keras-hub-nightly 0.16.1.dev202410010346__tar.gz → 0.16.1.dev202410030339__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/layers/__init__.py +0 -3
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/models/__init__.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/audio_converter.py +3 -7
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/layers/preprocessing/image_converter.py +247 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/backbone.py +3 -9
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +10 -0
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/densenet/densenet_image_classifier.py +12 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_image_converter.py +2 -4
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/feature_pyramid_backbone.py +1 -1
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/image_classifier.py +217 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/image_classifier_preprocessor.py +3 -3
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/image_segmenter.py +0 -5
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +10 -0
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +8 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +2 -4
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/preprocessor.py +3 -5
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_backbone.py +1 -11
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/resnet/resnet_image_classifier.py +12 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_image_converter.py +2 -4
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/sam/__init__.py +5 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_image_converter.py +2 -4
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py +11 -1
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_presets.py +3 -3
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/task.py +23 -25
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/vgg/vgg_backbone.py +1 -20
- keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/vgg/vgg_image_classifier.py +189 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/tokenizer.py +3 -6
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/preset_utils.py +103 -61
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/timm/preset_loader.py +8 -9
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/SOURCES.txt +0 -1
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/setup.py +1 -1
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/layers/preprocessing/image_converter.py +0 -117
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -138
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -119
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -140
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/image_classifier.py +0 -72
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -119
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -100
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -149
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -110
- keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/README.md +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/densenet/densenet_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/image_segmenter_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/feature_pyramid.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/retinanet/retinanet_label_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/text_to_image.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/sam → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/vgg}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/vgg → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/vit_det}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/vit_det → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/xlnet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/models/xlnet → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/samplers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/samplers → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/tests}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/tests → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/tokenizers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/tokenizers → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/utils → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils/imagenet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/utils/imagenet → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils/timm}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/timm/convert_densenet.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346/keras_hub/src/utils/timm → keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/utils/transformers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/setup.cfg +0 -0
{keras_hub_nightly-0.16.1.dev202410010346 → keras_hub_nightly-0.16.1.dev202410030339}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202410030339
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -33,9 +33,6 @@ from keras_hub.src.layers.preprocessing.multi_segment_packer import (
|
|
33
33
|
)
|
34
34
|
from keras_hub.src.layers.preprocessing.random_deletion import RandomDeletion
|
35
35
|
from keras_hub.src.layers.preprocessing.random_swap import RandomSwap
|
36
|
-
from keras_hub.src.layers.preprocessing.resizing_image_converter import (
|
37
|
-
ResizingImageConverter,
|
38
|
-
)
|
39
36
|
from keras_hub.src.layers.preprocessing.start_end_packer import StartEndPacker
|
40
37
|
from keras_hub.src.models.densenet.densenet_image_converter import (
|
41
38
|
DenseNetImageConverter,
|
@@ -254,7 +254,7 @@ from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
|
|
254
254
|
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
|
255
255
|
from keras_hub.src.models.sam.sam_image_segmenter import SAMImageSegmenter
|
256
256
|
from keras_hub.src.models.sam.sam_image_segmenter_preprocessor import (
|
257
|
-
SAMImageSegmenterPreprocessor
|
257
|
+
SAMImageSegmenterPreprocessor,
|
258
258
|
)
|
259
259
|
from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
|
260
260
|
from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
|
@@ -2,11 +2,10 @@ from keras_hub.src.api_export import keras_hub_export
|
|
2
2
|
from keras_hub.src.layers.preprocessing.preprocessing_layer import (
|
3
3
|
PreprocessingLayer,
|
4
4
|
)
|
5
|
-
from keras_hub.src.utils.preset_utils import AUDIO_CONVERTER_CONFIG_FILE
|
6
5
|
from keras_hub.src.utils.preset_utils import builtin_presets
|
7
6
|
from keras_hub.src.utils.preset_utils import find_subclass
|
8
7
|
from keras_hub.src.utils.preset_utils import get_preset_loader
|
9
|
-
from keras_hub.src.utils.preset_utils import
|
8
|
+
from keras_hub.src.utils.preset_utils import get_preset_saver
|
10
9
|
from keras_hub.src.utils.python_utils import classproperty
|
11
10
|
|
12
11
|
|
@@ -101,8 +100,5 @@ class AudioConverter(PreprocessingLayer):
|
|
101
100
|
Args:
|
102
101
|
preset_dir: The path to the local model preset directory.
