keras-hub-nightly 0.16.1.dev202409270338__tar.gz → 0.16.1.dev202409280337__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (360) hide show
  1. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/PKG-INFO +1 -1
  2. keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +14 -0
  3. keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/densenet/densenet_image_converter.py +10 -0
  4. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/densenet_presets.py +0 -13
  5. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/anchor_generator.py +28 -16
  6. keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/retinanet/feature_pyramid.py +373 -0
  7. keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/retinanet/retinanet_label_encoder.py +270 -0
  8. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -13
  9. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tests/test_case.py +23 -6
  10. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/tensor_utils.py +106 -0
  11. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/convert_densenet.py +0 -13
  12. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/version_utils.py +1 -1
  13. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
  14. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/SOURCES.txt +2 -0
  15. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/setup.py +1 -15
  16. keras_hub_nightly-0.16.1.dev202409270338/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -27
  17. keras_hub_nightly-0.16.1.dev202409270338/keras_hub/src/models/densenet/densenet_image_converter.py +0 -23
  18. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/README.md +0 -0
  19. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/__init__.py +0 -0
  20. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/__init__.py +0 -0
  21. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/bounding_box/__init__.py +0 -0
  22. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/layers/__init__.py +0 -0
  23. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/metrics/__init__.py +0 -0
  24. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/models/__init__.py +0 -0
  25. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/samplers/__init__.py +0 -0
  26. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/tokenizers/__init__.py +0 -0
  27. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/utils/__init__.py +0 -0
  28. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/__init__.py +0 -0
  29. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/api_export.py +0 -0
  30. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/__init__.py +0 -0
  31. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/converters.py +0 -0
  32. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/formats.py +0 -0
  33. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/iou.py +0 -0
  34. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/to_dense.py +0 -0
  35. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  36. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/utils.py +0 -0
  37. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/validate_format.py +0 -0
  38. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/__init__.py +0 -0
  39. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/__init__.py +0 -0
  40. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  41. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  42. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  43. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  44. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  45. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  46. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  47. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  48. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  49. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  50. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  51. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  52. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  53. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  54. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  55. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  56. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  57. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  58. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  59. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  60. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -0
  61. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  62. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/__init__.py +0 -0
  63. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/bleu.py +0 -0
  64. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/edit_distance.py +0 -0
  65. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/perplexity.py +0 -0
  66. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/rouge_base.py +0 -0
  67. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/rouge_l.py +0 -0
  68. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/rouge_n.py +0 -0
  69. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/__init__.py +0 -0
  70. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/__init__.py +0 -0
  71. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  72. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  73. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  74. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_presets.py +0 -0
  75. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  76. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  77. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  78. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/backbone.py +0 -0
  79. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/__init__.py +0 -0
  80. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  81. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_presets.py +0 -0
  82. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  83. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  84. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  85. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/__init__.py +0 -0
  86. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  87. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  88. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  89. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_presets.py +0 -0
  90. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  91. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  92. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  93. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/__init__.py +0 -0
  94. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  95. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  96. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  97. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  98. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  99. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  100. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  101. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/causal_lm.py +0 -0
  102. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  103. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/__init__.py +0 -0
  104. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
  105. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
  106. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
  107. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
  108. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  109. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
  110. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
  111. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  112. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  113. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  114. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  115. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  116. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  117. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  118. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  119. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  120. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  121. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  122. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/__init__.py +0 -0
  123. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
  124. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
  125. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  126. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  127. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  128. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  129. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  130. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  131. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  133. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  134. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
  135. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  136. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  137. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/__init__.py +0 -0
  138. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  139. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/electra_presets.py +0 -0
  140. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  141. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/__init__.py +0 -0
  142. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  143. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  144. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  145. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  146. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  147. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  148. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  149. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/__init__.py +0 -0
  150. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  151. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  152. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  153. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  154. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  155. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  156. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  157. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  158. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/__init__.py +0 -0
  159. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  160. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  161. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  162. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  163. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
  164. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  165. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  166. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  167. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/__init__.py +0 -0
  168. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  169. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  170. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  171. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  172. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  173. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  174. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  175. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  176. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  177. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  178. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  179. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  180. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  181. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/image_classifier.py +0 -0
