keras-hub-nightly 0.16.1.dev202409230338__tar.gz → 0.16.1.dev202409250340__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/layers/__init__.py +2 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/models/__init__.py +3 -0
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/image_segmenter.py +86 -0
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/sam/sam_backbone.py +153 -0
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/sam/sam_image_segmenter.py +237 -0
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/sam/sam_layers.py +402 -0
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/sam/sam_mask_decoder.py +270 -0
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/sam/sam_prompt_encoder.py +336 -0
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/sam/sam_transformer.py +159 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/vit_det/vit_det_backbone.py +17 -12
- keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/utils/transformers/__init__.py +13 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub_nightly.egg-info/SOURCES.txt +8 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/setup.py +1 -1
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/README.md +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/api_export.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/resizing_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/densenet/densenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/resnet/resnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/resnet/resnet_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/models/stable_diffusion_v3 → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/sam}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/models/vgg → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/stable_diffusion_v3}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/mmdit.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/vae_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/models/vit_det → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/vgg}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/vgg/vgg_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/models/xlnet → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/vit_det}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/samplers → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/models/xlnet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/tests → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/samplers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/tokenizers → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/tests}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/utils → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/tokenizers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/utils/timm → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/utils}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338/keras_hub/src/utils/transformers → keras_hub_nightly-0.16.1.dev202409250340/keras_hub/src/utils/timm}/__init__.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/timm/convert_resnet.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/timm/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/setup.cfg +0 -0
{keras_hub_nightly-0.16.1.dev202409230338 → keras_hub_nightly-0.16.1.dev202409250340}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.1.
|
3
|
+
Version: 0.16.1.dev202409250340
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -56,6 +56,8 @@ from keras_hub.src.models.pali_gemma.pali_gemma_image_converter import (
|
|
56
56
|
from keras_hub.src.models.resnet.resnet_image_converter import (
|
57
57
|
ResNetImageConverter,
|
58
58
|
)
|
59
|
+
from keras_hub.src.models.sam.sam_mask_decoder import SAMMaskDecoder
|
60
|
+
from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
|
59
61
|
from keras_hub.src.models.whisper.whisper_audio_converter import (
|
60
62
|
WhisperAudioConverter,
|
61
63
|
)
|
@@ -175,6 +175,7 @@ from keras_hub.src.models.image_classifier import ImageClassifier
|
|
175
175
|
from keras_hub.src.models.image_classifier_preprocessor import (
|
176
176
|
ImageClassifierPreprocessor,
|
177
177
|
)
|
178
|
+
from keras_hub.src.models.image_segmenter import ImageSegmenter
|
178
179
|
from keras_hub.src.models.llama3.llama3_backbone import Llama3Backbone
|
179
180
|
from keras_hub.src.models.llama3.llama3_causal_lm import Llama3CausalLM
|
180
181
|
from keras_hub.src.models.llama3.llama3_causal_lm_preprocessor import (
|
@@ -255,6 +256,8 @@ from keras_hub.src.models.roberta.roberta_text_classifier_preprocessor import (
|
|
255
256
|
RobertaTextClassifierPreprocessor as RobertaPreprocessor,
|
256
257
|
)
|
257
258
|
from keras_hub.src.models.roberta.roberta_tokenizer import RobertaTokenizer
|
259
|
+
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
|
260
|
+
from keras_hub.src.models.sam.sam_image_segmenter import SAMImageSegmenter
|
258
261
|
from keras_hub.src.models.seq_2_seq_lm import Seq2SeqLM
|
259
262
|
from keras_hub.src.models.seq_2_seq_lm_preprocessor import Seq2SeqLMPreprocessor
|
260
263
|
from keras_hub.src.models.t5.t5_backbone import T5Backbone
|
@@ -0,0 +1,86 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
import keras
|
15
|
+
|
16
|
+
from keras_hub.src.api_export import keras_hub_export
|
17
|
+
from keras_hub.src.models.task import Task
|
18
|
+
|
19
|
+
|
20
|
+
@keras_hub_export("keras_hub.models.ImageSegmenter")
|
21
|
+
class ImageSegmenter(Task):
|
22
|
+
"""Base class for all image segmentation tasks.