|
103
102
|
"""
|
104
|
-
|
105
|
-
|
106
|
-
preset_dir,
|
107
|
-
config_file=AUDIO_CONVERTER_CONFIG_FILE,
|
108
|
-
)
|
103
|
+
saver = get_preset_saver(preset_dir)
|
104
|
+
saver.save_audio_converter(self)
|
keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/layers/preprocessing/image_converter.py
ADDED
@@ -0,0 +1,247 @@
|
|
1
|
+
import math
|
2
|
+
|
3
|
+
import keras
|
4
|
+
import numpy as np
|
5
|
+
from keras import ops
|
6
|
+
|
7
|
+
from keras_hub.src.api_export import keras_hub_export
|
8
|
+
from keras_hub.src.layers.preprocessing.preprocessing_layer import (
|
9
|
+
PreprocessingLayer,
|
10
|
+
)
|
11
|
+
from keras_hub.src.utils.keras_utils import standardize_data_format
|
12
|
+
from keras_hub.src.utils.preset_utils import builtin_presets
|
13
|
+
from keras_hub.src.utils.preset_utils import find_subclass
|
14
|
+
from keras_hub.src.utils.preset_utils import get_preset_loader
|
15
|
+
from keras_hub.src.utils.preset_utils import get_preset_saver
|
16
|
+
from keras_hub.src.utils.python_utils import classproperty
|
17
|
+
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
18
|
+
|
19
|
+
|
20
|
+
@keras_hub_export("keras_hub.layers.ImageConverter")
|
21
|
+
class ImageConverter(PreprocessingLayer):
|
22
|
+
"""Preprocess raw images into model ready inputs.
|
23
|
+
|
24
|
+
This class converts from raw images to model ready inputs. This conversion
|
25
|
+
proceeds in the following steps:
|
26
|
+
|
27
|
+
1. Resize the image using to `image_size`. If `image_size` is `None`, this
|
28
|
+
step will be skipped.
|
29
|
+
2. Rescale the image by multiplying by `scale`, which can be either global
|
30
|
+
or per channel. If `scale` is `None`, this step will be skipped.
|
31
|
+
3. Offset the image by adding `offset`, which can be either global
|
32
|
+
or per channel. If `offset` is `None`, this step will be skipped.
|
33
|
+
|
34
|
+
The layer will take as input a raw image tensor in the channels last or
|
35
|
+
channels first format, and output a preprocessed image input for modeling.
|
36
|
+
This tensor can be batched (rank 4), or unbatched (rank 3).
|
37
|
+
|
38
|
+
This layer can be used with the `from_preset()` constructor to load a layer
|
39
|
+
that will rescale and resize an image for a specific pretrained model.
|
40
|
+
Using the layer this way allows writing preprocessing code that does not
|
41
|
+
need updating when switching between model checkpoints.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
image_size: `(int, int)` tuple or `None`. The output size of the image,
|
45
|
+
not including the channels axis. If `None`, the input will not be
|
46
|
+
resized.
|
47
|
+
scale: float, tuple of floats, or `None`. The scale to apply to the
|
48
|
+
inputs. If `scale` is a single float, the entire input will be
|
49
|
+
multiplied by `scale`. If `scale` is a tuple, it's assumed to
|
50
|
+
contain per-channel scale value multiplied against each channel of
|
51
|
+
the input images. If `scale` is `None`, no scaling is applied.
|
52
|
+
offset: float, tuple of floats, or `None`. The offset to apply to the
|
53
|
+
inputs. If `offset` is a single float, the entire input will be
|
54
|
+
summed with `offset`. If `offset` is a tuple, it's assumed to
|
55
|
+
contain per-channel offset value summed against each channel of the
|
56
|
+
input images. If `offset` is `None`, no scaling is applied.
|
57
|
+
crop_to_aspect_ratio: If `True`, resize the images without aspect
|
58
|
+
ratio distortion. When the original aspect ratio differs
|
59
|
+
from the target aspect ratio, the output image will be
|
60
|
+
cropped so as to return the
|
61
|
+
largest possible window in the image (of size `(height, width)`)
|
62
|
+
that matches the target aspect ratio. By default
|
63
|
+
(`crop_to_aspect_ratio=False`), aspect ratio may not be preserved.
|
64
|
+
interpolation: String, the interpolation method.
|
65
|
+
Supports `"bilinear"`, `"nearest"`, `"bicubic"`,
|
66
|
+
`"lanczos3"`, `"lanczos5"`. Defaults to `"bilinear"`.
|
67
|
+
data_format: String, either `"channels_last"` or `"channels_first"`.