  182. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  183. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/image_segmenter.py +0 -0
  184. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/__init__.py +0 -0
  185. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_attention.py +0 -0
  186. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  187. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  188. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  189. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  190. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  191. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_presets.py +0 -0
  192. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  193. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/__init__.py +0 -0
  194. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  195. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  196. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  197. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  198. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  199. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/masked_lm.py +0 -0
  200. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  201. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/__init__.py +0 -0
  202. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  203. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  204. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  205. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  206. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  207. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  208. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  209. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  210. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
  211. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
  212. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -0
  213. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
  214. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  215. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
  216. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
  217. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/__init__.py +0 -0
  218. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  219. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  220. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  221. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_presets.py +0 -0
  222. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  223. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  224. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  225. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  226. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  227. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  228. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  229. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  230. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  231. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
  232. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/__init__.py +0 -0
  233. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  234. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  235. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  236. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  237. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  238. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  239. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  240. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  241. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  242. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/preprocessor.py +0 -0
  243. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/__init__.py +0 -0
  244. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
  245. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
  246. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  247. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  248. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
  249. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/__init__.py +0 -0
  250. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
  251. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
  252. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/__init__.py +0 -0
  253. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  254. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  255. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  256. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  257. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  258. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  259. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  260. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/__init__.py +0 -0
  261. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_backbone.py +0 -0
  262. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
  263. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_layers.py +0 -0
  264. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
  265. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
  266. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_transformer.py +0 -0
  267. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  268. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  269. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
  270. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
  271. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
  272. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
  273. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
  274. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
  275. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
  276. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -0
  277. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/__init__.py +0 -0
  278. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  279. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  280. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  281. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
  282. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_presets.py +0 -0
  283. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  284. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  285. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/task.py +0 -0
  286. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/text_classifier.py +0 -0
  287. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  288. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/text_to_image.py +0 -0
  289. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vgg/__init__.py +0 -0
  290. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
  291. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
  292. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vit_det/__init__.py +0 -0
  293. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
  294. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  295. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/__init__.py +0 -0
  296. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  297. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  298. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  299. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  300. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  301. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  302. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  303. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  304. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  305. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  306. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  307. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  308. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  309. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  310. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  311. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/__init__.py +0 -0
  312. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  313. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  314. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  315. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  316. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/__init__.py +0 -0
  317. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/beam_sampler.py +0 -0
  318. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  319. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  320. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/random_sampler.py +0 -0
  321. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/sampler.py +0 -0
  322. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/serialization.py +0 -0
  323. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  324. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  325. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tests/__init__.py +0 -0
  326. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/__init__.py +0 -0
  327. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
  328. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  329. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
  330. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  331. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  332. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  333. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
  334. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  335. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/__init__.py +0 -0
  336. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/imagenet/__init__.py +0 -0
  337. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
  338. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/keras_utils.py +0 -0
  339. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/pipeline_model.py +0 -0
  340. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/preset_utils.py +0 -0
  341. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/python_utils.py +0 -0
  342. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/__init__.py +0 -0
  343. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
  344. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/preset_loader.py +0 -0
  345. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/__init__.py +0 -0
  346. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  347. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  348. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  349. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  350. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  351. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  352. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  353. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  354. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  355. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  356. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  357. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  358. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/requires.txt +0 -0
  359. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  360. {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: keras-hub-nightly
3
- Version: 0.16.1.dev202409270338
3
+ Version: 0.16.1.dev202409280337
4
4
  Summary: Industry-strength Natural Language Processing extensions for Keras.