|
23
|
+
|
24
|
+
`ImageSegmenter` tasks wrap a `keras_hub.models.Task` and
|
25
|
+
a `keras_hub.models.Preprocessor` to create a model that can be used for
|
26
|
+
image segmentation.
|
27
|
+
|
28
|
+
All `ImageSegmenter` tasks include a `from_preset()` constructor which can
|
29
|
+
be used to load a pre-trained config and weights.
|
30
|
+
"""
|
31
|
+
|
32
|
+
def __init__(self, *args, **kwargs):
|
33
|
+
super().__init__(*args, **kwargs)
|
34
|
+
# Default compilation.
|
35
|
+
self.compile()
|
36
|
+
|
37
|
+
def compile(
|
38
|
+
self,
|
39
|
+
optimizer="auto",
|
40
|
+
loss="auto",
|
41
|
+
*,
|
42
|
+
metrics="auto",
|
43
|
+
**kwargs,
|
44
|
+
):
|
45
|
+
"""Configures the `ImageSegmenter` task for training.
|
46
|
+
|
47
|
+
The `ImageSegmenter` task extends the default compilation signature of
|
48
|
+
`keras.Model.compile` with defaults for `optimizer`, `loss`, and
|
49
|
+
`metrics`. To override these defaults, pass any value
|
50
|
+
to these arguments during compilation.
|
51
|
+
|
52
|
+
Args:
|
53
|
+
optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
|
54
|
+
instance. Defaults to `"auto"`, which uses the default optimizer
|
55
|
+
for the given model and task. See `keras.Model.compile` and
|
56
|
+
`keras.optimizers` for more info on possible `optimizer` values.
|
57
|
+
loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
|
58
|
+
Defaults to `"auto"`, where a
|
59
|
+
`keras.losses.SparseCategoricalCrossentropy` loss will be
|
60
|
+
applied for the classification task. See
|
61
|
+
`keras.Model.compile` and `keras.losses` for more info on
|
62
|
+
possible `loss` values.
|
63
|
+
metrics: `"auto"`, or a list of metrics to be evaluated by
|
64
|
+
the model during training and testing. Defaults to `"auto"`,
|
65
|
+
where a `keras.metrics.SparseCategoricalAccuracy` will be
|
66
|
+
applied to track the accuracy of the model during training.
|
67
|
+
See `keras.Model.compile` and `keras.metrics` for
|
68
|
+
more info on possible `metrics` values.
|
69
|
+
**kwargs: See `keras.Model.compile` for a full list of arguments
|
70
|
+
supported by the compile method.
|
71
|
+
"""
|
72
|
+
if optimizer == "auto":
|
73
|
+
optimizer = keras.optimizers.Adam(5e-5)
|
74
|
+
if loss == "auto":
|
75
|
+
activation = getattr(self, "activation", None)
|
76
|
+
activation = keras.activations.get(activation)
|
77
|
+
from_logits = activation != keras.activations.softmax
|
78
|
+
loss = keras.losses.CategoricalCrossentropy(from_logits=from_logits)
|
79
|
+
if metrics == "auto":
|
80
|
+
metrics = [keras.metrics.CategoricalAccuracy()]
|
81
|
+
super().compile(
|
82
|
+
optimizer=optimizer,
|
83
|
+
loss=loss,
|
84
|
+
metrics=metrics,
|
85
|
+
**kwargs,
|
86
|
+
)
|
@@ -0,0 +1,153 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import keras
|
16
|
+
|
17
|
+
from keras_hub.src.api_export import keras_hub_export
|
18
|
+
from keras_hub.src.models.backbone import Backbone
|
19
|
+
|
20
|
+
|
21
|
+
@keras_hub_export("keras_hub.models.SAMBackbone")
|
22
|
+
class SAMBackbone(Backbone):
|
23
|
+
"""A backbone for the Segment Anything Model (SAM).
|
24
|
+
|
25
|
+
Args:
|
26
|
+
image_encoder: `keras_hub.models.ViTDetBackbone`. A feature extractor for
|
27
|
+
the input images.
|
28
|
+
prompt_encoder: `keras_hub.layers.SAMPromptEncoder`. A Keras layer to
|
29
|
+
compute embeddings for points, box, and mask prompt.
|
30
|
+
mask_decoder: `keras_hub.layers.SAMMaskDecoder`. A Keras layer to
|
31
|
+
generate segmentation masks given the embeddings generated by the
|
32
|
+
backbone and the prompt encoder.
