keras-hub-nightly 0.16.1.dev202409270338__tar.gz → 0.16.1.dev202409280337__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/PKG-INFO +1 -1
- keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +14 -0
- keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/densenet/densenet_image_converter.py +10 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/densenet_presets.py +0 -13
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/anchor_generator.py +28 -16
- keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/retinanet/feature_pyramid.py +373 -0
- keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/retinanet/retinanet_label_encoder.py +270 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +0 -13
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tests/test_case.py +23 -6
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/tensor_utils.py +106 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/convert_densenet.py +0 -13
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/SOURCES.txt +2 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/setup.py +1 -15
- keras_hub_nightly-0.16.1.dev202409270338/keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py +0 -27
- keras_hub_nightly-0.16.1.dev202409270338/keras_hub/src/models/densenet/densenet_image_converter.py +0 -23
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/README.md +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/clip/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/image_segmenter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_image_segmenter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_mask_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_prompt_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/sam/sam_transformer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/mmdit.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/t5_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/stable_diffusion_3/vae_image_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/text_to_image.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vgg/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vit_det/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tests/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/timm/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/setup.cfg +0 -0
{keras_hub_nightly-0.16.1.dev202409270338 → keras_hub_nightly-0.16.1.dev202409280337}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202409280337
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -0,0 +1,14 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
|
3
|
+
from keras_hub.src.models.densenet.densenet_image_converter import (
|
4
|
+
DenseNetImageConverter,
|
5
|
+
)
|
6
|
+
from keras_hub.src.models.image_classifier_preprocessor import (
|
7
|
+
ImageClassifierPreprocessor,
|
8
|
+
)
|
9
|
+
|
10
|
+
|
11
|
+
@keras_hub_export("keras_hub.models.DenseNetImageClassifierPreprocessor")
|
12
|
+
class DenseNetImageClassifierPreprocessor(ImageClassifierPreprocessor):
|
13
|
+
backbone_cls = DenseNetBackbone
|
14
|
+
image_converter_cls = DenseNetImageConverter
|
keras_hub_nightly-0.16.1.dev202409280337/keras_hub/src/models/densenet/densenet_image_converter.py
ADDED
@@ -0,0 +1,10 @@
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
2
|
+
from keras_hub.src.layers.preprocessing.resizing_image_converter import (
|
3
|
+
ResizingImageConverter,
|
4
|
+
)
|
5
|
+
from keras_hub.src.models.densenet.densenet_backbone import DenseNetBackbone
|
6
|
+
|
7
|
+
|
8
|
+
@keras_hub_export("keras_hub.layers.DenseNetImageConverter")
|
9
|
+
class DenseNetImageConverter(ResizingImageConverter):
|
10
|
+
backbone_cls = DenseNetBackbone
|
@@ -1,16 +1,3 @@
|
|
1
|
-
# Copyright 2024 The KerasHub Authors
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
1
|
"""DenseNet preset configurations."""
|
15
2
|
|
16
3
|
backbone_presets = {
|
@@ -24,29 +24,31 @@ class AnchorGenerator(keras.layers.Layer):
|
|
24
24
|
for larger objects.
|
25
25
|
|
26
26
|
Args:
|
27
|
-
bounding_box_format
|
27
|
+
bounding_box_format: str. The format of the bounding boxes
|
28
28
|
to be generated. Expected to be a string like 'xyxy', 'xywh', etc.
|
29
|
-
min_level
|
30
|
-
max_level
|
31
|
-
num_scales
|
29
|
+
min_level: int. Minimum level of the output feature pyramid.
|
30
|
+
max_level: int. Maximum level of the output feature pyramid.
|
31
|
+
num_scales: int. Number of intermediate scales added on each level.
|
32
32
|
For example, num_scales=2 adds one additional intermediate anchor
|
33
33
|
scale [2^0, 2^0.5] on each level.
|
34
|
-
aspect_ratios
|
34
|
+
aspect_ratios: List[float]. Aspect ratios of anchors added on
|
35
35
|
each level. Each number indicates the ratio of width to height.
|
36
|
-
anchor_size
|
36
|
+
anchor_size: float. Scale of size of the base anchor relative to the
|
37
37
|
feature stride 2^level.