|
68
|
+
The ordering of the dimensions in the inputs. `"channels_last"`
|
69
|
+
corresponds to inputs with shape `(batch, height, width, channels)`
|
70
|
+
while `"channels_first"` corresponds to inputs with shape
|
71
|
+
`(batch, channels, height, width)`. It defaults to the
|
72
|
+
`image_data_format` value found in your Keras config file at
|
73
|
+
`~/.keras/keras.json`. If you never set it, then it will be
|
74
|
+
`"channels_last"`.
|
75
|
+
|
76
|
+
Examples:
|
77
|
+
```python
|
78
|
+
# Resize raw images and scale them to [0, 1].
|
79
|
+
converter = keras_hub.layers.ImageConverter(
|
80
|
+
image_size=(128, 128),
|
81
|
+
scale=1. / 255,
|
82
|
+
)
|
83
|
+
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
|
84
|
+
|
85
|
+
# Resize images to the specific size needed for a PaliGemma preset.
|
86
|
+
converter = keras_hub.layers.ImageConverter.from_preset(
|
87
|
+
"pali_gemma_3b_224"
|
88
|
+
)
|
89
|
+
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
|
90
|
+
```
|
91
|
+
"""
|
92
|
+
|
93
|
+
backbone_cls = None
|
94
|
+
|
95
|
+
def __init__(
|
96
|
+
self,
|
97
|
+
image_size=None,
|
98
|
+
scale=None,
|
99
|
+
offset=None,
|
100
|
+
crop_to_aspect_ratio=True,
|
101
|
+
interpolation="bilinear",
|
102
|
+
data_format=None,
|
103
|
+
**kwargs,
|
104
|
+
):
|
105
|
+
# TODO: old arg names. Delete this block after resaving Kaggle assets.
|
106
|
+
if "height" in kwargs and "width" in kwargs:
|
107
|
+
image_size = (kwargs.pop("height"), kwargs.pop("width"))
|
108
|
+
if "variance" in kwargs and "mean" in kwargs:
|
109
|
+
std = [math.sqrt(v) for v in kwargs.pop("variance")]
|
110
|
+
scale = [scale / s for s in std]
|
111
|
+
offset = [-m / s for m, s in zip(kwargs.pop("mean"), std)]
|
112
|
+
|
113
|
+
super().__init__(**kwargs)
|
114
|
+
|
115
|
+
# Create the `Resizing` layer here even if it's not being used. That
|
116
|
+
# allows us to make `image_size` a settable property.
|
117
|
+
self.resizing = keras.layers.Resizing(
|
118
|
+
height=image_size[0] if image_size else None,
|
119
|
+
width=image_size[1] if image_size else None,
|
120
|
+
crop_to_aspect_ratio=crop_to_aspect_ratio,
|
121
|
+
interpolation=interpolation,
|
122
|
+
data_format=data_format,
|
123
|
+
dtype=self.dtype_policy,
|
124
|
+
name="resizing",
|
125
|
+
)
|
126
|
+
self.scale = scale
|
127
|
+
self.offset = offset
|
128
|
+
self.crop_to_aspect_ratio = crop_to_aspect_ratio
|
129
|
+
self.interpolation = interpolation
|
130
|
+
self.data_format = standardize_data_format(data_format)
|
131
|
+
|
132
|
+
@property
|
133
|
+
def image_size(self):
|
134
|
+
"""Settable tuple of `(height, width)` ints. The output image shape."""
|
135
|
+
if self.resizing.height is None:
|
136
|
+
return None
|
137
|
+
return (self.resizing.height, self.resizing.width)
|
138
|
+
|
139
|
+
@image_size.setter
|
140
|
+
def image_size(self, value):
|
141
|
+
if value is None:
|
142
|
+
value = (None, None)
|
143
|
+
self.resizing.height = value[0]
|
144
|
+
self.resizing.width = value[1]
|
145
|
+
|
146
|
+
@preprocessing_function
|
147
|
+
def call(self, inputs):
|
148
|
+
if self.image_size is not None:
|
149
|
+
x = self.resizing(inputs)
|
150
|
+
if self.scale is not None:
|
151
|
+
x = x * self._expand_non_channel_dims(self.scale, x)
|
152
|
+
if self.offset is not None:
|
153
|
+
x = x + self._expand_non_channel_dims(self.offset, x)
|
154
|
+
return x
|
155
|
+
|
156
|
+
def _expand_non_channel_dims(self, value, inputs):
|
157
|
+
unbatched = len(ops.shape(inputs)) == 3
|
158
|
+
channels_first = self.data_format == "channels_first"
|
159
|
+
if unbatched:
|
160
|
+
broadcast_dims = (1, 2) if channels_first else (0, 1)
|
161
|
+
else:
|
162
|
+
broadcast_dims = (0, 2, 3) if channels_first else (0, 1, 2)
