/edit_distance.py +0 -0
  69. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/metrics/perplexity.py +0 -0
  70. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/metrics/rouge_base.py +0 -0
  71. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/metrics/rouge_l.py +0 -0
  72. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/metrics/rouge_n.py +0 -0
  73. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/__init__.py +0 -0
  74. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/__init__.py +0 -0
  75. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  76. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  77. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  78. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/albert_presets.py +0 -0
  79. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  80. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  81. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  82. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/backbone.py +0 -0
  83. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bart/__init__.py +0 -0
  84. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  85. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bart/bart_presets.py +0 -0
  86. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  87. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  88. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  89. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/__init__.py +0 -0
  90. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  91. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  92. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  93. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/bert_presets.py +0 -0
  94. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  95. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  96. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  97. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/__init__.py +0 -0
  98. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  99. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  100. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  101. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  102. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  103. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  104. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  105. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/causal_lm.py +0 -0
  106. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  107. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/clip/__init__.py +0 -0
  108. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  109. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  110. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  111. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  112. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  113. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  114. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  115. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  116. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  117. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  118. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  119. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  120. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  121. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  122. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  123. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  124. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  125. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  126. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/densenet/__init__.py +0 -0
  127. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  128. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  129. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  130. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/densenet/densenet_image_converter.py +0 -0
  131. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  132. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  133. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  134. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  135. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  136. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  137. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  138. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  139. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  140. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  141. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  142. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  143. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  144. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/electra/__init__.py +0 -0
  145. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  146. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/electra/electra_presets.py +0 -0
  147. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  148. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/__init__.py +0 -0
  149. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  150. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  151. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  152. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  153. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  154. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  155. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  156. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/__init__.py +0 -0
  157. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  158. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  159. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  160. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  161. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  162. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  163. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  164. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  165. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/__init__.py +0 -0
  166. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  167. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  168. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  169. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  170. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  171. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  172. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  173. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  174. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt2/__init__.py +0 -0
  175. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  176. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  177. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  178. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  179. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  180. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  181. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  182. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  183. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  184. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  185. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  186. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  187. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  188. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/image_classifier.py +0 -0
  189. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  190. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/image_segmenter.py +0 -0
  191. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/__init__.py +0 -0
  192. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_attention.py +0 -0
  193. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  194. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  195. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  196. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  197. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  198. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_presets.py +0 -0
  199. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  200. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama3/__init__.py +0 -0
  201. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  202. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  203. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  204. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  205. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  206. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/masked_lm.py +0 -0
  207. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  208. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/__init__.py +0 -0
  209. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  210. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  211. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  212. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  213. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  214. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  215. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  216. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  217. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
  218. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
  219. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -0
  220. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
  221. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  222. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  223. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  224. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/opt/__init__.py +0 -0
  225. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  226. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  227. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  228. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/opt/opt_presets.py +0 -0
  229. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  230. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  231. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  232. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  233. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  234. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  235. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  236. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  237. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  238. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  239. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/__init__.py +0 -0