|
33
|
+
dtype: The dtype of the layer weights.
|
34
|
+
|
35
|
+
Example:
|
36
|
+
```python
|
37
|
+
image_size=128
|
38
|
+
batch_size=2
|
39
|
+
input_data = {
|
40
|
+
"images": np.ones(
|
41
|
+
(batch_size, image_size, image_size, 3),
|
42
|
+
dtype="float32",
|
43
|
+
),
|
44
|
+
"points": np.ones((batch_size, 1, 2), dtype="float32"),
|
45
|
+
"labels": np.ones((batch_size, 1), dtype="float32"),
|
46
|
+
"boxes": np.ones((batch_size, 1, 2, 2), dtype="float32"),
|
47
|
+
"masks": np.zeros(
|
48
|
+
(batch_size, 0, image_size, image_size, 1)
|
49
|
+
),
|
50
|
+
}
|
51
|
+
image_encoder = keras_hub.models.ViTDetBackbone(
|
52
|
+
hidden_size=16,
|
53
|
+
num_layers=16,
|
54
|
+
intermediate_dim=16 * 4,
|
55
|
+
num_heads=16,
|
56
|
+
global_attention_layer_indices=[2, 5, 8, 11],
|
57
|
+
patch_size=16,
|
58
|
+
num_output_channels=8,
|
59
|
+
window_size=2,
|
60
|
+
image_shape=(image_size, image_size, 3),
|
61
|
+
)
|
62
|
+
prompt_encoder = keras_hub.layers.SAMPromptEncoder(
|
63
|
+
hidden_size=8,
|
64
|
+
image_embedding_size=(8, 8),
|
65
|
+
input_image_size=(
|
66
|
+
image_size,
|
67
|
+
image_size,
|
68
|
+
),
|
69
|
+
mask_in_channels=16,
|
70
|
+
)
|
71
|
+
mask_decoder = keras_hub.layers.SAMMaskDecoder(
|
72
|
+
num_layers=2,
|
73
|
+
hidden_size=8,
|
74
|
+
intermediate_dim=32,
|
75
|
+
num_heads=8,
|
76
|
+
embedding_dim=8,
|
77
|
+
num_multimask_outputs=3,
|
78
|
+
iou_head_depth=3,
|
79
|
+
iou_head_hidden_dim=8,
|
80
|
+
)
|
81
|
+
backbone = keras_hub.models.SAMBackbone(
|
82
|
+
image_encoder=image_encoder,
|
83
|
+
prompt_encoder=prompt_encoder,
|
84
|
+
mask_decoder=mask_decoder,
|
85
|
+
image_shape=(image_size, image_size, 3),
|
86
|
+
)
|
87
|
+
backbone(input_data)
|
88
|
+
```
|
89
|
+
"""
|
90
|
+
|
91
|
+
def __init__(
|
92
|
+
self,
|
93
|
+
image_encoder,
|
94
|
+
prompt_encoder,
|
95
|
+
mask_decoder,
|
96
|
+
dtype=None,
|
97
|
+
**kwargs,
|
98
|
+
):
|
99
|
+
# === Layers ===
|
100
|
+
self.image_encoder = image_encoder
|
101
|
+
self.prompt_encoder = prompt_encoder
|
102
|
+
self.mask_decoder = mask_decoder
|
103
|
+
# === Functional model
|
104
|
+
image_input = self.image_encoder.input
|
105
|
+
|
106
|
+
inputs = {
|
107
|
+
"images": image_input,
|
108
|
+
"points": keras.Input(shape=[None, 2], name="points"),
|
109
|
+
"labels": keras.Input(shape=[None], name="labels"),
|
110
|
+
"boxes": keras.Input(shape=[None, 2, 2], name="boxes"),
|
111
|
+
"masks": keras.Input(shape=[None, None, None, 1], name="masks"),
|
112
|
+
}
|
113
|
+
image_embeddings = self.image_encoder.output
|
114
|
+
prompt_embeddings = self.prompt_encoder(**inputs)
|
115
|
+
outputs = {
|
116
|
+
"image_embeddings": image_embeddings,
|
117
|
+
}
|
118
|
+
outputs.update(prompt_embeddings)
|
119
