keras-hub-nightly 0.16.1.dev202410020340__tar.gz → 0.16.1.dev202410030339__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (371) hide show
  1. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/PKG-INFO +1 -1
  2. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/layers/__init__.py +0 -3
  3. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/models/__init__.py +1 -1
  4. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/audio_converter.py +3 -7
  5. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/layers/preprocessing/image_converter.py +247 -0
  6. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/backbone.py +3 -9
  7. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +10 -0
  8. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/densenet/densenet_image_classifier.py +12 -0
  9. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_image_converter.py +2 -4
  10. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/feature_pyramid_backbone.py +1 -1
  11. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/image_classifier.py +217 -0
  12. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/image_classifier_preprocessor.py +3 -3
  13. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/image_segmenter.py +0 -5
  14. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +10 -0
  15. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +8 -0
  16. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +2 -4
  17. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/preprocessor.py +3 -5
  18. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_backbone.py +1 -11
  19. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/resnet/resnet_image_classifier.py +12 -0
  20. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_image_converter.py +2 -4
  21. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/sam/__init__.py +5 -0
  22. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_image_converter.py +2 -4
  23. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +11 -1
  24. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_presets.py +3 -3
  25. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/task.py +23 -25
  26. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/vgg/vgg_backbone.py +1 -20
  27. keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/vgg/vgg_image_classifier.py +189 -0
  28. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/tokenizer.py +3 -6
  29. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/preset_utils.py +103 -61
  30. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/timm/preset_loader.py +8 -9
  31. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/version_utils.py +1 -1
  32. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  33. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/SOURCES.txt +0 -1
  34. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/setup.py +1 -1
  35. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/layers/preprocessing/image_converter.py +0 -117
  36. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -138
  37. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -119
  38. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -140
  39. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/image_classifier.py +0 -72
  40. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -119
  41. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -100
  42. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -149
  43. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -110
  44. keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/utils/transformers/__init__.py +0 -0
  45. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/README.md +0 -0
  46. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/__init__.py +0 -0
  47. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/__init__.py +0 -0
  48. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/bounding_box/__init__.py +0 -0
  49. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/metrics/__init__.py +0 -0
  50. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/samplers/__init__.py +0 -0
  51. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/tokenizers/__init__.py +0 -0
  52. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/utils/__init__.py +0 -0
  53. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/__init__.py +0 -0
  54. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/api_export.py +0 -0
  55. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/__init__.py +0 -0
  56. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/converters.py +0 -0
  57. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/formats.py +0 -0
  58. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/iou.py +0 -0
  59. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/to_dense.py +0 -0
  60. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  61. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/utils.py +0 -0
  62. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/validate_format.py +0 -0
  63. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/__init__.py +0 -0
  64. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/__init__.py +0 -0
  65. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  66. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  67. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  68. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  69. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  70. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  71. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  72. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  73. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  74. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  75. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  76. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  77. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  78. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  79. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  80. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  81. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  82. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  83. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  84. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/__init__.py +0 -0
  85. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/bleu.py +0 -0
  86. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/edit_distance.py +0 -0
  87. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/perplexity.py +0 -0
  88. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/rouge_base.py +0 -0
  89. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/rouge_l.py +0 -0
  90. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/rouge_n.py +0 -0
  91. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/__init__.py +0 -0
  92. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/__init__.py +0 -0
  93. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  94. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  95. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  96. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_presets.py +0 -0
  97. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  98. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  99. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  100. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/__init__.py +0 -0
  101. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  102. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_presets.py +0 -0
  103. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  104. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  105. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  106. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/__init__.py +0 -0
  107. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  108. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  109. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  110. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_presets.py +0 -0
  111. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  112. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  113. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  114. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/__init__.py +0 -0
  115. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  116. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  117. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  118. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  119. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  120. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  121. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  122. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/causal_lm.py +0 -0
  123. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  124. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/__init__.py +0 -0
  125. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  126. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  127. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  128. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  129. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  130. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  131. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  132. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  133. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  134. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  135. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  136. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  137. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  138. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  139. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  140. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  141. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  142. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/__init__.py +0 -0
  143. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  144. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
  145. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
  146. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  147. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  148. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  149. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  150. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  151. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  152. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  153. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  154. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  155. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  156. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  157. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  158. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/__init__.py +0 -0
  159. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  160. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/electra_presets.py +0 -0
  161. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  162. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/__init__.py +0 -0
  163. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  164. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  165. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  166. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  167. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  168. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  169. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  170. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/__init__.py +0 -0
  171. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  172. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  173. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  174. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  175. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  176. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  177. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  178. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/__init__.py +0 -0
  179. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  180. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  181. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  182. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  183. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  184. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  185. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  186. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  187. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/__init__.py +0 -0
  188. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  189. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  190. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  191. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  192. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  193. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  194. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  195. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  196. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  197. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  198. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  199. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  200. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  201. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