  240. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  241. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  242. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  243. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  244. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  245. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  246. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  247. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  248. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  249. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/preprocessor.py +0 -0
  250. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/resnet/__init__.py +0 -0
  251. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  252. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  253. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  254. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  255. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  256. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/retinanet/__init__.py +0 -0
  257. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  258. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  259. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  260. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  261. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  262. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/__init__.py +0 -0
  263. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  264. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  265. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  266. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  267. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  268. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  269. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  270. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/__init__.py +0 -0
  271. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  272. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_image_converter.py +0 -0
  273. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  274. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +0 -0
  275. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_layers.py +0 -0
  276. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  277. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_presets.py +0 -0
  278. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  279. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  280. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  281. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  282. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  283. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  284. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  285. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  286. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/__init__.py +0 -0
  287. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  288. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  289. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  290. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  291. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/t5_presets.py +0 -0
  292. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  293. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  294. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/text_classifier.py +0 -0
  295. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  296. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/text_to_image.py +0 -0
  297. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/vgg/__init__.py +0 -0
  298. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  299. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  300. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/vit_det/__init__.py +0 -0
  301. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  302. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  303. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/__init__.py +0 -0
  304. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  305. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  306. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  307. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  308. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  309. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  310. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  311. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  312. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  313. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  314. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  315. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  316. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  317. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  319. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlnet/__init__.py +0 -0
  320. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  321. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  322. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  323. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  324. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/__init__.py +0 -0
  325. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/beam_sampler.py +0 -0
  326. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  327. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  328. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/random_sampler.py +0 -0
  329. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/sampler.py +0 -0
  330. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/serialization.py +0 -0
  331. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  332. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  333. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tests/__init__.py +0 -0
  334. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tests/test_case.py +0 -0
  335. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/__init__.py +0 -0
  336. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  337. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  338. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  339. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  340. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  341. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  342. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  343. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  344. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/__init__.py +0 -0
  345. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  346. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  347. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/keras_utils.py +0 -0
  348. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/pipeline_model.py +0 -0
  349. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/preset_utils.py +0 -0
  350. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/python_utils.py +0 -0
  351. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/tensor_utils.py +0 -0
  352. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/timm/__init__.py +0 -0
  353. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  354. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  355. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  356. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/__init__.py +0 -0
  357. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  358. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  359. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  360. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  361. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  362. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  363. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  364. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  365. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  366. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  367. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  368. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  369. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub_nightly.egg-info/requires.txt +0 -0
  370. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  371. {keras_hub_nightly-0.16.1.dev202410030339 → keras_hub_nightly-0.16.1.dev202410040340}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410030339
3
+ Version: 0.16.1.dev202410040340
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -34,6 +34,9 @@ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
34
34
  from keras_hub.src.layers.preprocessing.random_deletion import RandomDeletion
35
35
  from keras_hub.src.layers.preprocessing.random_swap import RandomSwap
36
36
  from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
37
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
38
+ DeepLabV3ImageConverter,
39
+ )
37
40
  from keras_hub.src.models.densenet.densenet_image_converter import (
38
41
  DenseNetImageConverter,
39
42
  )
@@ -85,6 +85,15 @@ from keras_hub.src.models.deberta_v3.deberta_v3_text_classifier_preprocessor imp
85
85
  from keras_hub.src.models.deberta_v3.deberta_v3_tokenizer import (
86
86
  DebertaV3Tokenizer,
87
87
  )
88
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
89
+ DeepLabV3Backbone,
90
+ )
91
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_segmeter_preprocessor import (
92
+ DeepLabV3ImageSegmenterPreprocessor,
93
+ )
94
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_segmenter import (
95
+ DeepLabV3ImageSegmenter,
96
+ )
88
97
  from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
89
98
  from keras_hub.src.models.densenet.densenet_image_classifier import (
90
99
  DenseNetImageClassifier,
@@ -0,0 +1,7 @@
1
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
2
+ DeepLabV3Backbone,
3
+ )
4
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_presets import backbone_presets
5
+ from keras_hub.src.utils.preset_utils import register_presets
6
+
7
+ register_presets(backbone_presets, DeepLabV3Backbone)
@@ -0,0 +1,196 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.backbone import Backbone
5
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_layers import (
6
+ SpatialPyramidPooling,
7
+ )
8
+
9
+
10
+ @keras_hub_export("keras_hub.models.DeepLabV3Backbone")
11
+ class DeepLabV3Backbone(Backbone):
12
+ """DeepLabV3 & DeepLabV3Plus architecture for semantic segmentation.
13
+
14
+ This class implements a DeepLabV3 & DeepLabV3Plus architecture as described
15
+ in [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](
16
+ https://arxiv.org/abs/1802.02611)(ECCV 2018)
17
+ and [Rethinking Atrous Convolution for Semantic Image Segmentation](
18
+ https://arxiv.org/abs/1706.05587)(CVPR 2017)
19
+
20
+ Args:
21
+ image_encoder: `keras.Model`. An instance that is used as a feature
22
+ extractor for the Encoder. Should either be a
23
+ `keras_hub.models.Backbone` or a `keras.Model` that implements the
24
+ `pyramid_outputs` property with keys "P2", "P3" etc as values.
