keras-hub-nightly 0.16.0.dev202409201942__tar.gz → 0.16.1.dev202409210335__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/api_export.py +2 -2
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/resizing_image_converter.py +56 -6
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +1 -11
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/densenet/densenet_backbone.py +1 -11
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +3 -14
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +1 -11
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +3 -14
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +3 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/resnet/resnet_backbone.py +1 -21
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/resnet/resnet_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/resnet/resnet_presets.py +6 -6
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/vgg/vgg_backbone.py +0 -8
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -9
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/timm/convert_resnet.py +0 -8
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/timm/preset_loader.py +16 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/version_utils.py +1 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub_nightly.egg-info/PKG-INFO +1 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/setup.py +1 -1
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/README.md +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/api/utils/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/retinanet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/retinanet/anchor_generator.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/retinanet/box_matcher.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/retinanet/non_max_supression.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/mmdit.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/vae_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/vgg/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/vit_det/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tests/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tests/test_case.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/word_piece_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/imagenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/imagenet/imagenet_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/preset_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/tensor_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/timm/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub_nightly.egg-info/SOURCES.txt +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/setup.cfg +0 -0
{keras_hub_nightly-0.16.0.dev202409201942 → keras_hub_nightly-0.16.1.dev202409210335}/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: keras-hub-nightly
|
3
|
-
Version: 0.16.
|
3
|
+
Version: 0.16.1.dev202409210335
|
4
4
|
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
5
|
Home-page: https://github.com/keras-team/keras-hub
|
6
6
|
Author: Keras team
|
@@ -12,9 +12,11 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
import keras
|
15
|
+
from keras import ops
|
15
16
|
|
16
17
|
from keras_hub.src.api_export import keras_hub_export
|
17
18
|
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
19
|
+
from keras_hub.src.utils.keras_utils import standardize_data_format
|
18
20
|
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
19
21
|
|
20
22
|
|
@@ -23,13 +25,23 @@ class ResizingImageConverter(ImageConverter):
|
|
23
25
|
"""An `ImageConverter` that simply resizes the input image.
|
24
26
|
|
25
27
|
The `ResizingImageConverter` is a subclass of `ImageConverter` for models
|
26
|
-
that
|
27
|
-
The layer will take as input a raw image tensor (batched or
|
28
|
-
channels last or channels first format, and output a
|
28
|
+
that need to resize (and optionally rescale) image tensors before using them
|
29
|
+
for modeling. The layer will take as input a raw image tensor (batched or
|
30
|
+
unbatched) in the channels last or channels first format, and output a
|
31
|
+
resize tensor.
|
29
32
|
|
30
33
|
Args:
|
31
|
-
height:
|
32
|
-
width:
|
34
|
+
height: int, the height of the output shape.
|
35
|
+
width: int, the width of the output shape.
|
36
|
+
scale: float or `None`. If set, the image we be rescaled with a
|
37
|
+
`keras.layers.Rescaling` layer, multiplying the image by this
|
38
|
+
scale.
|
39
|
+
mean: tuples of floats per channel or `None`. If set, the image will be
|
40
|
+
normalized per channel by subtracting mean.
|
41
|
+
If set, also set `variance`.
|
42
|
+
variance: tuples of floats per channel or `None`. If set, the image will
|
43
|
+
be normalized per channel by dividing by `sqrt(variance)`.
|
44
|
+
If set, also set `mean`.
|
33
45
|
crop_to_aspect_ratio: If `True`, resize the images without aspect
|
34
46
|
ratio distortion. When the original aspect ratio differs
|
35
47
|
from the target aspect ratio, the output image will be
|
@@ -64,6 +76,9 @@ class ResizingImageConverter(ImageConverter):
|
|
64
76
|
self,
|
65
77
|
height,
|
66
78
|
width,
|
79
|
+
scale=None,
|
80
|
+
mean=None,
|
81
|
+
variance=None,
|
67
82
|
crop_to_aspect_ratio=True,
|
68
83
|
interpolation="bilinear",
|
69
84
|
data_format=None,
|
@@ -78,7 +93,26 @@ class ResizingImageConverter(ImageConverter):
|
|
78
93
|
crop_to_aspect_ratio=crop_to_aspect_ratio,
|
79
94
|
interpolation=interpolation,
|
80
95
|
data_format=data_format,
|
96
|
+
dtype=self.dtype_policy,
|
97
|
+
name="resizing",
|
81
98
|
)
|
99
|
+
if scale is not None:
|
100
|
+
self.rescaling = keras.layers.Rescaling(
|
101
|
+
scale=scale,
|
102
|
+
dtype=self.dtype_policy,
|
103
|
+
name="rescaling",
|
104
|
+
)
|
105
|
+
else:
|
106
|
+
self.rescaling = None
|
107
|
+
if (mean is not None) != (variance is not None):
|
108
|
+
raise ValueError(
|
109
|
+
"Both `mean` and `variance` should be set or `None`. Received "
|
110
|
+
f"`mean={mean}`, `variance={variance}`."