  202. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/__init__.py +0 -0
  203. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_attention.py +0 -0
  204. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  205. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  206. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  207. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  208. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  209. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_presets.py +0 -0
  210. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  211. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/__init__.py +0 -0
  212. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  213. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  214. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  215. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  216. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  217. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/masked_lm.py +0 -0
  218. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  219. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/__init__.py +0 -0
  220. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  221. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  222. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  223. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  224. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  225. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  226. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  227. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  228. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
  229. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
  230. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
  231. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  232. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  233. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/__init__.py +0 -0
  234. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  235. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  236. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  237. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_presets.py +0 -0
  238. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  239. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  240. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  241. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  242. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  243. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  244. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  245. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  246. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  247. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/__init__.py +0 -0
  248. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  249. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  250. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  251. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  252. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  253. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  254. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  255. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  256. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  257. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/__init__.py +0 -0
  258. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  259. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  260. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/__init__.py +0 -0
  261. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
  262. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  263. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
  264. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  265. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
  266. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/__init__.py +0 -0
  267. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  268. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  269. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  270. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  271. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  272. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  273. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  274. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  275. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  276. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_layers.py +0 -0
  277. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  278. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  279. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  280. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  281. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  282. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  283. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  284. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  285. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  286. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
  287. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  288. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  289. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  290. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -0
  291. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/__init__.py +0 -0
  292. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  293. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  294. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  295. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  296. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_presets.py +0 -0
  297. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  298. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  299. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/text_classifier.py +0 -0
  300. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  301. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/text_to_image.py +0 -0
  302. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/sam → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/vgg}/__init__.py +0 -0
  303. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/vgg → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/vit_det}/__init__.py +0 -0
  304. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  305. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  306. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/__init__.py +0 -0
  307. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  308. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  309. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  310. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  311. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  312. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  313. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  314. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  315. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  316. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  317. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  318. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  319. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  320. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  321. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  322. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/vit_det → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/xlnet}/__init__.py +0 -0
  323. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  324. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  325. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  326. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  327. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/models/xlnet → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/samplers}/__init__.py +0 -0
  328. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/beam_sampler.py +0 -0
  329. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  330. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  331. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/random_sampler.py +0 -0
  332. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/sampler.py +0 -0
  333. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/serialization.py +0 -0
  334. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  335. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  336. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/samplers → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/tests}/__init__.py +0 -0
  337. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tests/test_case.py +0 -0
  338. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/tests → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/tokenizers}/__init__.py +0 -0
  339. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  340. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  341. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  342. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  343. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  344. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  345. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  346. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/tokenizers → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils}/__init__.py +0 -0
  347. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/utils → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils/imagenet}/__init__.py +0 -0
  348. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  349. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/keras_utils.py +0 -0
  350. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/pipeline_model.py +0 -0
  351. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/python_utils.py +0 -0
  352. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/tensor_utils.py +0 -0
  353. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/utils/imagenet → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils/timm}/__init__.py +0 -0
  354. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
  355. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  356. {keras_hub_nightly-0.16.1.dev202410020340/keras_hub/src/utils/timm → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils/transformers}/__init__.py +0 -0
  357. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  358. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  359. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  360. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  361. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  362. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  363. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  364. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  365. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  366. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  367. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  368. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  369. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/requires.txt +0 -0
  370. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  371. {keras_hub_nightly-0.16.1.dev202410020340 → keras_hub_nightly-0.16.1.dev202410030339}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202410020340
3
+ Version: 0.16.1.dev202410030339
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -33,9 +33,6 @@ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
33
33
  )
34
34
  from keras_hub.src.layers.preprocessing.random_deletion import RandomDeletion
35
35
  from keras_hub.src.layers.preprocessing.random_swap import RandomSwap
36
- from keras_hub.src.layers.preprocessing.resizing_image_converter import (
37
- ResizingImageConverter,
38
- )
39
36
  from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
40
37
  from keras_hub.src.models.densenet.densenet_image_converter import (
41
38
  DenseNetImageConverter,
@@ -254,7 +254,7 @@ from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
254
254
  from keras_hub.src.models.sam.sam_backbone import SAMBackbone
255
255
  from keras_hub.src.models.sam.sam_image_segmenter import SAMImageSegmenter
256
256
  from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
257
- SAMImageSegmenterPreprocessor as SamImageSegmenterPreprocessor,
257
+ SAMImageSegmenterPreprocessor,
258
258
  )
259
259
  from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
260
260
  from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
@@ -2,11 +2,10 @@ from keras_hub.src.api_export import keras_hub_export
2
2
  from keras_hub.src.layers.preprocessing.preprocessing_layer import (
3
3
  PreprocessingLayer,
4
4
  )
5
- from keras_hub.src.utils.preset_utils import AUDIO_CONVERTER_CONFIG_FILE
6
5
  from keras_hub.src.utils.preset_utils import builtin_presets
7
6
  from keras_hub.src.utils.preset_utils import find_subclass
8
7
  from keras_hub.src.utils.preset_utils import get_preset_loader
9
- from keras_hub.src.utils.preset_utils import save_serialized_object
8
+ from keras_hub.src.utils.preset_utils import get_preset_saver
10
9
  from keras_hub.src.utils.python_utils import classproperty
11
10
 
12
11
 
@@ -101,8 +100,5 @@ class AudioConverter(PreprocessingLayer):
101
100
  Args:
102
101
  preset_dir: The path to the local model preset directory.