25
+ A somewhat sensible backbone to use in many cases is
26
+ the `keras_hub.models.ResNetBackbone.from_preset("resnet_v2_50")`.
27
+ projection_filters: int. Number of filters in the convolution layer
28
+ projecting low-level features from the `image_encoder`.
29
+ spatial_pyramid_pooling_key: str. A layer level to extract and perform
30
+ `spatial_pyramid_pooling`, one of the key from the `image_encoder`
31
+ `pyramid_outputs` property such as "P4", "P5" etc.
32
+ upsampling_size: int or tuple of 2 integers. The upsampling factors for
33
+ rows and columns of `spatial_pyramid_pooling` layer.
34
+ If `low_level_feature_key` is given then `spatial_pyramid_pooling`s
35
+ layer resolution should match with the `low_level_feature`s layer
36
+ resolution to concatenate both the layers for combined encoder
37
+ outputs.
38
+ dilation_rates: list. A `list` of integers for parallel dilated conv applied to
39
+ `SpatialPyramidPooling`. Usually a
40
+ sample choice of rates are `[6, 12, 18]`.
41
+ low_level_feature_key: str optional. A layer level to extract the feature
42
+ from one of the key from the `image_encoder`s `pyramid_outputs`
43
+ property such as "P2", "P3" etc which will be the Decoder block.
44
+ Required only when the DeepLabV3Plus architecture needs to be applied.
45
+ image_shape: tuple. The input shape without the batch size.
46
+ Defaults to `(None, None, 3)`.
47
+
48
+ Example:
49
+ ```python
50
+ # Load a trained backbone to extract features from it's `pyramid_outputs`.
51
+ image_encoder = keras_hub.models.ResNetBackbone.from_preset("resnet_50_imagenet")
52
+
53
+ model = keras_hub.models.DeepLabV3Backbone(
54
+ image_encoder=image_encoder,
55
+ projection_filters=48,
56
+ low_level_feature_key="P2",
57
+ spatial_pyramid_pooling_key="P5",
58
+ upsampling_size = 8,
59
+ dilation_rates = [6, 12, 18]
60
+ )
61
+ ```
62
+ """
63
+
64
+ def __init__(
65
+ self,
66
+ image_encoder,
67
+ spatial_pyramid_pooling_key,
68
+ upsampling_size,
69
+ dilation_rates,
70
+ low_level_feature_key=None,
71
+ projection_filters=48,
72
+ image_shape=(None, None, 3),
73
+ **kwargs,
74
+ ):
75
+ if not isinstance(image_encoder, keras.Model):
76
+ raise ValueError(
77
+ "Argument `image_encoder` must be a `keras.Model` instance. Received instead "
78
+ f"{image_encoder} (of type {type(image_encoder)})."