5
5
  Home-page: https://github.com/keras-team/keras-hub
6
6
  Author: Keras team
@@ -0,0 +1,14 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
3
+ from keras_hub.src.models.densenet.densenet_image_converter import (
4
+ DenseNetImageConverter,
5
+ )
6
+ from keras_hub.src.models.image_classifier_preprocessor import (
7
+ ImageClassifierPreprocessor,
8
+ )
9
+
10
+
11
+ @keras_hub_export("keras_hub.models.DenseNetImageClassifierPreprocessor")
12
+ class DenseNetImageClassifierPreprocessor(ImageClassifierPreprocessor):
13
+ backbone_cls = DenseNetBackbone
14
+ image_converter_cls = DenseNetImageConverter
@@ -0,0 +1,10 @@
1
+ from keras_hub.src.api_export import keras_hub_export
2
+ from keras_hub.src.layers.preprocessing.resizing_image_converter import (
3
+ ResizingImageConverter,
4
+ )
5
+ from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
6
+
7
+
8
+ @keras_hub_export("keras_hub.layers.DenseNetImageConverter")
9
+ class DenseNetImageConverter(ResizingImageConverter):
10
+ backbone_cls = DenseNetBackbone
@@ -1,16 +1,3 @@
1
- # Copyright 2024 The KerasHub Authors
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # https://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
1
  """DenseNet preset configurations."""
15
2
 
16
3
  backbone_presets = {
@@ -24,29 +24,31 @@ class AnchorGenerator(keras.layers.Layer):
24
24
  for larger objects.
25
25
 
26
26
  Args:
27
- bounding_box_format (str): The format of the bounding boxes
27
+ bounding_box_format: str. The format of the bounding boxes
28
28
  to be generated. Expected to be a string like 'xyxy', 'xywh', etc.
29
- min_level (int): Minimum level of the output feature pyramid.
30
- max_level (int): Maximum level of the output feature pyramid.
31
- num_scales (int): Number of intermediate scales added on each level.
29
+ min_level: int. Minimum level of the output feature pyramid.
30
+ max_level: int. Maximum level of the output feature pyramid.
31
+ num_scales: int. Number of intermediate scales added on each level.
32
32
  For example, num_scales=2 adds one additional intermediate anchor
33
33
  scale [2^0, 2^0.5] on each level.
34
- aspect_ratios (list of float): Aspect ratios of anchors added on
34
+ aspect_ratios: List[float]. Aspect ratios of anchors added on
35
35
  each level. Each number indicates the ratio of width to height.
36
- anchor_size (float): Scale of size of the base anchor relative to the
36
+ anchor_size: float. Scale of size of the base anchor relative to the
37
37
  feature stride 2^level.
38
38
 
39
39
  Call arguments:
40
- images (Optional[Tensor]): An image tensor with shape `[B, H, W, C]` or
41
- `[H, W, C]`. If provided, its shape will be used to determine anchor
40
+ inputs: An image tensor with shape `[B, H, W, C]` or
41
+ `[H, W, C]`. Its shape will be used to determine anchor
42
42
  sizes.
43
43
 
44
44
  Returns:
45
45
  Dict: A dictionary mapping feature levels
46
- (e.g., 'P3', 'P4', etc.) to anchor boxes. Each entry contains a tensor
47
- of shape `(H/stride * W/stride * num_anchors_per_location, 4)`,
48
- where H and W are the height and width of the image, stride is 2^level,
49
- and num_anchors_per_location is `num_scales * len(aspect_ratios)`.
46
+ (e.g., 'P3', 'P4', etc.) to anchor boxes. Each entry contains a
47
+ tensor of shape
48
+ `(H/stride * W/stride * num_anchors_per_location, 4)`,
49
+ where H and W are the height and width of the image,
50
+ stride is 2^level, and num_anchors_per_location is
51
+ `num_scales * len(aspect_ratios)`.