|
163
|
+
# If inputs are not a tensor type, return a numpy array.
|
164
|
+
# This might happen when running under tf.data.
|
165
|
+
if ops.is_tensor(inputs):
|
166
|
+
return ops.expand_dims(value, broadcast_dims)
|
167
|
+
else:
|
168
|
+
return np.expand_dims(value, broadcast_dims)
|
169
|
+
|
170
|
+
def get_config(self):
|
171
|
+
config = super().get_config()
|
172
|
+
config.update(
|
173
|
+
{
|
174
|
+
"image_size": self.image_size,
|
175
|
+
"scale": self.scale,
|
176
|
+
"offset": self.offset,
|
177
|
+
"interpolation": self.interpolation,
|
178
|
+
"crop_to_aspect_ratio": self.crop_to_aspect_ratio,
|
179
|
+
}
|
180
|
+
)
|
181
|
+
return config
|
182
|
+
|
183
|
+
@classproperty
|
184
|
+
def presets(cls):
|
185
|
+
"""List built-in presets for an `ImageConverter` subclass."""
|
186
|
+
return builtin_presets(cls)
|
187
|
+
|
188
|
+
@classmethod
|
189
|
+
def from_preset(
|
190
|
+
cls,
|
191
|
+
preset,
|
192
|
+
**kwargs,
|
193
|
+
):
|
194
|
+
"""Instantiate a `keras_hub.layers.ImageConverter` from a model preset.
|
195
|
+
|
196
|
+
A preset is a directory of configs, weights and other file assets used
|
197
|
+
to save and load a pre-trained model. The `preset` can be passed as
|
198
|
+
one of:
|
199
|
+
|
200
|
+
1. a built-in preset identifier like `'pali_gemma_3b_224'`
|
201
|
+
2. a Kaggle Models handle like
|
202
|
+
`'kaggle://user/paligemma/keras/pali_gemma_3b_224'`
|
203
|
+
3. a Hugging Face handle like `'hf://user/pali_gemma_3b_224'`
|
204
|
+
4. a path to a local preset directory like `'./pali_gemma_3b_224'`
|
205
|
+
|
206
|
+
You can run `cls.presets.keys()` to list all built-in presets available
|
207
|
+
on the class.
|
208
|
+
|
209
|
+
Args:
|
210
|
+
preset: string. A built-in preset identifier, a Kaggle Models
|
211
|
+
handle, a Hugging Face handle, or a path to a local directory.
|
212
|
+
load_weights: bool. If `True`, the weights will be loaded into the
|
213
|
+
model architecture. If `False`, the weights will be randomly
|
214
|
+
initialized.
|
215
|
+
|
216
|
+
Examples:
|
217
|
+
```python
|
218
|
+
batch = np.random.randint(0, 256, size=(2, 512, 512, 3))
|
219
|
+
|
220
|
+
# Resize images for `"pali_gemma_3b_224"`.
|
221
|
+
converter = keras_hub.layers.ImageConverter.from_preset(
|
222
|
+
"pali_gemma_3b_224"
|
223
|
+
)
|
224
|
+
converter(batch) # Output shape: (2, 224, 224, 3)
|
225
|
+
|
226
|
+
# Resize images for `"pali_gemma_3b_448"` without cropping.
|
227
|
+
converter = keras_hub.layers.ImageConverter.from_preset(
|
228
|
+
"pali_gemma_3b_448",
|
229
|
+
crop_to_aspect_ratio=False,
|
230
|
+
)
|
231
|
+
converter(batch) # Output shape: (2, 448, 448, 3)
|
232
|
+
```
|
233
|
+
"""
|
234
|
+
loader = get_preset_loader(preset)
|
235
|
+
backbone_cls = loader.check_backbone_class()
|
236
|
+
if cls.backbone_cls != backbone_cls:
|
237
|
+
cls = find_subclass(preset, cls, backbone_cls)
|
238
|
+
return loader.load_image_converter(cls, **kwargs)
|
239
|
+
|
240
|
+
def save_to_preset(self, preset_dir):
|
241
|
+
"""Save image converter to a preset directory.
|
242
|
+
|
243
|
+
Args:
|
244
|
+
preset_dir: The path to the local model preset directory.