79
+ )
80
+ data_format = keras.config.image_data_format()
81
+ channel_axis = -1 if data_format == "channels_last" else 1
82
+
83
+ # === Layers ===
84
+ inputs = keras.layers.Input(image_shape, name="inputs")
85
+
86
+ fpn_model = keras.Model(
87
+ image_encoder.inputs, image_encoder.pyramid_outputs
88
+ )
89
+
90
+ fpn_outputs = fpn_model(inputs)
91
+
92
+ spatial_pyramid_pooling = SpatialPyramidPooling(
93
+ dilation_rates=dilation_rates
94
+ )
95
+ spatial_backbone_features = fpn_outputs[spatial_pyramid_pooling_key]
96
+ spp_outputs = spatial_pyramid_pooling(spatial_backbone_features)
97
+
98
+ encoder_outputs = keras.layers.UpSampling2D(
99
+ size=upsampling_size,
100
+ interpolation="bilinear",
101
+ name="encoder_output_upsampling",
102
+ data_format=data_format,
103
+ )(spp_outputs)
104
+
105
+ if low_level_feature_key:
106
+ decoder_feature = fpn_outputs[low_level_feature_key]
107
+ low_level_projected_features = apply_low_level_feature_network(
108
+ decoder_feature, projection_filters, channel_axis
109
+ )
110
+
111
+ encoder_outputs = keras.layers.Concatenate(
112
+ axis=channel_axis, name="encoder_decoder_concat"
113
+ )([encoder_outputs, low_level_projected_features])
114
+ # upsampling to the original image size
115
+ upsampling = (2 ** int(spatial_pyramid_pooling_key[-1])) // (
116
+ int(upsampling_size[0])
117
+ if isinstance(upsampling_size, tuple)
118
+ else upsampling_size
119
+ )
120
+ # === Functional Model ===
121
+ x = keras.layers.Conv2D(
122
+ name="segmentation_head_conv",
123
+ filters=256,
124
+ kernel_size=1,
125
+ padding="same",
126
+ use_bias=False,
127
+ data_format=data_format,
128
+ )(encoder_outputs)
129
+ x = keras.layers.BatchNormalization(
130
+ name="segmentation_head_norm", axis=channel_axis
131
+ )(x)
132
+ x = keras.layers.ReLU(name="segmentation_head_relu")(x)
133
+ x = keras.layers.UpSampling2D(
134
+ size=upsampling,
135
+ interpolation="bilinear",
136
+ data_format=data_format,
137
+ name="backbone_output_upsampling",
138
+ )(x)
139
+
140
+ super().__init__(inputs=inputs, outputs=x, **kwargs)
141
+
142
+ # === Config ===
143
+ self.image_shape = image_shape
144
+ self.image_encoder = image_encoder
145
+ self.projection_filters = projection_filters
146
+ self.upsampling_size = upsampling_size
147
+ self.dilation_rates = dilation_rates
148
+ self.low_level_feature_key = low_level_feature_key
149
+ self.spatial_pyramid_pooling_key = spatial_pyramid_pooling_key
150
+
151
+ def get_config(self):
152
+ config = super().get_config()
153
+ config.update(
154
+ {
155
+ "image_encoder": keras.saving.serialize_keras_object(
156
+ self.image_encoder
157
+ ),
158
+ "projection_filters": self.projection_filters,
159
+ "dilation_rates": self.dilation_rates,
160
+ "upsampling_size": self.upsampling_size,
161
+ "low_level_feature_key": self.low_level_feature_key,
162
+ "spatial_pyramid_pooling_key": self.spatial_pyramid_pooling_key,
163
+ "image_shape": self.image_shape,
164
+ }
165
+ )
166
+ return config
167
+
168
+ @classmethod
169
+ def from_config(cls, config):
170
+ if "image_encoder" in config and isinstance(
171
+ config["image_encoder"], dict
172
+ ):
173
+ config["image_encoder"] = keras.layers.deserialize(
174
+ config["image_encoder"]
175
+ )
176
+ return super().from_config(config)
177
+
178
+
179
+ def apply_low_level_feature_network(
180
+ input_tensor, projection_filters, channel_axis
181
+ ):
182
+ data_format = keras.config.image_data_format()
183
+ x = keras.layers.Conv2D(
184
+ name="decoder_conv",
185
+ filters=projection_filters,
186
+ kernel_size=1,
187
+ padding="same",
188
+ use_bias=False,
189
+ data_format=data_format,
190
+ )(input_tensor)
191
+
192
+ x = keras.layers.BatchNormalization(name="decoder_norm", axis=channel_axis)(
193
+ x
194
+ )
195
+ x = keras.layers.ReLU(name="decoder_relu")(x)
196
+ return x
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
3
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
4
+ DeepLabV3Backbone,
5
+ )
6
+
7
+
8
+ @keras_hub_export("keras_hub.layers.DeepLabV3ImageConverter")
9
+ class DeepLabV3ImageConverter(ImageConverter):
10
+ backbone_cls = DeepLabV3Backbone
@@ -0,0 +1,16 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
3
+ DeepLabV3Backbone,
4
+ )
5
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_converter import (
6
+ DeepLabV3ImageConverter,
7
+ )
8
+ from keras_hub.src.models.image_segmenter_preprocessor import (
9
+ ImageSegmenterPreprocessor,
10
+ )
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.DeepLabV3ImageSegmenterPreprocessor")
14
+ class DeepLabV3ImageSegmenterPreprocessor(ImageSegmenterPreprocessor):
15
+ backbone_cls = DeepLabV3Backbone
16
+ image_converter_cls = DeepLabV3ImageConverter
@@ -0,0 +1,215 @@
1
+ import keras
2
+ from keras import ops
3
+
4
+
5
+ class SpatialPyramidPooling(keras.layers.Layer):
6
+ """Implements the Atrous Spatial Pyramid Pooling.