103
102
  """
104
- save_serialized_object(
105
- self,
106
- preset_dir,
107
- config_file=AUDIO_CONVERTER_CONFIG_FILE,
108
- )
103
+ saver = get_preset_saver(preset_dir)
104
+ saver.save_audio_converter(self)
@@ -0,0 +1,247 @@
1
+ import math
2
+
3
+ import keras
4
+ import numpy as np
5
+ from keras import ops
6
+
7
+ from keras_hub.src.api_export import keras_hub_export
8
+ from keras_hub.src.layers.preprocessing.preprocessing_layer import (
9
+ PreprocessingLayer,
10
+ )
11
+ from keras_hub.src.utils.keras_utils import standardize_data_format
12
+ from keras_hub.src.utils.preset_utils import builtin_presets
13
+ from keras_hub.src.utils.preset_utils import find_subclass
14
+ from keras_hub.src.utils.preset_utils import get_preset_loader
15
+ from keras_hub.src.utils.preset_utils import get_preset_saver
16
+ from keras_hub.src.utils.python_utils import classproperty
17
+ from keras_hub.src.utils.tensor_utils import preprocessing_function
18
+
19
+
20
+ @keras_hub_export("keras_hub.layers.ImageConverter")
21
+ class ImageConverter(PreprocessingLayer):
22
+ """Preprocess raw images into model ready inputs.
23
+
24
+ This class converts from raw images to model ready inputs. This conversion
25
+ proceeds in the following steps:
26
+
27
+ 1. Resize the image using to `image_size`. If `image_size` is `None`, this
28
+ step will be skipped.
29
+ 2. Rescale the image by multiplying by `scale`, which can be either global
30
+ or per channel. If `scale` is `None`, this step will be skipped.
31
+ 3. Offset the image by adding `offset`, which can be either global
32
+ or per channel. If `offset` is `None`, this step will be skipped.
33
+
34
+ The layer will take as input a raw image tensor in the channels last or
35
+ channels first format, and output a preprocessed image input for modeling.
36
+ This tensor can be batched (rank 4), or unbatched (rank 3).
37
+
38
+ This layer can be used with the `from_preset()` constructor to load a layer
39
+ that will rescale and resize an image for a specific pretrained model.
40
+ Using the layer this way allows writing preprocessing code that does not
41
+ need updating when switching between model checkpoints.
42
+
43
+ Args:
44
+ image_size: `(int, int)` tuple or `None`. The output size of the image,
45
+ not including the channels axis. If `None`, the input will not be
46
+ resized.
47
+ scale: float, tuple of floats, or `None`. The scale to apply to the
48
+ inputs. If `scale` is a single float, the entire input will be
49
+ multiplied by `scale`. If `scale` is a tuple, it's assumed to
50
+ contain per-channel scale value multiplied against each channel of
51
+ the input images. If `scale` is `None`, no scaling is applied.
52
+ offset: float, tuple of floats, or `None`. The offset to apply to the
53
+ inputs. If `offset` is a single float, the entire input will be
54
+ summed with `offset`. If `offset` is a tuple, it's assumed to
55
+ contain per-channel offset value summed against each channel of the
56
+ input images. If `offset` is `None`, no scaling is applied.