|
245
|
+
"""
|
246
|
+
saver = get_preset_saver(preset_dir)
|
247
|
+
saver.save_image_converter(self)
|
@@ -1,15 +1,10 @@
|
|
1
|
-
import os
|
2
|
-
|
3
1
|
import keras
|
4
2
|
|
5
3
|
from keras_hub.src.api_export import keras_hub_export
|
6
4
|
from keras_hub.src.utils.keras_utils import assert_quantization_support
|
7
|
-
from keras_hub.src.utils.preset_utils import CONFIG_FILE
|
8
|
-
from keras_hub.src.utils.preset_utils import MODEL_WEIGHTS_FILE
|
9
5
|
from keras_hub.src.utils.preset_utils import builtin_presets
|
10
6
|
from keras_hub.src.utils.preset_utils import get_preset_loader
|
11
|
-
from keras_hub.src.utils.preset_utils import
|
12
|
-
from keras_hub.src.utils.preset_utils import save_serialized_object
|
7
|
+
from keras_hub.src.utils.preset_utils import get_preset_saver
|
13
8
|
from keras_hub.src.utils.python_utils import classproperty
|
14
9
|
|
15
10
|
|
@@ -193,9 +188,8 @@ class Backbone(keras.Model):
|
|
193
188
|
Args:
|
194
189
|
preset_dir: The path to the local model preset directory.
|
195
190
|
"""
|
196
|
-
|
197
|
-
|
198
|
-
save_metadata(self, preset_dir)
|
191
|
+
saver = get_preset_saver(preset_dir)
|
192
|
+
saver.save_backbone(self)
|
199
193
|
|
200
194
|
def enable_lora(self, rank):
|
201
195
|
"""Enable Lora on the backbone.
|
@@ -0,0 +1,10 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.csp_darknet.csp_darknet_backbone import (
|
3
|
+
CSPDarkNetBackbone,
|
4
|
+
)
|
5
|
+
from keras_hub.src.models.image_classifier import ImageClassifier
|
6
|
+
|
7
|
+
|
8
|
+
@keras_hub_export("keras_hub.models.CSPDarkNetImageClassifier")
|
9
|
+
class CSPDarkNetImageClassifier(ImageClassifier):
|
10
|
+
backbone_cls = CSPDarkNetBackbone
|
keras_hub_nightly-0.16.1.dev202410030339/keras_hub/src/models/densenet/densenet_image_classifier.py
ADDED
@@ -0,0 +1,12 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
|
3
|
+
from keras_hub.src.models.densenet.densenet_image_classifier_preprocessor import (
|
4
|
+
DenseNetImageClassifierPreprocessor,
|
5
|
+
)
|
6
|
+
from keras_hub.src.models.image_classifier import ImageClassifier
|
7
|
+
|
8
|
+
|
9
|
+
@keras_hub_export("keras_hub.models.DenseNetImageClassifier")
|
10
|
+
class DenseNetImageClassifier(ImageClassifier):
|
11
|
+
backbone_cls = DenseNetBackbone
|
12
|
+
preprocessor_cls = DenseNetImageClassifierPreprocessor
|
@@ -1,10 +1,8 @@
|
|
1
1
|
from keras_hub.src.api_export import keras_hub_export
|
2
|
-
from keras_hub.src.layers.preprocessing.
|
3
|
-
ResizingImageConverter,
|
4
|
-
)
|
2
|
+
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
5
3
|
from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
|
6
4
|
|
7
5
|
|
8
6
|
@keras_hub_export("keras_hub.layers.DenseNetImageConverter")
|
9
|
-
class DenseNetImageConverter(
|
7
|
+
class DenseNetImageConverter(ImageConverter):
|
10
8
|
backbone_cls = DenseNetBackbone
|
@@ -15,7 +15,7 @@ class FeaturePyramidBackbone(Backbone):
|
|
15
15
|
Example:
|
16
16
|
|
17
17
|
```python
|
18
|
-
input_data = np.random.uniform(0,
|
18
|
+
input_data = np.random.uniform(0, 256, size=(2, 224, 224, 3))
|
19
19
|
|
20
20
|
# Convert to feature pyramid output format using ResNet.
|
21
21
|
backbone = ResNetBackbone.from_preset("resnet50")
|
@@ -0,0 +1,217 @@
|
|
1
|
+
import keras
|
2
|
+
|
3
|
+
from keras_hub.src.api_export import keras_hub_export
|
4
|
+
from keras_hub.src.models.task import Task
|
5
|
+
|
6
|
+
|
7
|
+
@keras_hub_export("keras_hub.models.ImageClassifier")
|
8
|
+
class ImageClassifier(Task):
|
9
|
+
"""Base class for all image classification tasks.