7
+
8
+ Reference for Atrous Spatial Pyramid Pooling [Rethinking Atrous Convolution
9
+ for Semantic Image Segmentation](https://arxiv.org/pdf/1706.05587.pdf) and
10
+ [Encoder-Decoder with Atrous Separable Convolution for Semantic Image
11
+ Segmentation](https://arxiv.org/pdf/1802.02611.pdf)
12
+
13
+ Args:
14
+ dilation_rates: list of ints. The dilation rate for parallel dilated conv.
15
+ Usually a sample choice of rates are `[6, 12, 18]`.
16
+ num_channels: int. The number of output channels, defaults to `256`.
17
+ activation: str. Activation to be used, defaults to `relu`.
18
+ dropout: float. The dropout rate of the final projection output after the
19
+ activations and batch norm, defaults to `0.0`, which means no dropout is
20
+ applied to the output.
21
+
22
+ Example:
23
+ ```python
24
+ inp = keras.layers.Input((384, 384, 3))
25
+ backbone = keras.applications.EfficientNetB0(
26
+ input_tensor=inp,
27
+ include_top=False)
28
+ output = backbone(inp)
29
+ output = SpatialPyramidPooling(
30
+ dilation_rates=[6, 12, 18])(output)
31
+ ```
32
+ """
33
+
34
+ def __init__(
35
+ self,
36
+ dilation_rates,
37
+ num_channels=256,
38
+ activation="relu",
39
+ dropout=0.0,
40
+ **kwargs,
41
+ ):
42
+ super().__init__(**kwargs)
43
+ self.dilation_rates = dilation_rates
44
+ self.num_channels = num_channels
45
+ self.activation = activation
46
+ self.dropout = dropout
47
+ self.data_format = keras.config.image_data_format()
48
+ self.channel_axis = -1 if self.data_format == "channels_last" else 1
49
+
50
+ def build(self, input_shape):
51
+ channels = input_shape[self.channel_axis]
52
+
53
+ # This is the parallel networks that process the input features with
54
+ # different dilation rates. The output from each channel will be merged
55
+ # together and feed to the output.
56
+ self.aspp_parallel_channels = []
57
+
58
+ # Channel1 with Conv2D and 1x1 kernel size.
59
+ conv_sequential = keras.Sequential(
60
+ [
61
+ keras.layers.Conv2D(
62
+ filters=self.num_channels,
63
+ kernel_size=(1, 1),
64
+ use_bias=False,
65
+ data_format=self.data_format,
66
+ name="aspp_conv_1",
67
+ ),
68
+ keras.layers.BatchNormalization(
69
+ axis=self.channel_axis, name="aspp_bn_1"
70
+ ),
71
+ keras.layers.Activation(
72
+ self.activation, name="aspp_activation_1"
73
+ ),
74
+ ]
75
+ )
76
+ conv_sequential.build(input_shape)
77
+ self.aspp_parallel_channels.append(conv_sequential)
78
+
79
+ # Channel 2 and afterwards are based on self.dilation_rates, and each of
80
+ # them will have conv2D with 3x3 kernel size.