|
38
38
|
|
39
39
|
Call arguments:
|
40
|
-
|
41
|
-
`[H, W, C]`.
|
40
|
+
inputs: An image tensor with shape `[B, H, W, C]` or
|
41
|
+
`[H, W, C]`. Its shape will be used to determine anchor
|
42
42
|
sizes.
|
43
43
|
|
44
44
|
Returns:
|
45
45
|
Dict: A dictionary mapping feature levels
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
46
|
+
(e.g., 'P3', 'P4', etc.) to anchor boxes. Each entry contains a
|
47
|
+
tensor of shape
|
48
|
+
`(H/stride * W/stride * num_anchors_per_location, 4)`,
|
49
|
+
where H and W are the height and width of the image,
|
50
|
+
stride is 2^level, and num_anchors_per_location is
|
51
|
+
`num_scales * len(aspect_ratios)`.
|
50
52
|
|
51
53
|
Example:
|
52
54
|
```python
|
@@ -81,8 +83,8 @@ class AnchorGenerator(keras.layers.Layer):
|
|
81
83
|
self.anchor_size = anchor_size
|
82
84
|
self.built = True
|
83
85
|
|
84
|
-
def call(self,
|
85
|
-
images_shape = ops.shape(
|
86
|
+
def call(self, inputs):
|
87
|
+
images_shape = ops.shape(inputs)
|
86
88
|
if len(images_shape) == 4:
|
87
89
|
image_shape = images_shape[1:-1]
|
88
90
|
else:
|
@@ -147,8 +149,18 @@ class AnchorGenerator(keras.layers.Layer):
|
|
147
149
|
|
148
150
|
def compute_output_shape(self, input_shape):
|
149
151
|
multilevel_boxes_shape = {}
|
150
|
-
|
151
|
-
|
152
|
+
if len(input_shape) == 4:
|
153
|
+
image_height, image_width = input_shape[1:-1]
|
154
|
+
else:
|
155
|
+
image_height, image_width = input_shape[:-1]
|
156
|
+
|
157
|
+
for i in range(self.min_level, self.max_level + 1):
|
158
|
+
multilevel_boxes_shape[f"P{i}"] = (
|
159
|
+
(image_height // 2 ** (i))
|
160
|
+
* (image_width // 2 ** (i))
|
161
|
+
* self.anchors_per_location,
|
162
|
+
4,
|
163
|
+
)
|
152
164
|
return multilevel_boxes_shape
|
153
165
|
|
154
166
|
@property
|
@@ -0,0 +1,373 @@
|
|
1
|
+
import keras
|
2
|
+
|
3
|
+
|
4
|
+
class FeaturePyramid(keras.layers.Layer):
|
5
|
+
"""A Feature Pyramid Network (FPN) layer.
|
6
|
+
|
7
|
+
This implements the paper:
|
8
|
+
Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan,
|
9
|
+
and Serge Belongie. Feature Pyramid Networks for Object Detection.
|
10
|
+
(https://arxiv.org/pdf/1612.03144)
|
11
|
+
|
12
|
+
Feature Pyramid Networks (FPNs) are basic components that are added to an
|
13
|
+
existing feature extractor (CNN) to combine features at different scales.
|
14
|
+
For the basic FPN, the inputs are features `Ci` from different levels of a
|
15
|
+
CNN, which is usually the last block for each level, where the feature is
|
16
|
+
scaled from the image by a factor of `1/2^i`.
|
17
|
+
|
18
|
+
There is an output associated with each level in the basic FPN. The output
|
19
|
+
Pi at level `i` (corresponding to Ci) is given by performing a merge
|
20
|
+
operation on the outputs of:
|
21
|
+
|
22
|
+
1) a lateral operation on Ci (usually a conv2D layer with kernel = 1 and
|
23
|
+
strides = 1)
|
24
|
+
2) a top-down upsampling operation from Pi+1 (except for the top most level)
|
25
|
+
|
26
|
+
The final output of each level will also have a conv2D operation
|
27
|
+
(typically with kernel = 3 and strides = 1).
|
28
|
+
|
29
|
+
The inputs to the layer should be a dict with int keys should match the
|
30
|
+
pyramid_levels, e.g. for `pyramid_levels` = [3,4,5], the expected input
|
31
|
+
dict should be `{P3:c3, P4:c4, P5:c5}`.