|
+
super().__init__(
|
120
|
+
inputs=inputs,
|
121
|
+
outputs=outputs,
|
122
|
+
dtype=dtype,
|
123
|
+
**kwargs,
|
124
|
+
)
|
125
|
+
|
126
|
+
def get_config(self):
|
127
|
+
config = super().get_config()
|
128
|
+
config.update(
|
129
|
+
{
|
130
|
+
"image_encoder": keras.layers.serialize(self.image_encoder),
|
131
|
+
"prompt_encoder": keras.layers.serialize(self.prompt_encoder),
|
132
|
+
"mask_decoder": keras.layers.serialize(self.mask_decoder),
|
133
|
+
}
|
134
|
+
)
|
135
|
+
return config
|
136
|
+
|
137
|
+
@classmethod
|
138
|
+
def from_config(cls, config):
|
139
|
+
config.update(
|
140
|
+
{
|
141
|
+
"image_encoder": keras.layers.deserialize(
|
142
|
+
config["image_encoder"]
|
143
|
+
),
|
144
|
+
"prompt_encoder": keras.layers.deserialize(
|
145
|
+
config["prompt_encoder"]
|
146
|
+
),
|
147
|
+
"mask_decoder": keras.layers.deserialize(
|
148
|
+
config["mask_decoder"]
|
149
|
+
),
|
150
|
+
}
|
151
|
+
)
|
152
|
+
|
153
|
+
return super().from_config(config)
|
@@ -0,0 +1,237 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import numpy as np
|
16
|
+
from keras import ops
|
17
|
+
|
18
|
+
from keras_hub.src.api_export import keras_hub_export
|
19
|
+
from keras_hub.src.models.image_segmenter import ImageSegmenter
|
20
|
+
from keras_hub.src.models.sam.sam_backbone import SAMBackbone
|
21
|
+
|
22
|
+
|
23
|
+
@keras_hub_export("keras_hub.models.SAMImageSegmenter")
|
24
|
+
class SAMImageSegmenter(ImageSegmenter):
|
25
|
+
"""The Segment Anything (SAM) image segmenter Model.
|
26
|
+
|
27
|
+
SAM works by prompting the input images. There are three ways to prompt:
|
28
|
+
(1) Labelled Points: Foreground points (points with label 1) are encoded
|
29
|
+
such that the output masks generated by the mask decoder contain them
|
30
|
+
and background points (points with label 0) are encoded such that the
|
31
|
+
generated masks don't contain them.
|
32
|
+
(2) Box: A box tells the model which part/crop of the image to segment.
|
33
|
+
(3) Mask: An input mask can be used to refine the output of the mask
|
34
|
+
decoder.
|
35
|
+
These prompts can be mixed and matched but at least one of the prompts
|
36
|
+
must be present. To turn off a particular prompt, simply exclude it from
|
37
|
+
the inputs to the model.
|
38
|
+
(1) For points prompts, the expected shape is `(batch, num_points, 2)`.
|
39
|
+
The labels must have a corresponding shape of `(batch, num_points)`.
|
40
|
+
(2) For box prompt, the expected shape is `(batch, 1, 2, 2)`.
|
41
|
+
(3) Similarly, mask prompts have shape `(batch, 1, H, W, 1)`.
|
42
|
+
|
43
|
+
|
44
|
+
Args:
|
45
|
+
backbone: A `keras_hub.models.VGGBackbone` instance.
|
46
|
+
|
47
|
+
Example:
|
48
|
+
Load pretrained model using `from_preset`.