81
+ for i, dilation_rate in enumerate(self.dilation_rates):
82
+ conv_sequential = keras.Sequential(
83
+ [
84
+ keras.layers.Conv2D(
85
+ filters=self.num_channels,
86
+ kernel_size=(3, 3),
87
+ padding="same",
88
+ dilation_rate=dilation_rate,
89
+ use_bias=False,
90
+ data_format=self.data_format,
91
+ name=f"aspp_conv_{i+2}",
92
+ ),
93
+ keras.layers.BatchNormalization(
94
+ axis=self.channel_axis, name=f"aspp_bn_{i+2}"
95
+ ),
96
+ keras.layers.Activation(
97
+ self.activation, name=f"aspp_activation_{i+2}"
98
+ ),
99
+ ]
100
+ )
101
+ conv_sequential.build(input_shape)
102
+ self.aspp_parallel_channels.append(conv_sequential)
103
+
104
+ # Last channel is the global average pooling with conv2D 1x1 kernel.
105
+ if self.channel_axis == -1:
106
+ reshape = keras.layers.Reshape((1, 1, channels), name="reshape")
107
+ else:
108
+ reshape = keras.layers.Reshape((channels, 1, 1), name="reshape")
109
+ pool_sequential = keras.Sequential(
110
+ [
111
+ keras.layers.GlobalAveragePooling2D(
112
+ data_format=self.data_format, name="average_pooling"
113
+ ),
114
+ reshape,
115
+ keras.layers.Conv2D(
116
+ filters=self.num_channels,
117
+ kernel_size=(1, 1),
118
+ use_bias=False,
119
+ data_format=self.data_format,
120
+ name="conv_pooling",
121
+ ),
122
+ keras.layers.BatchNormalization(
123
+ axis=self.channel_axis, name="bn_pooling"
124
+ ),
125
+ keras.layers.Activation(
126
+ self.activation, name="activation_pooling"
127
+ ),
128
+ ]
129
+ )
130
+ pool_sequential.build(input_shape)
131
+ self.aspp_parallel_channels.append(pool_sequential)
132
+
133
+ # Final projection layers
134
+ projection = keras.Sequential(
135
+ [
136
+ keras.layers.Conv2D(
137
+ filters=self.num_channels,
138
+ kernel_size=(1, 1),
139
+ use_bias=False,
140
+ data_format=self.data_format,
141
+ name="conv_projection",
142
+ ),
143
+ keras.layers.BatchNormalization(
144
+ axis=self.channel_axis, name="bn_projection"
145
+ ),
146
+ keras.layers.Activation(
147
+ self.activation, name="activation_projection"
148
+ ),
149
+ keras.layers.Dropout(rate=self.dropout, name="dropout"),
150
+ ],
151
+ )
152
+ projection_input_channels = (
153
+ 2 + len(self.dilation_rates)
154
+ ) * self.num_channels
155
+ if self.data_format == "channels_first":
156
+ projection.build(
157
+ (input_shape[0],)
158
+ + (projection_input_channels,)
159
+ + (input_shape[2:])
160
+ )
161
+ else:
162
+ projection.build((input_shape[:-1]) + (projection_input_channels,))
163
+ self.projection = projection
164
+ self.built = True
165
+
166
+ def call(self, inputs):
167
+ """Calls the Atrous Spatial Pyramid Pooling layer on an input.
168
+
169
+ Args:
170
+ inputs: A tensor of shape [batch, height, width, channels]
171
+
172
+ Returns:
173
+ A tensor of shape [batch, height, width, num_channels]
174
+ """
175
+ result = []
176
+
177
+ for channel in self.aspp_parallel_channels:
178
+ temp = ops.cast(channel(inputs), inputs.dtype)
179
+ result.append(temp)
180
+
181
+ image_shape = ops.shape(inputs)
182
+ if self.channel_axis == -1:
183
+ height, width = image_shape[1], image_shape[2]
184
+ else:
185
+ height, width = image_shape[2], image_shape[3]
186
+ result[-1] = keras.layers.Resizing(
187
+ height,
188
+ width,
189
+ interpolation="bilinear",
190
+ data_format=self.data_format,
191
+ name="resizing",
192
+ )(result[-1])
193
+
194
+ result = ops.concatenate(result, axis=self.channel_axis)
195
+ return self.projection(result)
196
+
197
+ def compute_output_shape(self, inputs_shape):
198
+ if self.data_format == "channels_first":
199
+ return tuple(
200
+ (inputs_shape[0],) + (self.num_channels,) + (inputs_shape[2:])
201
+ )
202
+ else:
203
+ return tuple((inputs_shape[:-1]) + (self.num_channels,))
204
+
205
+ def get_config(self):
206
+ config = super().get_config()
207
+ config.update(
208
+ {
209
+ "dilation_rates": self.dilation_rates,
210
+ "num_channels": self.num_channels,
211
+ "activation": self.activation,
212
+ "dropout": self.dropout,
213
+ }
214
+ )
215
+ return config
@@ -0,0 +1,4 @@
1
+ """DeepLabV3 preset configurations."""