|
10
|
+
|
11
|
+
`ImageClassifier` tasks wrap a `keras_hub.models.Backbone` and
|
12
|
+
a `keras_hub.models.Preprocessor` to create a model that can be used for
|
13
|
+
image classification. `ImageClassifier` tasks take an additional
|
14
|
+
`num_classes` argument, controlling the number of predicted output classes.
|
15
|
+
|
16
|
+
To fine-tune with `fit()`, pass a dataset containing tuples of `(x, y)`
|
17
|
+
labels where `x` is a string and `y` is a integer from `[0, num_classes)`.
|
18
|
+
All `ImageClassifier` tasks include a `from_preset()` constructor which can
|
19
|
+
be used to load a pre-trained config and weights.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
backbone: A `keras_hub.models.Backbone` instance or a `keras.Model`.
|
23
|
+
num_classes: int. The number of classes to predict.
|
24
|
+
preprocessor: `None`, a `keras_hub.models.Preprocessor` instance,
|
25
|
+
a `keras.Layer` instance, or a callable. If `None` no preprocessing
|
26
|
+
will be applied to the inputs.
|
27
|
+
pooling: `"avg"` or `"max"`. The type of pooling to apply on backbone
|
28
|
+
output. Defaults to average pooling.
|
29
|
+
activation: `None`, str, or callable. The activation function to use on
|
30
|
+
the `Dense` layer. Set `activation=None` to return the output
|
31
|
+
logits. Defaults to `"softmax"`.
|
32
|
+
head_dtype: `None`, str, or `keras.mixed_precision.DTypePolicy`. The
|
33
|
+
dtype to use for the classification head's computations and weights.
|
34
|
+
|
35
|
+
Examples:
|
36
|
+
|
37
|
+
Call `predict()` to run inference.
|
38
|
+
```python
|
39
|
+
# Load preset and train
|
40
|
+
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
|
41
|
+
classifier = keras_hub.models.ImageClassifier.from_preset(
|
42
|
+
"resnet_50_imagenet"
|
43
|
+
)
|
44
|
+
classifier.predict(images)
|
45
|
+
```
|
46
|
+
|
47
|
+
Call `fit()` on a single batch.
|
48
|
+
```python
|
49
|
+
# Load preset and train
|
50
|
+
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
|
51
|
+
labels = [0, 3]
|
52
|
+
classifier = keras_hub.models.ImageClassifier.from_preset(
|
53
|
+
"resnet_50_imagenet"
|
54
|
+
)
|
55
|
+
classifier.fit(x=images, y=labels, batch_size=2)
|
56
|
+
```
|
57
|
+
|
58
|
+
Call `fit()` with custom loss, optimizer and backbone.
|
59
|
+
```python
|
60
|
+
classifier = keras_hub.models.ImageClassifier.from_preset(
|
61
|
+
"resnet_50_imagenet"
|
62
|
+
)
|
63
|
+
classifier.compile(
|
64
|
+
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
65
|
+
optimizer=keras.optimizers.Adam(5e-5),
|
66
|
+
)
|
67
|
+
classifier.backbone.trainable = False
|
68
|
+
classifier.fit(x=images, y=labels, batch_size=2)
|
69
|
+
```
|
70
|
+
|
71
|
+
Custom backbone.