|
49
|
+
|
50
|
+
```python
|
51
|
+
image_size=128
|
52
|
+
batch_size=2
|
53
|
+
input_data = {
|
54
|
+
"images": np.ones(
|
55
|
+
(batch_size, image_size, image_size, 3),
|
56
|
+
dtype="float32",
|
57
|
+
),
|
58
|
+
"points": np.ones((batch_size, 1, 2), dtype="float32"),
|
59
|
+
"labels": np.ones((batch_size, 1), dtype="float32"),
|
60
|
+
"boxes": np.ones((batch_size, 1, 2, 2), dtype="float32"),
|
61
|
+
"masks": np.zeros(
|
62
|
+
(batch_size, 0, image_size, image_size, 1)
|
63
|
+
),
|
64
|
+
}
|
65
|
+
# todo: update preset name
|
66
|
+
sam = keras_hub.models.SAMImageSegmenter.from_preset(`sam_base`)
|
67
|
+
sam(input_data)
|
68
|
+
```
|
69
|
+
|
70
|
+
Load segment anything image segmenter with custom backbone
|
71
|
+
|
72
|
+
```python
|
73
|
+
image_size = 128
|
74
|
+
batch_size = 2
|
75
|
+
images = np.ones(
|
76
|
+
(batch_size, image_size, image_size, 3),
|
77
|
+
dtype="float32",
|
78
|
+
)
|
79
|
+
image_encoder = ViTDetBackbone(
|
80
|
+
hidden_size=16,
|
81
|
+
num_layers=16,
|
82
|
+
intermediate_dim=16 * 4,
|
83
|
+
num_heads=16,
|
84
|
+
global_attention_layer_indices=[2, 5, 8, 11],
|
85
|
+
patch_size=16,
|
86
|
+
num_output_channels=8,
|
87
|
+
window_size=2,
|
88
|
+
image_shape=(image_size, image_size, 3),
|
89
|
+
)
|
90
|
+
prompt_encoder = SAMPromptEncoder(
|
91
|
+
hidden_size=8,
|
92
|
+
image_embedding_size=(8, 8),
|
93
|
+
input_image_size=(
|
94
|
+
image_size,
|
95
|
+
image_size,
|
96
|
+
),
|
97
|
+
mask_in_channels=16,
|
98
|
+
)
|
99
|
+
mask_decoder = SAMMaskDecoder(
|
100
|
+
num_layers=2,
|
101
|
+
hidden_size=8,
|
102
|
+
intermediate_dim=32,
|
103
|
+
num_heads=8,
|
104
|
+
embedding_dim=8,
|
105
|
+
num_multimask_outputs=3,
|
106
|
+
iou_head_depth=3,
|
107
|
+
iou_head_hidden_dim=8,
|
108
|
+
)
|
109
|
+
backbone = SAMBackbone(
|
110
|
+
image_encoder=image_encoder,
|
111
|
+
prompt_encoder=prompt_encoder,
|
112
|
+
mask_decoder=mask_decoder,
|
113
|
+
image_shape=(image_size, image_size, 3),
|
114
|
+
)
|
115
|
+
sam = SAMImageSegmenter(
|
116
|
+
backbone=backbone
|
117
|
+
)
|
118
|
+
```
|
119
|
+
|
120
|
+
For example, to pass in all the prompts, do:
|
121
|
+
|
122
|
+
```python
|
123
|
+
|
124
|
+
points = np.array([[[512., 512.], [100., 100.]]])
|
125
|
+
# For labels: 1 means foreground point, 0 means background
|
126
|
+
labels = np.array([[1., 0.]])
|
127
|
+
box = np.array([[[[384., 384.], [640., 640.]]]])
|
128
|
+
input_mask = np.ones((1, 1, 256, 256, 1))
|
129
|
+
Prepare an input dictionary:
|
130
|
+
inputs = {
|
131
|
+
"images": image,
|
132
|
+
"points": points,
|
133
|
+
"labels": labels,
|
134
|
+
"boxes": box,
|
135
|
+
"masks": input_mask
|
136
|
+
}
|
137
|
+
outputs = sam.predict(inputs)
|
138
|
+
masks, iou_pred = outputs["masks"], outputs["iou_pred"]
|
139
|
+
```
|
140
|
+
|
141
|
+
The first mask in the output `masks` (i.e. `masks[:, 0, ...]`) is the best
|
142
|
+
mask predicted by the model based on the prompts. Other `masks`
|
143
|
+
(i.e. `masks[:, 1:, ...]`) are alternate predictions that can be used if
|
144
|
+
they are desired over the first one.
|
145
|
+
Now, in case of only points and box prompts, simply exclude the masks:
|
146
|
+
|
147
|
+
```python
|
148
|
+
inputs = {
|
149
|
+
"images": image,
|
150
|
+
"points": points,
|
151
|
+
"labels": labels,
|
152
|
+
"boxes": box,
|
153
|
+
}
|
154
|
+
|
155
|
+
outputs = sam.predict(inputs)
|
156
|
+
masks, iou_pred = outputs["masks"], outputs["iou_pred"]
|
157
|
+
```
|
158
|
+
|
159
|
+
Another example is that only points prompts are present.