57
+ crop_to_aspect_ratio: If `True`, resize the images without aspect
58
+ ratio distortion. When the original aspect ratio differs
59
+ from the target aspect ratio, the output image will be
60
+ cropped so as to return the
61
+ largest possible window in the image (of size `(height, width)`)
62
+ that matches the target aspect ratio. By default
63
+ (`crop_to_aspect_ratio=False`), aspect ratio may not be preserved.
64
+ interpolation: String, the interpolation method.
65
+ Supports `"bilinear"`, `"nearest"`, `"bicubic"`,
66
+ `"lanczos3"`, `"lanczos5"`. Defaults to `"bilinear"`.
67
+ data_format: String, either `"channels_last"` or `"channels_first"`.
68
+ The ordering of the dimensions in the inputs. `"channels_last"`
69
+ corresponds to inputs with shape `(batch, height, width, channels)`
70
+ while `"channels_first"` corresponds to inputs with shape
71
+ `(batch, channels, height, width)`. It defaults to the
72
+ `image_data_format` value found in your Keras config file at
73
+ `~/.keras/keras.json`. If you never set it, then it will be
74
+ `"channels_last"`.
75
+
76
+ Examples:
77
+ ```python
78
+ # Resize raw images and scale them to [0, 1].
79
+ converter = keras_hub.layers.ImageConverter(
80
+ image_size=(128, 128),
81
+ scale=1. / 255,
82
+ )
83
+ converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
84
+
85
+ # Resize images to the specific size needed for a PaliGemma preset.
86
+ converter = keras_hub.layers.ImageConverter.from_preset(
87
+ "pali_gemma_3b_224"
88
+ )
89
+ converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
90
+ ```
91
+ """
92
+
93
+ backbone_cls = None
94
+
95
+ def __init__(
96
+ self,
97
+ image_size=None,
98
+ scale=None,
99
+ offset=None,
100
+ crop_to_aspect_ratio=True,
101
+ interpolation="bilinear",
102
+ data_format=None,
103
+ **kwargs,
104
+ ):
105
+ # TODO: old arg names. Delete this block after resaving Kaggle assets.
106
+ if "height" in kwargs and "width" in kwargs:
107
+ image_size = (kwargs.pop("height"), kwargs.pop("width"))
108
+ if "variance" in kwargs and "mean" in kwargs:
109
+ std = [math.sqrt(v) for v in kwargs.pop("variance")]
110
+ scale = [scale / s for s in std]
111
+ offset = [-m / s for m, s in zip(kwargs.pop("mean"), std)]
112
+
113
+ super().__init__(**kwargs)
114
+
115
+ # Create the `Resizing` layer here even if it's not being used. That
116
+ # allows us to make `image_size` a settable property.
117
+ self.resizing = keras.layers.Resizing(
118
+ height=image_size[0] if image_size else None,
119
+ width=image_size[1] if image_size else None,
120
+ crop_to_aspect_ratio=crop_to_aspect_ratio,
121
+ interpolation=interpolation,
122
+ data_format=data_format,
123
+ dtype=self.dtype_policy,
124
+ name="resizing",
125
+ )
126
+ self.scale = scale
127
+ self.offset = offset
128
+ self.crop_to_aspect_ratio = crop_to_aspect_ratio
129
+ self.interpolation = interpolation
130
+ self.data_format = standardize_data_format(data_format)
131
+
132
+ @property
133
+ def image_size(self):
134
+ """Settable tuple of `(height, width)` ints. The output image shape."""
135
+ if self.resizing.height is None:
136
+ return None
137
+ return (self.resizing.height, self.resizing.width)
138
+
139
+ @image_size.setter
140
+ def image_size(self, value):
141
+ if value is None:
142
+ value = (None, None)
143
+ self.resizing.height = value[0]
144
+ self.resizing.width = value[1]
145
+
146
+ @preprocessing_function
147
+ def call(self, inputs):
148
+ if self.image_size is not None:
149
+ x = self.resizing(inputs)
150
+ if self.scale is not None:
151
+ x = x * self._expand_non_channel_dims(self.scale, x)
152
+ if self.offset is not None:
153
+ x = x + self._expand_non_channel_dims(self.offset, x)
154
+ return x
155
+
156
+ def _expand_non_channel_dims(self, value, inputs):
157
+ unbatched = len(ops.shape(inputs)) == 3
158
+ channels_first = self.data_format == "channels_first"
159
+ if unbatched:
160
+ broadcast_dims = (1, 2) if channels_first else (0, 1)
161
+ else:
162
+ broadcast_dims = (0, 2, 3) if channels_first else (0, 1, 2)
163
+ # If inputs are not a tensor type, return a numpy array.