2
+
3
+ # TODO https://github.com/keras-team/keras-hub/issues/1896,
4
+ backbone_presets = {}
@@ -0,0 +1,109 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_backbone import (
5
+ DeepLabV3Backbone,
6
+ )
7
+ from keras_hub.src.models.deeplab_v3.deeplab_v3_image_segmeter_preprocessor import (
8
+ DeepLabV3ImageSegmenterPreprocessor,
9
+ )
10
+ from keras_hub.src.models.image_segmenter import ImageSegmenter
11
+
12
+
13
+ @keras_hub_export("keras_hub.models.DeepLabV3ImageSegmenter")
14
+ class DeepLabV3ImageSegmenter(ImageSegmenter):
15
+ """DeepLabV3 and DeeplabV3 and DeeplabV3Plus segmentation task.
16
+
17
+ Args:
18
+ backbone: A `keras_hub.models.DeepLabV3` instance.
19
+ num_classes: int. The number of classes for the detection model. Note
20
+ that the `num_classes` contains the background class, and the
21
+ classes from the data should be represented by integers with range
22
+ `[0, num_classes]`.
23
+ activation: str or callable. The activation function to use on
24
+ the `Dense` layer. Set `activation=None` to return the output
25
+ logits. Defaults to `None`.
26
+ preprocessor: A `keras_hub.models.DeepLabV3ImageSegmenterPreprocessor`
27
+ or `None`. If `None`, this model will not apply preprocessing, and
28
+ inputs should be preprocessed before calling the model.
29
+
30
+ Example:
31
+ Load a DeepLabV3 preset with all the 21 class, pretrained segmentation head.
32
+ ```python
33
+ images = np.ones(shape=(1, 96, 96, 3))
34
+ labels = np.zeros(shape=(1, 96, 96, 1))
35
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
36
+ "deeplabv3_resnet50_pascalvoc",
37
+ )
38
+ segmenter.predict(images)
39
+ ```
40
+
41
+ Specify `num_classes` to load randomly initialized segmentation head.
42
+ ```python
43
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
44
+ "deeplabv3_resnet50_pascalvoc",
45
+ num_classes=2,
46
+ )
47
+ segmenter.fit(images, labels, epochs=3)
48
+ segmenter.predict(images) # Trained 2 class segmentation.
49
+ ```
50
+ Load DeepLabv3+ presets a extension of DeepLabv3 by adding a simple yet
51
+ effective decoder module to refine the segmentation results especially
52
+ along object boundaries.