|
160
|
+
Note that if point prompts are present but no box prompt is present, the
|
161
|
+
points must be padded using a zero point and -1 label:
|
162
|
+
|
163
|
+
```python
|
164
|
+
padded_points = np.concatenate(
|
165
|
+
[points, np.zeros((1, 1, 2))], axis=1
|
166
|
+
)
|
167
|
+
|
168
|
+
padded_labels = np.concatenate(
|
169
|
+
[labels, -np.ones((1, 1))], axis=1
|
170
|
+
)
|
171
|
+
inputs = {
|
172
|
+
"images": image,
|
173
|
+
"points": padded_points,
|
174
|
+
"labels": padded_labels,
|
175
|
+
}
|
176
|
+
outputs = sam.predict(inputs)
|
177
|
+
masks, iou_pred = outputs["masks"], outputs["iou_pred"]
|
178
|
+
```
|
179
|
+
"""
|
180
|
+
|
181
|
+
backbone_cls = SAMBackbone
|
182
|
+
preprocessor_cls = None
|
183
|
+
|
184
|
+
def __init__(self, backbone, preprocessor=None, **kwargs):
|
185
|
+
# The implementation has been adapted form [Segment Anything
|
186
|
+
# paper](https://arxiv.org/abs/2304.02643) and [Segment Anything
|
187
|
+
# GitHub](https://github.com/facebookresearch/segment-anything) and
|
188
|
+
# [Detectron2](https://github.com/facebookresearch/detectron2).
|
189
|
+
# === Layers ===
|
190
|
+
self.backbone = backbone
|
191
|
+
# === Functional Model ===
|
192
|
+
inputs = self.backbone.input
|
193
|
+
x = self.backbone(inputs)
|
194
|
+
outputs = self.backbone.mask_decoder(**x)
|
195
|
+
super().__init__(inputs=inputs, outputs=outputs, **kwargs)
|
196
|
+
|
197
|
+
def predict_step(self, *args, **kwargs):
|
198
|
+
if len(args) == 2:
|
199
|
+
args = (args[0], self._add_placeholder_prompts(args[-1]))
|
200
|
+
else:
|
201
|
+
args = (self._add_placeholder_prompts(args[0]),)
|
202
|
+
|
203
|
+
return super().predict_step(*args, **kwargs)
|
204
|
+
|
205
|
+
def fit(self, *args, **kwargs):
|
206
|
+
raise NotImplementedError(
|
207
|
+
"Segment Anything Model only supports inference for now. Training"
|
208
|
+
" the model isn't supported yet."
|
209
|
+
)
|
210
|
+
|
211
|
+
def _add_placeholder_prompts(self, inputs):
|
212
|
+
"""Adds placeholder prompt inputs for a call to SAM.
|
213
|
+
|
214
|
+
Because SAM is a functional subclass model, all inputs must be specified in
|
215
|
+
calls to the model. However, prompt inputs are all optional, so we have to
|
216
|
+
add placeholders when they're not specified by the user.
|
217
|
+
"""
|
218
|
+
inputs = inputs.copy()
|
219
|
+
|
220
|
+
# Get the batch shape based on the image input
|
221
|
+
batch_size = ops.shape(inputs["images"])[0]
|
222
|
+
|
223
|
+
# The type of the placeholders must match the existing inputs with respect
|
224
|
+
# to whether or not they are tensors (as opposed to Numpy arrays).
|
225
|
+
zeros = ops.zeros if ops.is_tensor(inputs["images"]) else np.zeros
|
226
|
+
|
227
|
+
# Fill in missing inputs.
|
228
|
+
if "points" not in inputs:
|
229
|
+
inputs["points"] = zeros((batch_size, 0, 2))
|
230
|
+
if "labels" not in inputs:
|
231
|
+
inputs["labels"] = zeros((batch_size, 0))
|
232
|
+
if "boxes" not in inputs:
|
233
|
+
inputs["boxes"] = zeros((batch_size, 0, 2, 2))
|
234
|
+
if "masks" not in inputs:
|
235
|
+
inputs["masks"] = zeros((batch_size, 0, 256, 256, 1))
|
236
|
+
|
237
|
+
return inputs
|