164
+ # This might happen when running under tf.data.
165
+ if ops.is_tensor(inputs):
166
+ return ops.expand_dims(value, broadcast_dims)
167
+ else:
168
+ return np.expand_dims(value, broadcast_dims)
169
+
170
+ def get_config(self):
171
+ config = super().get_config()
172
+ config.update(
173
+ {
174
+ "image_size": self.image_size,
175
+ "scale": self.scale,
176
+ "offset": self.offset,
177
+ "interpolation": self.interpolation,
178
+ "crop_to_aspect_ratio": self.crop_to_aspect_ratio,
179
+ }
180
+ )
181
+ return config
182
+
183
+ @classproperty
184
+ def presets(cls):
185
+ """List built-in presets for an `ImageConverter` subclass."""
186
+ return builtin_presets(cls)
187
+
188
+ @classmethod
189
+ def from_preset(
190
+ cls,
191
+ preset,
192
+ **kwargs,
193
+ ):
194
+ """Instantiate a `keras_hub.layers.ImageConverter` from a model preset.
195
+
196
+ A preset is a directory of configs, weights and other file assets used
197
+ to save and load a pre-trained model. The `preset` can be passed as
198
+ one of:
199
+
200
+ 1. a built-in preset identifier like `'pali_gemma_3b_224'`
201
+ 2. a Kaggle Models handle like
202
+ `'kaggle://user/paligemma/keras/pali_gemma_3b_224'`
203
+ 3. a Hugging Face handle like `'hf://user/pali_gemma_3b_224'`
204
+ 4. a path to a local preset directory like `'./pali_gemma_3b_224'`
205
+
206
+ You can run `cls.presets.keys()` to list all built-in presets available
207
+ on the class.
208
+
209
+ Args:
210
+ preset: string. A built-in preset identifier, a Kaggle Models
211
+ handle, a Hugging Face handle, or a path to a local directory.
212
+ load_weights: bool. If `True`, the weights will be loaded into the
213
+ model architecture. If `False`, the weights will be randomly
214
+ initialized.
215
+
216
+ Examples:
217
+ ```python
218
+ batch = np.random.randint(0, 256, size=(2, 512, 512, 3))
219
+
220
+ # Resize images for `"pali_gemma_3b_224"`.
221
+ converter = keras_hub.layers.ImageConverter.from_preset(
222
+ "pali_gemma_3b_224"
223
+ )
224
+ converter(batch) # Output shape: (2, 224, 224, 3)
225
+
226
+ # Resize images for `"pali_gemma_3b_448"` without cropping.
227
+ converter = keras_hub.layers.ImageConverter.from_preset(
228
+ "pali_gemma_3b_448",
229
+ crop_to_aspect_ratio=False,
230
+ )
231
+ converter(batch) # Output shape: (2, 448, 448, 3)
232
+ ```
233
+ """
234
+ loader = get_preset_loader(preset)
235
+ backbone_cls = loader.check_backbone_class()
236
+ if cls.backbone_cls != backbone_cls:
237
+ cls = find_subclass(preset, cls, backbone_cls)
238
+ return loader.load_image_converter(cls, **kwargs)
239
+
240
+ def save_to_preset(self, preset_dir):
241
+ """Save image converter to a preset directory.
242
+
243
+ Args:
244
+ preset_dir: The path to the local model preset directory.
245
+ """
246
+ saver = get_preset_saver(preset_dir)
247
+ saver.save_image_converter(self)
@@ -1,15 +1,10 @@
1
- import os
2
-
3
1
  import keras
4
2
 
5
3
  from keras_hub.src.api_export import keras_hub_export
6
4
  from keras_hub.src.utils.keras_utils import assert_quantization_support
7
- from keras_hub.src.utils.preset_utils import CONFIG_FILE
8
- from keras_hub.src.utils.preset_utils import MODEL_WEIGHTS_FILE
9
5
  from keras_hub.src.utils.preset_utils import builtin_presets
10
6
  from keras_hub.src.utils.preset_utils import get_preset_loader
11
- from keras_hub.src.utils.preset_utils import save_metadata
12
- from keras_hub.src.utils.preset_utils import save_serialized_object
7
+ from keras_hub.src.utils.preset_utils import get_preset_saver
13
8
  from keras_hub.src.utils.python_utils import classproperty
14
9
 
15
10
 
@@ -193,9 +188,8 @@ class Backbone(keras.Model):
193
188
  Args:
194
189
  preset_dir: The path to the local model preset directory.