|
111
|
+
)
|
112
|
+
self.scale = scale
|
113
|
+
self.mean = mean
|
114
|
+
self.variance = variance
|
115
|
+
self.data_format = standardize_data_format(data_format)
|
82
116
|
|
83
117
|
def image_size(self):
|
84
118
|
"""Returns the preprocessed size of a single image."""
|
@@ -86,7 +120,20 @@ class ResizingImageConverter(ImageConverter):
|
|
86
120
|
|
87
121
|
@preprocessing_function
|
88
122
|
def call(self, inputs):
|
89
|
-
|
123
|
+
x = self.resizing(inputs)
|
124
|
+
if self.rescaling:
|
125
|
+
x = self.rescaling(x)
|
126
|
+
if self.mean is not None:
|
127
|
+
# Avoid `layers.Normalization` so this works batched and unbatched.
|
128
|
+
channels_first = self.data_format == "channels_first"
|
129
|
+
if len(ops.shape(inputs)) == 3:
|
130
|
+
broadcast_dims = (1, 2) if channels_first else (0, 1)
|
131
|
+
else:
|
132
|
+
broadcast_dims = (0, 2, 3) if channels_first else (0, 1, 2)
|
133
|
+
mean = ops.expand_dims(ops.array(self.mean), broadcast_dims)
|
134
|
+
std = ops.expand_dims(ops.sqrt(self.variance), broadcast_dims)
|
135
|
+
x = (x - mean) / std
|
136
|
+
return x
|
90
137
|
|
91
138
|
def get_config(self):
|
92
139
|
config = super().get_config()
|
@@ -96,6 +143,9 @@ class ResizingImageConverter(ImageConverter):
|
|
96
143
|
"width": self.resizing.width,
|
97
144
|
"interpolation": self.resizing.interpolation,
|
98
145
|
"crop_to_aspect_ratio": self.resizing.crop_to_aspect_ratio,
|
146
|
+
"scale": self.scale,
|
147
|
+
"mean": self.mean,
|
148
|
+
"variance": self.variance,
|
99
149
|
}
|
100
150
|
)
|
101
151
|
return config
|
@@ -31,9 +31,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
31
31
|
level in the model.
|
32
32
|
stackwise_depth: A list of ints, the depth for each dark level in the
|
33
33
|
model.
|
34
|
-
include_rescaling: boolean. If `True`, rescale the input using
|
35
|
-
`Rescaling(1 / 255.0)` layer. If `False`, do nothing. Defaults to
|
36
|
-
`True`.
|
37
34
|
block_type: str. One of `"basic_block"` or `"depthwise_block"`.
|
38
35
|
Use `"depthwise_block"` for depthwise conv block
|
39
36
|
`"basic_block"` for basic conv block.
|
@@ -55,7 +52,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
55
52
|
model = keras_hub.models.CSPDarkNetBackbone(
|
56
53
|
stackwise_num_filters=[128, 256, 512, 1024],
|
57
54
|
stackwise_depth=[3, 9, 9, 3],
|
58
|
-
include_rescaling=False,
|
59
55
|
)
|
60
56
|
model(input_data)
|
61
57
|
```
|
@@ -65,7 +61,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
65
61
|
self,
|
66
62
|
stackwise_num_filters,
|
67
63
|
stackwise_depth,
|
68
|
-
include_rescaling=True,
|
69
64
|
block_type="basic_block",
|
70
65
|
image_shape=(None, None, 3),
|
71
66
|
**kwargs,
|
@@ -82,10 +77,7 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
82
77
|
base_channels = stackwise_num_filters[0] // 2
|
83
78
|
|
84
79
|
image_input = layers.Input(shape=image_shape)
|
85
|
-
x = image_input
|
86
|
-
if include_rescaling:
|
87
|
-
x = layers.Rescaling(scale=1 / 255.0)(x)
|
88
|
-
|
80
|
+
x = image_input # Intermediate result.