50
52
 
51
53
  Example:
52
54
  ```python
@@ -81,8 +83,8 @@ class AnchorGenerator(keras.layers.Layer):
81
83
  self.anchor_size = anchor_size
82
84
  self.built = True
83
85
 
84
- def call(self, images):
85
- images_shape = ops.shape(images)
86
+ def call(self, inputs):
87
+ images_shape = ops.shape(inputs)
86
88
  if len(images_shape) == 4:
87
89
  image_shape = images_shape[1:-1]
88
90
  else:
@@ -147,8 +149,18 @@ class AnchorGenerator(keras.layers.Layer):
147
149
 
148
150
  def compute_output_shape(self, input_shape):
149
151
  multilevel_boxes_shape = {}
150
- for level in range(self.min_level, self.max_level + 1):
151
- multilevel_boxes_shape[f"P{level}"] = (None, None, 4)
152
+ if len(input_shape) == 4:
153
+ image_height, image_width = input_shape[1:-1]
154
+ else:
155
+ image_height, image_width = input_shape[:-1]
156
+
157
+ for i in range(self.min_level, self.max_level + 1):
158
+ multilevel_boxes_shape[f"P{i}"] = (
159
+ (image_height // 2 ** (i))
160
+ * (image_width // 2 ** (i))
161
+ * self.anchors_per_location,
162
+ 4,
163
+ )
152
164
  return multilevel_boxes_shape
153
165
 
154
166
  @property
@@ -0,0 +1,373 @@
1
+ import keras
2
+
3
+
4
+ class FeaturePyramid(keras.layers.Layer):
5
+ """A Feature Pyramid Network (FPN) layer.
6
+
7
+ This implements the paper:
8
+ Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan,
9
+ and Serge Belongie. Feature Pyramid Networks for Object Detection.
10
+ (https://arxiv.org/pdf/1612.03144)
11
+
12
+ Feature Pyramid Networks (FPNs) are basic components that are added to an
13
+ existing feature extractor (CNN) to combine features at different scales.
14
+ For the basic FPN, the inputs are features `Ci` from different levels of a
15
+ CNN, which is usually the last block for each level, where the feature is
16
+ scaled from the image by a factor of `1/2^i`.
17
+
18
+ There is an output associated with each level in the basic FPN. The output
19
+ Pi at level `i` (corresponding to Ci) is given by performing a merge
20
+ operation on the outputs of:
21
+
22
+ 1) a lateral operation on Ci (usually a conv2D layer with kernel = 1 and
23
+ strides = 1)
24
+ 2) a top-down upsampling operation from Pi+1 (except for the top most level)
25
+
26
+ The final output of each level will also have a conv2D operation
27
+ (typically with kernel = 3 and strides = 1).
28
+
29
+ The inputs to the layer should be a dict with int keys should match the
30
+ pyramid_levels, e.g. for `pyramid_levels` = [3,4,5], the expected input
31
+ dict should be `{P3:c3, P4:c4, P5:c5}`.
32
+
33
+ The output of the layer will have same structures as the inputs, a dict with
34
+ extra coarser layers will be added based on the `max_level` provided.
35
+ keys and value for each of the level.
36
+
37
+ Args:
38
+ min_level: int. The minimum level of the feature pyramid.
39
+ max_level: int. The maximum level of the feature pyramid.
40
+ num_filters: int. The number of filters in each feature map.
41
+ activation: string or `keras.activations`. The activation function
42
+ to be used in network.
43
+ Defaults to `"relu"`.
44
+ kernel_initializer: `str` or `keras.initializers` initializer.
45
+ The kernel initializer for the convolution layers.
46
+ Defaults to `"VarianceScaling"`.
47
+ bias_initializer: `str` or `keras.initializers` initializer.
48
+ The bias initializer for the convolution layers.
49
+ Defaults to `"zeros"`.
50
+ batch_norm_momentum: float.
51
+ The momentum for the batch normalization layers.
52
+ Defaults to `0.99`.
53
+ batch_norm_epsilon: float.
54
+ The epsilon for the batch normalization layers.
55
+ Defaults to `0.001`.
56
+ kernel_regularizer: `str` or `keras.regularizers` regularizer.
57
+ The kernel regularizer for the convolution layers.
58
+ Defaults to `None`.
59
+ bias_regularizer: `str` or `keras.regularizers` regularizer.
60
+ The bias regularizer for the convolution layers.
61
+ Defaults to `None`.
62
+ use_batch_norm: bool. Whether to use batch normalization.
63
+ Defaults to `False`.