195
190
  """
196
- save_serialized_object(self, preset_dir, config_file=CONFIG_FILE)
197
- self.save_weights(os.path.join(preset_dir, MODEL_WEIGHTS_FILE))
198
- save_metadata(self, preset_dir)
191
+ saver = get_preset_saver(preset_dir)
192
+ saver.save_backbone(self)
199
193
 
200
194
  def enable_lora(self, rank):
201
195
  """Enable Lora on the backbone.
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.csp_darknet.csp_darknet_backbone import (
3
+ CSPDarkNetBackbone,
4
+ )
5
+ from keras_hub.src.models.image_classifier import ImageClassifier
6
+
7
+
8
+ @keras_hub_export("keras_hub.models.CSPDarkNetImageClassifier")
9
+ class CSPDarkNetImageClassifier(ImageClassifier):
10
+ backbone_cls = CSPDarkNetBackbone
@@ -0,0 +1,12 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
3
+ from keras_hub.src.models.densenet.densenet_image_classifier_preprocessor import (
4
+ DenseNetImageClassifierPreprocessor,
5
+ )
6
+ from keras_hub.src.models.image_classifier import ImageClassifier
7
+
8
+
9
+ @keras_hub_export("keras_hub.models.DenseNetImageClassifier")
10
+ class DenseNetImageClassifier(ImageClassifier):
11
+ backbone_cls = DenseNetBackbone
12
+ preprocessor_cls = DenseNetImageClassifierPreprocessor
@@ -1,10 +1,8 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
- from keras_hub.src.layers.preprocessing.resizing_image_converter import (
3
- ResizingImageConverter,
4
- )
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
5
3
  from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
6
4
 
7
5
 
8
6
  @keras_hub_export("keras_hub.layers.DenseNetImageConverter")
9
- class DenseNetImageConverter(ResizingImageConverter):
7
+ class DenseNetImageConverter(ImageConverter):
10
8
  backbone_cls = DenseNetBackbone
@@ -15,7 +15,7 @@ class FeaturePyramidBackbone(Backbone):
15
15
  Example:
16
16
 
17
17
  ```python
18
- input_data = np.random.uniform(0, 255, size=(2, 224, 224, 3))
18
+ input_data = np.random.uniform(0, 256, size=(2, 224, 224, 3))
19
19
 
20
20
  # Convert to feature pyramid output format using ResNet.
21
21
  backbone = ResNetBackbone.from_preset("resnet50")
@@ -0,0 +1,217 @@
1
+ import keras
2
+
3
+ from keras_hub.src.api_export import keras_hub_export
4
+ from keras_hub.src.models.task import Task
5
+
6
+
7
+ @keras_hub_export("keras_hub.models.ImageClassifier")
8
+ class ImageClassifier(Task):
9
+ """Base class for all image classification tasks.
10
+
11
+ `ImageClassifier` tasks wrap a `keras_hub.models.Backbone` and
12
+ a `keras_hub.models.Preprocessor` to create a model that can be used for
13
+ image classification. `ImageClassifier` tasks take an additional
14
+ `num_classes` argument, controlling the number of predicted output classes.
15
+
16
+ To fine-tune with `fit()`, pass a dataset containing tuples of `(x, y)`
17
+ labels where `x` is a string and `y` is a integer from `[0, num_classes)`.
18
+ All `ImageClassifier` tasks include a `from_preset()` constructor which can
19
+ be used to load a pre-trained config and weights.
20
+
21
+ Args:
22
+ backbone: A `keras_hub.models.Backbone` instance or a `keras.Model`.
23
+ num_classes: int. The number of classes to predict.
24
+ preprocessor: `None`, a `keras_hub.models.Preprocessor` instance,
25
+ a `keras.Layer` instance, or a callable. If `None` no preprocessing
26
+ will be applied to the inputs.
27
+ pooling: `"avg"` or `"max"`. The type of pooling to apply on backbone
28
+ output. Defaults to average pooling.
29
+ activation: `None`, str, or callable. The activation function to use on
30
+ the `Dense` layer. Set `activation=None` to return the output
31
+ logits. Defaults to `"softmax"`.
32
+ head_dtype: `None`, str, or `keras.mixed_precision.DTypePolicy`. The
33
+ dtype to use for the classification head's computations and weights.
34
+
35
+ Examples:
36
+
37
+ Call `predict()` to run inference.
38
+ ```python
39
+ # Load preset and train
40
+ images = np.random.randint(0, 256, size=(2, 224, 224, 3))
41
+ classifier = keras_hub.models.ImageClassifier.from_preset(
42
+ "resnet_50_imagenet"
43
+ )
44
+ classifier.predict(images)
45
+ ```
46
+
47
+ Call `fit()` on a single batch.