53
+ ```python
54
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
55
+ "deeplabv3_plus_resnet50_pascalvoc",
56
+ )
57
+ segmenter.predict(images)
58
+ ```
59
+ """
60
+
61
+ backbone_cls = DeepLabV3Backbone
62
+ preprocessor_cls = DeepLabV3ImageSegmenterPreprocessor
63
+
64
+ def __init__(
65
+ self,
66
+ backbone,
67
+ num_classes,
68
+ activation=None,
69
+ preprocessor=None,
70
+ **kwargs,
71
+ ):
72
+ data_format = keras.config.image_data_format()
73
+ # === Layers ===
74
+ self.output_conv = keras.layers.Conv2D(
75
+ name="segmentation_output",
76
+ filters=num_classes,
77
+ kernel_size=1,
78
+ use_bias=False,
79
+ padding="same",
80
+ activation=activation,
81
+ data_format=data_format,
82
+ )
83
+
84
+ # === Functional Model ===
85
+ inputs = backbone.input
86
+ x = backbone(inputs)
87
+ outputs = self.output_conv(x)
88
+ super().__init__(
89
+ inputs=inputs,
90
+ outputs=outputs,
91
+ **kwargs,
92
+ )
93
+
94
+ # === Config ===
95
+ self.backbone = backbone
96
+ self.num_classes = num_classes
97
+ self.activation = activation
98
+ self.preprocessor = preprocessor
99
+
100
+ def get_config(self):
101
+ # Backbone serialized in `super`
102
+ config = super().get_config()
103
+ config.update(
104
+ {
105
+ "num_classes": self.num_classes,
106
+ "activation": self.activation,
107
+ }
108
+ )
109
+ return config
@@ -19,9 +19,11 @@ class ImageSegmenterPreprocessor(Preprocessor):
19
19
 
20
20
  - `x`: The first input, should always be included. It can be an image or
21
21
  a batch of images.
22
- - `y`: (Optional) Usually the segmentation mask(s), will be passed through
23
- unaltered.
22
+ - `y`: (Optional) Usually the segmentation mask(s), if `resize_output_mask`
23
+ is set to `True` this will be resized to input image shape else will be
24
+ passed through unaltered.
24
25
  - `sample_weight`: (Optional) Will be passed through unaltered.
26
+ - `resize_output_mask` bool: If set to `True` the output mask will be resized to the same size as the input image. Defaults to `False`.
25
27
 
26
28
  The layer will output either `x`, an `(x, y)` tuple if labels were provided,
27
29
  or an `(x, y, sample_weight)` tuple if labels and sample weight were
@@ -29,7 +31,7 @@ class ImageSegmenterPreprocessor(Preprocessor):
29
31
  been applied.
30
32
 
31
33
  All `ImageSegmenterPreprocessor` tasks include a `from_preset()`
32
- constructor which can be used to load a pre-trained config and vocabularies.
34
+ constructor which can be used to load a pre-trained config.
33
35
  You can call the `from_preset()` constructor directly on this base class, in
34
36
  which case the correct class for your model will be automatically
35
37
  instantiated.
@@ -49,7 +51,8 @@ class ImageSegmenterPreprocessor(Preprocessor):
49
51
  x, y = preprocessor(x, y)
50
52
 
51
53
  # Resize a batch of images and masks.
52
- x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
54
+ x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))],
55
+ [np.ones((512, 512, 1)), np.zeros((512, 512, 1))]
53
56
  x, y = preprocessor(x, y)
54
57
 
55
58
  # Use a `tf.data.Dataset`.
@@ -61,13 +64,35 @@ class ImageSegmenterPreprocessor(Preprocessor):
61
64
  def __init__(
62
65
  self,
63
66
  image_converter=None,
67
+ resize_output_mask=False,
64
68
  **kwargs,
65
69
  ):
66
70
  super().__init__(**kwargs)
67
71
  self.image_converter = image_converter
72
+ self.resize_output_mask = resize_output_mask
68
73
 
69
74
  @preprocessing_function
70
75
  def call(self, x, y=None, sample_weight=None):
71
76
  if self.image_converter:
72
77
  x = self.image_converter(x)
78
+
79
+ if y is not None and self.image_converter and self.resize_output_mask:
80
+
81
+ y = keras.layers.Resizing(
82
+ height=(
83
+ self.image_converter.image_size[0]
84
+ if self.image_converter.image_size
85
+ else None
86
+ ),
87
+ width=(
88
+ self.image_converter.image_size[1]
89
+ if self.image_converter.image_size
90
+ else None
91
+ ),
92
+ crop_to_aspect_ratio=self.image_converter.crop_to_aspect_ratio,
93
+ interpolation="nearest",
94
+ data_format=self.image_converter.data_format,
95
+ dtype=self.dtype_policy,
96
+ name="mask_resizing",
97
+ )(y)
73
98
  return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)