|
72
|
+
```python
|
73
|
+
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
|
74
|
+
labels = [0, 3]
|
75
|
+
backbone = keras_hub.models.ResNetBackbone(
|
76
|
+
stackwise_num_filters=[64, 64, 64],
|
77
|
+
stackwise_num_blocks=[2, 2, 2],
|
78
|
+
stackwise_num_strides=[1, 2, 2],
|
79
|
+
block_type="basic_block",
|
80
|
+
use_pre_activation=True,
|
81
|
+
pooling="avg",
|
82
|
+
)
|
83
|
+
classifier = keras_hub.models.ImageClassifier(
|
84
|
+
backbone=backbone,
|
85
|
+
num_classes=4,
|
86
|
+
)
|
87
|
+
classifier.fit(x=images, y=labels, batch_size=2)
|
88
|
+
```
|
89
|
+
"""
|
90
|
+
|
91
|
+
def __init__(
|
92
|
+
self,
|
93
|
+
backbone,
|
94
|
+
num_classes,
|
95
|
+
preprocessor=None,
|
96
|
+
pooling="avg",
|
97
|
+
activation=None,
|
98
|
+
dropout=0.0,
|
99
|
+
head_dtype=None,
|
100
|
+
**kwargs,
|
101
|
+
):
|
102
|
+
head_dtype = head_dtype or backbone.dtype_policy
|
103
|
+
data_format = getattr(backbone, "data_format", None)
|
104
|
+
|
105
|
+
# === Layers ===
|
106
|
+
self.backbone = backbone
|
107
|
+
self.preprocessor = preprocessor
|
108
|
+
if pooling == "avg":
|
109
|
+
self.pooler = keras.layers.GlobalAveragePooling2D(
|
110
|
+
data_format,
|
111
|
+
dtype=head_dtype,
|
112
|
+
name="pooler",
|
113
|
+
)
|
114
|
+
elif pooling == "max":
|
115
|
+
self.pooler = keras.layers.GlobalMaxPooling2D(
|
116
|
+
data_format,
|
117
|
+
dtype=head_dtype,
|
118
|
+
name="pooler",
|
119
|
+
)
|
120
|
+
else:
|
121
|
+
raise ValueError(
|
122
|
+
"Unknown `pooling` type. Polling should be either `'avg'` or "
|
123
|
+
f"`'max'`. Received: pooling={pooling}."
|
124
|
+
)
|
125
|
+
self.output_dropout = keras.layers.Dropout(
|
126
|
+
dropout,
|
127
|
+
dtype=head_dtype,
|
128
|
+
name="output_dropout",
|
129
|
+
)
|
130
|
+
self.output_dense = keras.layers.Dense(
|
131
|
+
num_classes,
|
132
|
+
activation=activation,
|
133
|
+
dtype=head_dtype,
|
134
|
+
name="predictions",
|
135
|
+
)
|
136
|
+
|
137
|
+
# === Functional Model ===
|
138
|
+
inputs = self.backbone.input
|
139
|
+
x = self.backbone(inputs)
|
140
|
+
x = self.pooler(x)
|
141
|
+
x = self.output_dropout(x)
|
142
|
+
outputs = self.output_dense(x)
|
143
|
+
super().__init__(
|
144
|
+
inputs=inputs,
|
145
|
+
outputs=outputs,
|
146
|
+
**kwargs,
|
147
|
+
)
|
148
|
+
|
149
|
+
# === Config ===
|
150
|
+
self.num_classes = num_classes
|
151
|
+
self.activation = activation
|
152
|
+
self.pooling = pooling
|
153
|
+
self.dropout = dropout
|
154
|
+
|
155
|
+
def get_config(self):
|
156
|
+
# Backbone serialized in `super`
|
157
|
+
config = super().get_config()
|
158
|
+
config.update(
|
159
|
+
{
|
160
|
+
"num_classes": self.num_classes,
|
161
|
+
"pooling": self.pooling,
|
162
|
+
"activation": self.activation,
|
163
|
+
"dropout": self.dropout,
|
164
|
+
}
|
165
|
+
)
|
166
|
+
return config
|
167
|
+
|
168
|
+
def compile(
|
169
|
+
self,
|
170
|
+
optimizer="auto",
|
171
|
+
loss="auto",
|
172
|
+
*,
|
173
|
+
metrics="auto",
|
174
|
+
**kwargs,
|
175
|
+
):
|
176
|
+
"""Configures the `ImageClassifier` task for training.
|
177
|
+
|
178
|
+
The `ImageClassifier` task extends the default compilation signature of
|
179
|
+
`keras.Model.compile` with defaults for `optimizer`, `loss`, and
|
180
|
+
`metrics`. To override these defaults, pass any value
|
181
|
+
to these arguments during compilation.
|
182
|
+
|
183
|
+
Args:
|
184
|
+
optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
|
185
|
+
instance. Defaults to `"auto"`, which uses the default optimizer
|
186
|
+
for the given model and task. See `keras.Model.compile` and
|
187
|
+
`keras.optimizers` for more info on possible `optimizer` values.
|
188
|
+
loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
|
189
|
+
Defaults to `"auto"`, where a
|
190
|
+
`keras.losses.SparseCategoricalCrossentropy` loss will be
|
191
|
+
applied for the classification task. See
|
192
|
+
`keras.Model.compile` and `keras.losses` for more info on
|
193
|
+
possible `loss` values.
|
194
|
+
metrics: `"auto"`, or a list of metrics to be evaluated by
|
195
|
+
the model during training and testing. Defaults to `"auto"`,
|
196
|
+
where a `keras.metrics.SparseCategoricalAccuracy` will be
|
197
|
+
applied to track the accuracy of the model during training.