48
+ ```python
49
+ # Load preset and train
50
+ images = np.random.randint(0, 256, size=(2, 224, 224, 3))
51
+ labels = [0, 3]
52
+ classifier = keras_hub.models.ImageClassifier.from_preset(
53
+ "resnet_50_imagenet"
54
+ )
55
+ classifier.fit(x=images, y=labels, batch_size=2)
56
+ ```
57
+
58
+ Call `fit()` with custom loss, optimizer and backbone.
59
+ ```python
60
+ classifier = keras_hub.models.ImageClassifier.from_preset(
61
+ "resnet_50_imagenet"
62
+ )
63
+ classifier.compile(
64
+ loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
65
+ optimizer=keras.optimizers.Adam(5e-5),
66
+ )
67
+ classifier.backbone.trainable = False
68
+ classifier.fit(x=images, y=labels, batch_size=2)
69
+ ```
70
+
71
+ Custom backbone.
72
+ ```python
73
+ images = np.random.randint(0, 256, size=(2, 224, 224, 3))
74
+ labels = [0, 3]
75
+ backbone = keras_hub.models.ResNetBackbone(
76
+ stackwise_num_filters=[64, 64, 64],
77
+ stackwise_num_blocks=[2, 2, 2],
78
+ stackwise_num_strides=[1, 2, 2],
79
+ block_type="basic_block",
80
+ use_pre_activation=True,
81
+ pooling="avg",
82
+ )
83
+ classifier = keras_hub.models.ImageClassifier(
84
+ backbone=backbone,
85
+ num_classes=4,
86
+ )
87
+ classifier.fit(x=images, y=labels, batch_size=2)
88
+ ```
89
+ """
90
+
91
+ def __init__(
92
+ self,
93
+ backbone,
94
+ num_classes,
95
+ preprocessor=None,
96
+ pooling="avg",
97
+ activation=None,
98
+ dropout=0.0,
99
+ head_dtype=None,
100
+ **kwargs,
101
+ ):
102
+ head_dtype = head_dtype or backbone.dtype_policy
103
+ data_format = getattr(backbone, "data_format", None)
104
+
105
+ # === Layers ===
106
+ self.backbone = backbone
107
+ self.preprocessor = preprocessor
108
+ if pooling == "avg":
109
+ self.pooler = keras.layers.GlobalAveragePooling2D(
110
+ data_format,
111
+ dtype=head_dtype,
112
+ name="pooler",
113
+ )
114
+ elif pooling == "max":
115
+ self.pooler = keras.layers.GlobalMaxPooling2D(
116
+ data_format,
117
+ dtype=head_dtype,
118
+ name="pooler",
119
+ )
120
+ else:
121
+ raise ValueError(
122
+ "Unknown `pooling` type. Polling should be either `'avg'` or "
123
+ f"`'max'`. Received: pooling={pooling}."
124
+ )
125
+ self.output_dropout = keras.layers.Dropout(
126
+ dropout,
127
+ dtype=head_dtype,
128
+ name="output_dropout",
129
+ )
130
+ self.output_dense = keras.layers.Dense(
131
+ num_classes,
132
+ activation=activation,
133
+ dtype=head_dtype,
134
+ name="predictions",
135
+ )
136
+
137
+ # === Functional Model ===
138
+ inputs = self.backbone.input
139
+ x = self.backbone(inputs)
140
+ x = self.pooler(x)
141
+ x = self.output_dropout(x)
142
+ outputs = self.output_dense(x)
143
+ super().__init__(
144
+ inputs=inputs,
145
+ outputs=outputs,
146
+ **kwargs,
147
+ )
148
+
149
+ # === Config ===
150
+ self.num_classes = num_classes
151
+ self.activation = activation
152
+ self.pooling = pooling
153
+ self.dropout = dropout
154
+
155
+ def get_config(self):
156
+ # Backbone serialized in `super`
157
+ config = super().get_config()
158
+ config.update(
159
+ {
160
+ "num_classes": self.num_classes,
161
+ "pooling": self.pooling,
162
+ "activation": self.activation,
163
+ "dropout": self.dropout,
164
+ }
165
+ )
166
+ return config
167
+
168
+ def compile(
169
+ self,
170
+ optimizer="auto",
171
+ loss="auto",
172
+ *,
173
+ metrics="auto",
174
+ **kwargs,
175
+ ):
176
+ """Configures the `ImageClassifier` task for training.