64
+ **kwargs: other keyword arguments passed to `keras.layers.Layer`,
65
+ including `name`, `trainable`, `dtype` etc.
66
+ """
67
+
68
+ def __init__(
69
+ self,
70
+ min_level,
71
+ max_level,
72
+ num_filters=256,
73
+ activation="relu",
74
+ kernel_initializer="VarianceScaling",
75
+ bias_initializer="zeros",
76
+ batch_norm_momentum=0.99,
77
+ batch_norm_epsilon=0.001,
78
+ kernel_regularizer=None,
79
+ bias_regularizer=None,
80
+ use_batch_norm=False,
81
+ **kwargs,
82
+ ):
83
+ super().__init__(**kwargs)
84
+ if min_level > max_level:
85
+ raise ValueError(
86
+ f"Minimum level ({min_level}) must be less than or equal to "
87
+ f"maximum level ({max_level})."
88
+ )
89
+ self.min_level = min_level
90
+ self.max_level = max_level
91
+ self.num_filters = num_filters
92
+ self.activation = keras.activations.get(activation)
93
+ self.kernel_initializer = keras.initializers.get(kernel_initializer)
94
+ self.bias_initializer = keras.initializers.get(bias_initializer)
95
+ self.batch_norm_momentum = batch_norm_momentum
96
+ self.batch_norm_epsilon = batch_norm_epsilon
97
+ self.use_batch_norm = use_batch_norm
98
+ if kernel_regularizer is not None:
99
+ self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)
100
+ else:
101
+ self.kernel_regularizer = None
102
+ if bias_regularizer is not None:
103
+ self.bias_regularizer = keras.regularizers.get(bias_regularizer)
104
+ else:
105
+ self.bias_regularizer = None
106
+ self.data_format = keras.backend.image_data_format()
107
+ self.batch_norm_axis = -1 if self.data_format == "channels_last" else 1
108
+
109
+ def build(self, input_shapes):
110
+ input_shapes = {
111
+ (
112
+ input_name.split("_")[0]
113
+ if "shape" in input_name
114
+ else input_name
115
+ ): input_shapes[input_name]
116
+ for input_name in input_shapes
117
+ }
118
+ input_levels = [int(level[1]) for level in input_shapes]
119
+ backbone_max_level = min(max(input_levels), self.max_level)
120
+
121
+ # Build lateral layers
122
+ self.lateral_conv_layers = {}
123
+ for i in range(self.min_level, backbone_max_level + 1):
124
+ level = f"P{i}"
125
+ self.lateral_conv_layers[level] = keras.layers.Conv2D(
126
+ filters=self.num_filters,
127
+ kernel_size=1,
128
+ padding="same",
129
+ data_format=self.data_format,
130
+ kernel_initializer=self.kernel_initializer,
131
+ bias_initializer=self.bias_initializer,
132
+ kernel_regularizer=self.kernel_regularizer,
133
+ bias_regularizer=self.bias_regularizer,
134
+ dtype=self.dtype_policy,
135
+ name=f"lateral_conv_{level}",
136
+ )
137
+ self.lateral_conv_layers[level].build(input_shapes[level])
138
+
139
+ self.lateral_batch_norm_layers = {}
140
+ if self.use_batch_norm:
141
+ for i in range(self.min_level, backbone_max_level + 1):
142
+ level = f"P{i}"
143
+ self.lateral_batch_norm_layers[level] = (
144
+ keras.layers.BatchNormalization(
145
+ axis=self.batch_norm_axis,
146
+ momentum=self.batch_norm_epsilon,
147
+ epsilon=self.batch_norm_epsilon,
148
+ name=f"lateral_norm_{level}",
149
+ )
150