|
32
|
+
|
33
|
+
The output of the layer will have same structures as the inputs, a dict with
|
34
|
+
extra coarser layers will be added based on the `max_level` provided.
|
35
|
+
keys and value for each of the level.
|
36
|
+
|
37
|
+
Args:
|
38
|
+
min_level: int. The minimum level of the feature pyramid.
|
39
|
+
max_level: int. The maximum level of the feature pyramid.
|
40
|
+
num_filters: int. The number of filters in each feature map.
|
41
|
+
activation: string or `keras.activations`. The activation function
|
42
|
+
to be used in network.
|
43
|
+
Defaults to `"relu"`.
|
44
|
+
kernel_initializer: `str` or `keras.initializers` initializer.
|
45
|
+
The kernel initializer for the convolution layers.
|
46
|
+
Defaults to `"VarianceScaling"`.
|
47
|
+
bias_initializer: `str` or `keras.initializers` initializer.
|
48
|
+
The bias initializer for the convolution layers.
|
49
|
+
Defaults to `"zeros"`.
|
50
|
+
batch_norm_momentum: float.
|
51
|
+
The momentum for the batch normalization layers.
|
52
|
+
Defaults to `0.99`.
|
53
|
+
batch_norm_epsilon: float.
|
54
|
+
The epsilon for the batch normalization layers.
|
55
|
+
Defaults to `0.001`.
|
56
|
+
kernel_regularizer: `str` or `keras.regularizers` regularizer.
|
57
|
+
The kernel regularizer for the convolution layers.
|
58
|
+
Defaults to `None`.
|
59
|
+
bias_regularizer: `str` or `keras.regularizers` regularizer.
|
60
|
+
The bias regularizer for the convolution layers.
|
61
|
+
Defaults to `None`.
|
62
|
+
use_batch_norm: bool. Whether to use batch normalization.
|
63
|
+
Defaults to `False`.
|
64
|
+
**kwargs: other keyword arguments passed to `keras.layers.Layer`,
|
65
|
+
including `name`, `trainable`, `dtype` etc.
|
66
|
+
"""
|
67
|
+
|
68
|
+
def __init__(
|
69
|
+
self,
|
70
|
+
min_level,
|
71
|
+
max_level,
|
72
|
+
num_filters=256,
|
73
|
+
activation="relu",
|
74
|
+
kernel_initializer="VarianceScaling",
|
75
|
+
bias_initializer="zeros",
|
76
|
+
batch_norm_momentum=0.99,
|
77
|
+
batch_norm_epsilon=0.001,
|
78
|
+
kernel_regularizer=None,
|
79
|
+
bias_regularizer=None,
|
80
|
+
use_batch_norm=False,
|
81
|
+
**kwargs,
|
82
|
+
):
|
83
|
+
super().__init__(**kwargs)
|
84
|
+
if min_level > max_level:
|
85
|
+
raise ValueError(
|
86
|
+
f"Minimum level ({min_level}) must be less than or equal to "
|
87
|
+
f"maximum level ({max_level})."