|
198
|
+
See `keras.Model.compile` and `keras.metrics` for
|
199
|
+
more info on possible `metrics` values.
|
200
|
+
**kwargs: See `keras.Model.compile` for a full list of arguments
|
201
|
+
supported by the compile method.
|
202
|
+
"""
|
203
|
+
if optimizer == "auto":
|
204
|
+
optimizer = keras.optimizers.Adam(5e-5)
|
205
|
+
if loss == "auto":
|
206
|
+
activation = getattr(self, "activation", None)
|
207
|
+
activation = keras.activations.get(activation)
|
208
|
+
from_logits = activation != keras.activations.softmax
|
209
|
+
loss = keras.losses.SparseCategoricalCrossentropy(from_logits)
|
210
|
+
if metrics == "auto":
|
211
|
+
metrics = [keras.metrics.SparseCategoricalAccuracy()]
|
212
|
+
super().compile(
|
213
|
+
optimizer=optimizer,
|
214
|
+
loss=loss,
|
215
|
+
metrics=metrics,
|
216
|
+
**kwargs,
|
217
|
+
)
|
@@ -38,15 +38,15 @@ class ImageClassifierPreprocessor(Preprocessor):
|
|
38
38
|
)
|
39
39
|
|
40
40
|
# Resize a single image for resnet 50.
|
41
|
-
x = np.
|
41
|
+
x = np.random.randint(0, 256, (512, 512, 3))
|
42
42
|
x = preprocessor(x)
|
43
43
|
|
44
44
|
# Resize a labeled image.
|
45
|
-
x, y = np.
|
45
|
+
x, y = np.random.randint(0, 256, (512, 512, 3)), 1
|
46
46
|
x, y = preprocessor(x, y)
|
47
47
|
|
48
48
|
# Resize a batch of labeled images.
|
49
|
-
x, y = [np.
|
49
|
+
x, y = [np.random.randint(0, 256, (512, 512, 3)), np.zeros((512, 512, 3))], [1, 0]
|
50
50
|
x, y = preprocessor(x, y)
|
51
51
|
|
52
52
|
# Use a `tf.data.Dataset`.
|
@@ -16,11 +16,6 @@ class ImageSegmenter(Task):
|
|
16
16
|
be used to load a pre-trained config and weights.
|
17
17
|
"""
|
18
18
|
|
19
|
-
def __init__(self, *args, **kwargs):
|
20
|
-
super().__init__(*args, **kwargs)
|
21
|
-
# Default compilation.
|
22
|
-
self.compile()
|
23
|
-
|
24
19
|
def compile(
|
25
20
|
self,
|
26
21
|
optimizer="auto",
|
@@ -0,0 +1,10 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.image_classifier import ImageClassifier
|
3
|
+
from keras_hub.src.models.mix_transformer.mix_transformer_backbone import (
|
4
|
+
MiTBackbone,
|
5
|
+
)
|
6
|
+
|
7
|
+
|
8
|
+
@keras_hub_export("keras_hub.models.MiTImageClassifier")
|
9
|
+
class MiTImageClassifier(ImageClassifier):
|
10
|
+
backbone_cls = MiTBackbone
|
@@ -0,0 +1,8 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.image_classifier import ImageClassifier
|
3
|
+
from keras_hub.src.models.mobilenet.mobilenet_backbone import MobileNetBackbone
|
4
|
+
|
5
|
+
|
6
|
+
@keras_hub_export("keras_hub.models.MobileNetImageClassifier")
|
7
|
+
class MobileNetImageClassifier(ImageClassifier):
|
8
|
+
backbone_cls = MobileNetBackbone
|
@@ -1,12 +1,10 @@
|
|
1
1
|
from keras_hub.src.api_export import keras_hub_export
|
2
|
-
from keras_hub.src.layers.preprocessing.
|
3
|
-
ResizingImageConverter,
|
4
|
-
)
|
2
|
+
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
5
3
|
from keras_hub.src.models.pali_gemma.pali_gemma_backbone import (
|
6
4
|
PaliGemmaBackbone,
|
7
5
|
)
|
8
6
|
|
9
7
|
|
10
8
|
@keras_hub_export("keras_hub.layers.PaliGemmaImageConverter")
|
11
|
-
class PaliGemmaImageConverter(
|
9
|
+
class PaliGemmaImageConverter(ImageConverter):
|
12
10
|
backbone_cls = PaliGemmaBackbone
|