+ )
151
+ self.lateral_batch_norm_layers[level].build(
152
+ (None, None, None, 256)
153
+ if self.data_format == "channels_last"
154
+ else (None, 256, None, None)
155
+ )
156
+
157
+ # Build output layers
158
+ self.output_conv_layers = {}
159
+ for i in range(self.min_level, backbone_max_level + 1):
160
+ level = f"P{i}"
161
+ self.output_conv_layers[level] = keras.layers.Conv2D(
162
+ filters=self.num_filters,
163
+ kernel_size=3,
164
+ padding="same",
165
+ data_format=self.data_format,
166
+ kernel_initializer=self.kernel_initializer,
167
+ bias_initializer=self.bias_initializer,
168
+ kernel_regularizer=self.kernel_regularizer,
169
+ bias_regularizer=self.bias_regularizer,
170
+ dtype=self.dtype_policy,
171
+ name=f"output_conv_{level}",
172
+ )
173
+ self.output_conv_layers[level].build(
174
+ (None, None, None, 256)
175
+ if self.data_format == "channels_last"
176
+ else (None, 256, None, None)
177
+ )
178
+
179
+ # Build coarser layers
180
+ for i in range(backbone_max_level + 1, self.max_level + 1):
181
+ level = f"P{i}"
182
+ self.output_conv_layers[level] = keras.layers.Conv2D(
183
+ filters=self.num_filters,
184
+ strides=2,
185
+ kernel_size=3,
186
+ padding="same",
187
+ data_format=self.data_format,
188
+ kernel_initializer=self.kernel_initializer,
189
+ bias_initializer=self.bias_initializer,
190
+ kernel_regularizer=self.kernel_regularizer,
191
+ bias_regularizer=self.bias_regularizer,
192
+ dtype=self.dtype_policy,
193
+ name=f"coarser_{level}",
194
+ )
195
+ self.output_conv_layers[level].build(
196
+ (None, None, None, 256)
197
+ if self.data_format == "channels_last"
198
+ else (None, 256, None, None)
199
+ )
200
+
201
+ # Build batch norm layers
202
+ self.output_batch_norms = {}
203
+ if self.use_batch_norm:
204
+ for i in range(self.min_level, self.max_level + 1):
205
+ level = f"P{i}"
206
+ self.output_batch_norms[level] = (
207
+ keras.layers.BatchNormalization(
208
+ axis=self.batch_norm_axis,
209
+ momentum=self.batch_norm_epsilon,
210
+ epsilon=self.batch_norm_epsilon,
211
+ name=f"output_norm_{level}",
212
+ )
213
+ )
214
+ self.output_batch_norms[level].build(
215
+ (None, None, None, 256)
216
+ if self.data_format == "channels_last"
217
+ else (None, 256, None, None)
218
+ )
219
+
220
+ # The same upsampling layer is used for all levels
221
+ self.top_down_op = keras.layers.UpSampling2D(
222
+ size=2,
223
+ data_format=self.data_format,
224
+ dtype=self.dtype_policy,
225
+ name="upsampling",
226
+ )
227
+ # The same merge layer is used for all levels
228
+ self.merge_op = keras.layers.Add(
229
+ dtype=self.dtype_policy, name="merge_op"
230
+ )
231
+
232
+ self.built = True
233
+
234
+ def call(self, inputs):
235
+ """
236
+ Inputs:
237
+ The input to the model is expected to be an `Dict[Tensors]`,
238
+ containing the feature maps on top of which the FPN
239
+ will be added.
240
+
241
+ Outputs:
242
+ A dictionary of feature maps and added coarser levels based
243
+ on minimum and maximum levels provided to the layer.