|
88
|
+
)
|
89
|
+
self.min_level = min_level
|
90
|
+
self.max_level = max_level
|
91
|
+
self.num_filters = num_filters
|
92
|
+
self.activation = keras.activations.get(activation)
|
93
|
+
self.kernel_initializer = keras.initializers.get(kernel_initializer)
|
94
|
+
self.bias_initializer = keras.initializers.get(bias_initializer)
|
95
|
+
self.batch_norm_momentum = batch_norm_momentum
|
96
|
+
self.batch_norm_epsilon = batch_norm_epsilon
|
97
|
+
self.use_batch_norm = use_batch_norm
|
98
|
+
if kernel_regularizer is not None:
|
99
|
+
self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)
|
100
|
+
else:
|
101
|
+
self.kernel_regularizer = None
|
102
|
+
if bias_regularizer is not None:
|
103
|
+
self.bias_regularizer = keras.regularizers.get(bias_regularizer)
|
104
|
+
else:
|
105
|
+
self.bias_regularizer = None
|
106
|
+
self.data_format = keras.backend.image_data_format()
|
107
|
+
self.batch_norm_axis = -1 if self.data_format == "channels_last" else 1
|
108
|
+
|
109
|
+
def build(self, input_shapes):
|
110
|
+
input_shapes = {
|
111
|
+
(
|
112
|
+
input_name.split("_")[0]
|
113
|
+
if "shape" in input_name
|
114
|
+
else input_name
|
115
|
+
): input_shapes[input_name]
|
116
|
+
for input_name in input_shapes
|
117
|
+
}
|
118
|
+
input_levels = [int(level[1]) for level in input_shapes]
|
119
|
+
backbone_max_level = min(max(input_levels), self.max_level)
|
120
|
+
|
121
|
+
# Build lateral layers
|
122
|
+
self.lateral_conv_layers = {}
|
123
|
+
for i in range(self.min_level, backbone_max_level + 1):
|
124
|
+
level = f"P{i}"
|
125
|
+
self.lateral_conv_layers[level] = keras.layers.Conv2D(
|
126
|
+
filters=self.num_filters,
|
127
|
+
kernel_size=1,
|
128
|
+
padding="same",
|
129
|
+
data_format=self.data_format,
|
130
|
+
kernel_initializer=self.kernel_initializer,
|
131
|
+
bias_initializer=self.bias_initializer,
|
132
|
+
kernel_regularizer=self.kernel_regularizer,
|
133
|
+
bias_regularizer=self.bias_regularizer,
|
134
|
+
dtype=self.dtype_policy,
|
135
|
+
name=f"lateral_conv_{level}",
|
136
|
+
)
|
137
|
+
self.lateral_conv_layers[level].build(input_shapes[level])
|
138
|
+
|
139
|
+
self.lateral_batch_norm_layers = {}
|
140
|
+
if self.use_batch_norm:
|
141
|
+
for i in range(self.min_level, backbone_max_level + 1):
|
142
|
+
level = f"P{i}"
|
143
|
+
self.lateral_batch_norm_layers[level] = (
|
144
|
+
keras.layers.BatchNormalization(
|
145
|
+
axis=self.batch_norm_axis,
|
146
|
+
momentum=self.batch_norm_epsilon,
|
147
|
+
epsilon=self.batch_norm_epsilon,
|
148
|
+
name=f"lateral_norm_{level}",
|
149
|
+
)
|
150
|
+
)
|
151
|
+
self.lateral_batch_norm_layers[level].build(
|
152
|
+
(None, None, None, 256)
|
153
|
+
if self.data_format == "channels_last"
|
154
|
+
else (None, 256, None, None)
|
155
|
+
)
|
156
|
+
|
157
|
+
# Build output layers
|
158
|
+
self.output_conv_layers = {}
|
159
|
+
for i in range(self.min_level, backbone_max_level + 1):
|
160
|
+
level = f"P{i}"
|
161
|
+
self.output_conv_layers[level] = keras.layers.Conv2D(
|
162
|
+
filters=self.num_filters,
|
163
|
+
kernel_size=3,
|
164
|
+
padding="same",
|
165
|
+
data_format=self.data_format,
|
166
|
+
kernel_initializer=self.kernel_initializer,
|
167
|
+
bias_initializer=self.bias_initializer,
|
168
|
+
kernel_regularizer=self.kernel_regularizer,
|
169
|
+
bias_regularizer=self.bias_regularizer,
|
170
|
+
dtype=self.dtype_policy,
|
171
|
+
name=f"output_conv_{level}",
|
172
|
+
)
|
173
|
+
self.output_conv_layers[level].build(