177
+
178
+ The `ImageClassifier` task extends the default compilation signature of
179
+ `keras.Model.compile` with defaults for `optimizer`, `loss`, and
180
+ `metrics`. To override these defaults, pass any value
181
+ to these arguments during compilation.
182
+
183
+ Args:
184
+ optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
185
+ instance. Defaults to `"auto"`, which uses the default optimizer
186
+ for the given model and task. See `keras.Model.compile` and
187
+ `keras.optimizers` for more info on possible `optimizer` values.
188
+ loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
189
+ Defaults to `"auto"`, where a
190
+ `keras.losses.SparseCategoricalCrossentropy` loss will be
191
+ applied for the classification task. See
192
+ `keras.Model.compile` and `keras.losses` for more info on
193
+ possible `loss` values.
194
+ metrics: `"auto"`, or a list of metrics to be evaluated by
195
+ the model during training and testing. Defaults to `"auto"`,
196
+ where a `keras.metrics.SparseCategoricalAccuracy` will be
197
+ applied to track the accuracy of the model during training.
198
+ See `keras.Model.compile` and `keras.metrics` for
199
+ more info on possible `metrics` values.
200
+ **kwargs: See `keras.Model.compile` for a full list of arguments
201
+ supported by the compile method.
202
+ """
203
+ if optimizer == "auto":
204
+ optimizer = keras.optimizers.Adam(5e-5)
205
+ if loss == "auto":
206
+ activation = getattr(self, "activation", None)
207
+ activation = keras.activations.get(activation)
208
+ from_logits = activation != keras.activations.softmax
209
+ loss = keras.losses.SparseCategoricalCrossentropy(from_logits)
210
+ if metrics == "auto":
211
+ metrics = [keras.metrics.SparseCategoricalAccuracy()]
212
+ super().compile(
213
+ optimizer=optimizer,
214
+ loss=loss,
215
+ metrics=metrics,
216
+ **kwargs,
217
+ )
@@ -38,15 +38,15 @@ class ImageClassifierPreprocessor(Preprocessor):
38
38
  )
39
39
 
40
40
  # Resize a single image for resnet 50.
41
- x = np.ones((512, 512, 3))
41
+ x = np.random.randint(0, 256, (512, 512, 3))
42
42
  x = preprocessor(x)
43
43
 
44
44
  # Resize a labeled image.
45
- x, y = np.ones((512, 512, 3)), 1
45
+ x, y = np.random.randint(0, 256, (512, 512, 3)), 1
46
46
  x, y = preprocessor(x, y)
47
47
 
48
48
  # Resize a batch of labeled images.
49
- x, y = [np.ones((512, 512, 3)), np.zeros((512, 512, 3))], [1, 0]
49
+ x, y = [np.random.randint(0, 256, (512, 512, 3)), np.zeros((512, 512, 3))], [1, 0]
50
50
  x, y = preprocessor(x, y)
51
51
 
52
52
  # Use a `tf.data.Dataset`.
@@ -16,11 +16,6 @@ class ImageSegmenter(Task):
16
16
  be used to load a pre-trained config and weights.
17
17
  """
18
18
 
19
- def __init__(self, *args, **kwargs):
20
- super().__init__(*args, **kwargs)
21
- # Default compilation.
22
- self.compile()
23
-
24
19
  def compile(
25
20
  self,
26
21
  optimizer="auto",
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.image_classifier import ImageClassifier
3
+ from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
4
+ MiTBackbone,
5
+ )
6
+
7
+
8
+ @keras_hub_export("keras_hub.models.MiTImageClassifier")
9
+ class MiTImageClassifier(ImageClassifier):
10
+ backbone_cls = MiTBackbone
@@ -0,0 +1,8 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.image_classifier import ImageClassifier
3
+ from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
4
+
5
+
6
+ @keras_hub_export("keras_hub.models.MobileNetImageClassifier")
7
+ class MobileNetImageClassifier(ImageClassifier):
8
+ backbone_cls = MobileNetBackbone
@@ -1,12 +1,10 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
- from keras_hub.src.layers.preprocessing.resizing_image_converter import (
3
- ResizingImageConverter,
4
- )
2
+ from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
5
3
  from keras_hub.src.models.pali_gemma.pali_gemma_backbone import (
6
4
  PaliGemmaBackbone,
7
5
  )
8
6
 
9
7
 
10
8
  @keras_hub_export("keras_hub.layers.PaliGemmaImageConverter")
11
- class PaliGemmaImageConverter(ResizingImageConverter):
9
+ class PaliGemmaImageConverter(ImageConverter):
12
10
  backbone_cls = PaliGemmaBackbone