244
+ """
245
+
246
+ output_features = {}
247
+
248
+ # Get the backbone max level
249
+ input_levels = [int(level[1]) for level in inputs]
250
+ backbone_max_level = min(max(input_levels), self.max_level)
251
+
252
+ for i in range(backbone_max_level, self.min_level - 1, -1):
253
+ level = f"P{i}"
254
+ output = self.lateral_conv_layers[level](inputs[level])
255
+ if i < backbone_max_level:
256
+ # for the top most output, it doesn't need to merge with any
257
+ # upper stream outputs
258
+ upstream_output = self.top_down_op(output_features[f"P{i+1}"])
259
+ output = self.merge_op([output, upstream_output])
260
+ output_features[level] = (
261
+ self.lateral_batch_norm_layers[level](output)
262
+ if self.use_batch_norm
263
+ else output
264
+ )
265
+
266
+ # Post apply the output layers so that we don't leak them to the down
267
+ # stream level
268
+ for i in range(backbone_max_level, self.min_level - 1, -1):
269
+ level = f"P{i}"
270
+ output_features[level] = self.output_conv_layers[level](
271
+ output_features[level]
272
+ )
273
+
274
+ for i in range(backbone_max_level + 1, self.max_level + 1):
275
+ level = f"P{i}"
276
+ feats_in = output_features[f"P{i-1}"]
277
+ if i > backbone_max_level + 1:
278
+ feats_in = self.activation(feats_in)
279
+ output_features[level] = (
280
+ self.output_batch_norms[level](
281
+ self.output_conv_layers[level](feats_in)
282
+ )
283
+ if self.use_batch_norm
284
+ else self.output_conv_layers[level](feats_in)
285
+ )
286
+
287
+ return output_features
288
+
289
+ def get_config(self):
290
+ config = super().get_config()
291
+ config.update(
292
+ {
293
+ "min_level": self.min_level,
294
+ "max_level": self.max_level,
295
+ "num_filters": self.num_filters,
296
+ "use_batch_norm": self.use_batch_norm,
297
+ "activation": keras.activations.serialize(self.activation),
298
+ "kernel_initializer": keras.initializers.serialize(
299
+ self.kernel_initializer
300
+ ),
301
+ "bias_initializer": keras.initializers.serialize(
302
+ self.bias_initializer
303
+ ),
304
+ "batch_norm_momentum": self.batch_norm_momentum,
305
+ "batch_norm_epsilon": self.batch_norm_epsilon,
306
+ "kernel_regularizer": (
307
+ keras.regularizers.serialize(self.kernel_regularizer)
308
+ if self.kernel_regularizer is not None
309
+ else None
310
+ ),
311
+ "bias_regularizer": (
312
+ keras.regularizers.serialize(self.bias_regularizer)
313
+ if self.bias_regularizer is not None
314
+ else None
315
+ ),
316
+ }
317
+ )
318
+
319
+ return config
320
+
321
+ def compute_output_shape(self, input_shapes):
322
+ output_shape = {}
323
+ print(input_shapes)
324
+ input_levels = [int(level[1]) for level in input_shapes]
325
+ backbone_max_level = min(max(input_levels), self.max_level)
326
+
327
+ for i in range(self.min_level, backbone_max_level + 1):
328
+ level = f"P{i}"
329
+ if self.data_format == "channels_last":
330
+ output_shape[level] = input_shapes[level][:-1] + (256,)
331
+ else:
332
+ output_shape[level] = (
333
+ input_shapes[level][0],
334
+ 256,
335
+ ) + input_shapes[level][1:3]
336
+
337
+ intermediate_shape = input_shapes[f"P{backbone_max_level}"]
338
+ intermediate_shape = (
339
+ (
340
+ intermediate_shape[0],
341
+ intermediate_shape[1] // 2,
342
+ intermediate_shape[2] // 2,
343
+ 256,
344
+ )
345
+ if self.data_format == "channels_last"
346
+ else (
347
+ intermediate_shape[0],
348
+ 256,
349
+ intermediate_shape[1] // 2,
350
+ intermediate_shape[2] // 2,
351
+ )
352
+ )
353
+
354
+ for i in range(backbone_max_level + 1, self.max_level + 1):
355
+ level = f"P{i}"
356
+ output_shape[level] = intermediate_shape
357
+ intermediate_shape = (
358
+ (
359
+ intermediate_shape[0],
360
+ intermediate_shape[1] // 2,
361
+ intermediate_shape[2] // 2,
362
+ 256,
363
+ )
364
+ if self.data_format == "channels_last"
365
+ else (
366
+ intermediate_shape[0],
367
+ 256,
368
+ intermediate_shape[1] // 2,
369
+ intermediate_shape[2] // 2,
370
+ )
371
+ )
372
+
373
+ return output_shape