|
174
|
+
(None, None, None, 256)
|
175
|
+
if self.data_format == "channels_last"
|
176
|
+
else (None, 256, None, None)
|
177
|
+
)
|
178
|
+
|
179
|
+
# Build coarser layers
|
180
|
+
for i in range(backbone_max_level + 1, self.max_level + 1):
|
181
|
+
level = f"P{i}"
|
182
|
+
self.output_conv_layers[level] = keras.layers.Conv2D(
|
183
|
+
filters=self.num_filters,
|
184
|
+
strides=2,
|
185
|
+
kernel_size=3,
|
186
|
+
padding="same",
|
187
|
+
data_format=self.data_format,
|
188
|
+
kernel_initializer=self.kernel_initializer,
|
189
|
+
bias_initializer=self.bias_initializer,
|
190
|
+
kernel_regularizer=self.kernel_regularizer,
|
191
|
+
bias_regularizer=self.bias_regularizer,
|
192
|
+
dtype=self.dtype_policy,
|
193
|
+
name=f"coarser_{level}",
|
194
|
+
)
|
195
|
+
self.output_conv_layers[level].build(
|
196
|
+
(None, None, None, 256)
|
197
|
+
if self.data_format == "channels_last"
|
198
|
+
else (None, 256, None, None)
|
199
|
+
)
|
200
|
+
|
201
|
+
# Build batch norm layers
|
202
|
+
self.output_batch_norms = {}
|
203
|
+
if self.use_batch_norm:
|
204
|
+
for i in range(self.min_level, self.max_level + 1):
|
205
|
+
level = f"P{i}"
|
206
|
+
self.output_batch_norms[level] = (
|
207
|
+
keras.layers.BatchNormalization(
|
208
|
+
axis=self.batch_norm_axis,
|
209
|
+
momentum=self.batch_norm_epsilon,
|
210
|
+
epsilon=self.batch_norm_epsilon,
|
211
|
+
name=f"output_norm_{level}",
|
212
|
+
)
|
213
|
+
)
|
214
|
+
self.output_batch_norms[level].build(
|
215
|
+
(None, None, None, 256)
|
216
|
+
if self.data_format == "channels_last"
|
217
|
+
else (None, 256, None, None)
|
218
|
+
)
|
219
|
+
|
220
|
+
# The same upsampling layer is used for all levels
|
221
|
+
self.top_down_op = keras.layers.UpSampling2D(
|
222
|
+
size=2,
|
223
|
+
data_format=self.data_format,
|
224
|
+
dtype=self.dtype_policy,
|
225
|
+
name="upsampling",
|
226
|
+
)
|
227
|
+
# The same merge layer is used for all levels
|
228
|
+
self.merge_op = keras.layers.Add(
|
229
|
+
dtype=self.dtype_policy, name="merge_op"
|
230
|
+
)
|
231
|
+
|
232
|
+
self.built = True
|
233
|
+
|
234
|
+
def call(self, inputs):
|
235
|
+
"""
|
236
|
+
Inputs:
|
237
|
+
The input to the model is expected to be an `Dict[Tensors]`,
|
238
|
+
containing the feature maps on top of which the FPN
|
239
|
+
will be added.
|
240
|
+
|
241
|
+
Outputs:
|
242
|
+
A dictionary of feature maps and added coarser levels based
|
243
|
+
on minimum and maximum levels provided to the layer.
|
244
|
+
"""
|
245
|
+
|
246
|
+
output_features = {}
|
247
|
+
|
248
|
+
# Get the backbone max level
|
249
|
+
input_levels = [int(level[1]) for level in inputs]
|
250
|
+
backbone_max_level = min(max(input_levels), self.max_level)
|
251
|
+
|
252
|
+
for i in range(backbone_max_level, self.min_level - 1, -1):
|
253
|
+
level = f"P{i}"
|
254
|
+
output = self.lateral_conv_layers[level](inputs[level])
|
255
|
+
if i < backbone_max_level:
|
256
|
+
# for the top most output, it doesn't need to merge with any
|
257
|
+
# upper stream outputs
|
258
|
+
upstream_output = self.top_down_op(output_features[f"P{i+1}"])
|
259
|
+
output = self.merge_op([output, upstream_output])
|
260
|
+
output_features[level] = (
|
261
|
+
self.lateral_batch_norm_layers[level](output)
|
262
|
+
if self.use_batch_norm
|
263
|
+
else output
|
264
|
+
)
|
265
|
+
|
266
|
+
# Post apply the output layers so that we don't leak them to the down
|
267
|
+
# stream level
|
268
|
+
for i in range(backbone_max_level, self.min_level - 1, -1):
|
269
|
+
level = f"P{i}"
|
270
|
+
output_features[level] = self.output_conv_layers[level](
|
271
|
+
output_features[level]
|
272
|
+
)
|
273
|
+
|
274
|
+
for i in range(backbone_max_level + 1, self.max_level + 1):
|
275
|
+
level = f"P{i}"
|
276
|
+
feats_in = output_features[f"P{i-1}"]
|
277
|
+
if i > backbone_max_level + 1:
|
278
|
+
feats_in = self.activation(feats_in)
|
279
|
+
output_features[level] = (
|
280
|
+
self.output_batch_norms[level](
|
281
|
+
self.output_conv_layers[level](feats_in)
|
282
|
+
)
|
283
|
+
if self.use_batch_norm
|
284
|
+
else self.output_conv_layers[level](feats_in)
|
285
|
+
)
|
286
|
+
|
287
|
+
return output_features
|
288
|
+
|
289
|
+
def get_config(self):
|
290
|
+
config = super().get_config()
|
291
|
+
config.update(
|
292
|
+
{
|
293
|
+
"min_level": self.min_level,
|
294
|
+
"max_level": self.max_level,
|
295
|
+
"num_filters": self.num_filters,
|
296
|
+
"use_batch_norm": self.use_batch_norm,
|
297
|
+
"activation": keras.activations.serialize(self.activation),
|
298
|
+
"kernel_initializer": keras.initializers.serialize(
|
299
|
+
self.kernel_initializer
|
300
|
+
),
|
301
|
+
"bias_initializer": keras.initializers.serialize(
|
302
|
+
self.bias_initializer
|
303
|
+
),
|
304
|
+
"batch_norm_momentum": self.batch_norm_momentum,
|
305
|
+
"batch_norm_epsilon": self.batch_norm_epsilon,
|
306
|
+
"kernel_regularizer": (
|
307
|
+
keras.regularizers.serialize(self.kernel_regularizer)
|
308
|
+
if self.kernel_regularizer is not None
|
309
|
+
else None
|
310
|
+
),
|
311
|
+
"bias_regularizer": (
|
312
|
+
keras.regularizers.serialize(self.bias_regularizer)
|
313
|
+
if self.bias_regularizer is not None
|
314
|
+
else None
|
315
|
+
),
|
316
|
+
}
|
317
|
+
)
|
318
|
+
|
319
|
+
return config
|
320
|
+
|
321
|
+
def compute_output_shape(self, input_shapes):
|
322
|
+
output_shape = {}
|
323
|
+
print(input_shapes)
|
324
|
+
input_levels = [int(level[1]) for level in input_shapes]
|
325
|
+
backbone_max_level = min(max(input_levels), self.max_level)
|
326
|
+
|
327
|
+
for i in range(self.min_level, backbone_max_level + 1):
|
328
|
+
level = f"P{i}"
|
329
|
+
if self.data_format == "channels_last":
|
330
|
+
output_shape[level] = input_shapes[level][:-1] + (256,)
|
331
|
+
else:
|
332
|
+
output_shape[level] = (
|
333
|
+
input_shapes[level][0],
|
334
|
+
256,
|
335
|
+
) + input_shapes[level][1:3]
|
336
|
+
|
337
|
+
intermediate_shape = input_shapes[f"P{backbone_max_level}"]
|
338
|
+
intermediate_shape = (
|
339
|
+
(
|
340
|
+
intermediate_shape[0],
|
341
|
+
intermediate_shape[1] // 2,
|
342
|
+
intermediate_shape[2] // 2,
|
343
|
+
256,
|
344
|
+
)
|
345
|
+
if self.data_format == "channels_last"
|
346
|
+
else (
|
347
|
+
intermediate_shape[0],
|
348
|
+
256,
|
349
|
+
intermediate_shape[1] // 2,
|
350
|
+
intermediate_shape[2] // 2,
|
351
|
+
)
|
352
|
+
)
|
353
|
+
|
354
|
+
for i in range(backbone_max_level + 1, self.max_level + 1):
|
355
|
+
level = f"P{i}"
|
356
|
+
output_shape[level] = intermediate_shape
|
357
|
+
intermediate_shape = (
|
358
|
+
(
|
359
|
+
intermediate_shape[0],
|
360
|
+
intermediate_shape[1] // 2,
|
361
|
+
intermediate_shape[2] // 2,
|
362
|
+
256,
|
363
|
+
)
|
364
|
+
if self.data_format == "channels_last"
|
365
|
+
else (
|
366
|
+
intermediate_shape[0],
|
367
|
+
256,
|
368
|
+
intermediate_shape[1] // 2,
|
369
|
+
intermediate_shape[2] // 2,
|
370
|
+
)
|
371
|
+
)
|
372
|
+
|
373
|
+
return output_shape
|