|
89
81
|
x = apply_focus(channel_axis, name="stem_focus")(x)
|
90
82
|
x = apply_darknet_conv_block(
|
91
83
|
base_channels,
|
@@ -130,7 +122,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
130
122
|
# === Config ===
|
131
123
|
self.stackwise_num_filters = stackwise_num_filters
|
132
124
|
self.stackwise_depth = stackwise_depth
|
133
|
-
self.include_rescaling = include_rescaling
|
134
125
|
self.block_type = block_type
|
135
126
|
self.image_shape = image_shape
|
136
127
|
self.pyramid_outputs = pyramid_outputs
|
@@ -141,7 +132,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
141
132
|
{
|
142
133
|
"stackwise_num_filters": self.stackwise_num_filters,
|
143
134
|
"stackwise_depth": self.stackwise_depth,
|
144
|
-
"include_rescaling": self.include_rescaling,
|
145
135
|
"block_type": self.block_type,
|
146
136
|
"image_shape": self.image_shape,
|
147
137
|
}
|
@@ -76,7 +76,6 @@ class CSPDarkNetImageClassifier(ImageClassifier):
|
|
76
76
|
backbone = keras_hub.models.CSPDarkNetBackbone(
|
77
77
|
stackwise_num_filters=[128, 256, 512, 1024],
|
78
78
|
stackwise_depth=[3, 9, 9, 3],
|
79
|
-
include_rescaling=False,
|
80
79
|
block_type="basic_block",
|
81
80
|
image_shape = (224, 224, 3),
|
82
81
|
)
|
@@ -31,9 +31,6 @@ class DenseNetBackbone(FeaturePyramidBackbone):
|
|
31
31
|
Args:
|
32
32
|
stackwise_num_repeats: list of ints, number of repeated convolutional
|
33
33
|
blocks per dense block.
|
34
|
-
include_rescaling: bool, whether to rescale the inputs. If set
|
35
|
-
to `True`, inputs will be passed through a `Rescaling(1/255.0)`
|
36
|
-
layer. Defaults to `True`.
|
37
34
|
image_shape: optional shape tuple, defaults to (None, None, 3).
|
38
35
|
compression_ratio: float, compression rate at transition layers,
|
39
36
|
defaults to 0.5.
|
@@ -51,7 +48,6 @@ class DenseNetBackbone(FeaturePyramidBackbone):
|
|
51
48
|
# Randomly initialized backbone with a custom config
|
52
49
|
model = keras_hub.models.DenseNetBackbone(
|
53
50
|
stackwise_num_repeats=[6, 12, 24, 16],
|
54
|
-
include_rescaling=False,
|
55
51
|
)
|
56
52
|
model(input_data)
|
57
53
|
```
|
@@ -60,7 +56,6 @@ class DenseNetBackbone(FeaturePyramidBackbone):
|
|
60
56
|
def __init__(
|
61
57
|
self,
|
62
58
|
stackwise_num_repeats,
|
63
|
-
include_rescaling=True,
|
64
59
|
image_shape=(None, None, 3),
|
65
60
|
compression_ratio=0.5,
|
66
61
|
growth_rate=32,
|
@@ -71,10 +66,7 @@ class DenseNetBackbone(FeaturePyramidBackbone):
|
|
71
66
|
channel_axis = -1 if data_format == "channels_last" else 1
|
72
67
|
image_input = keras.layers.Input(shape=image_shape)
|
73
68
|
|
74
|
-
x = image_input
|
75
|
-
if include_rescaling:
|
76
|
-
x = keras.layers.Rescaling(1 / 255.0)(x)
|
77
|
-
|
69
|
+
x = image_input # Intermediate result.
|
78
70
|
x = keras.layers.Conv2D(
|
79
71
|
64,
|
80
72
|
7,
|
@@ -124,7 +116,6 @@ class DenseNetBackbone(FeaturePyramidBackbone):
|
|
124
116
|
|
125
117
|
# === Config ===
|
126
118
|
self.stackwise_num_repeats = stackwise_num_repeats
|
127
|
-
self.include_rescaling = include_rescaling
|
128
119
|
self.compression_ratio = compression_ratio
|
129
120
|
self.growth_rate = growth_rate
|
130
121
|
self.image_shape = image_shape
|
@@ -135,7 +126,6 @@ class DenseNetBackbone(FeaturePyramidBackbone):
|
|
135
126
|
config.update(
|
136
127
|
{
|
137
128
|
"stackwise_num_repeats": self.stackwise_num_repeats,
|
138
|
-
"include_rescaling": self.include_rescaling,
|
139
129
|
"compression_ratio": self.compression_ratio,
|
140
130
|
"growth_rate": self.growth_rate,
|
141
131
|
"image_shape": self.image_shape,
|
@@ -74,7 +74,6 @@ class DenseNetImageClassifier(ImageClassifier):
|
|
74
74
|
backbone = keras_hub.models.DenseNetBackbone(
|
75
75
|
stackwise_num_filters=[128, 256, 512, 1024],
|
76
76
|
stackwise_depth=[3, 9, 9, 3],
|
77
|
-
include_rescaling=False,
|
78
77
|
block_type="basic_block",
|
79
78
|
image_shape = (224, 224, 3),
|
80
79
|
)
|
@@ -67,8 +67,6 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
|
|
67
67
|
MBConvBlock, but instead of using a depthwise convolution and a 1x1
|
68
68
|
output convolution blocks fused blocks use a single 3x3 convolution
|
69
69
|
block.
|
70
|
-
include_rescaling: bool, whether to rescale the inputs. If set to
|
71
|
-
True, inputs will be passed through a `Rescaling(1/255.0)` layer.
|
72
70
|
min_depth: integer, minimum number of filters. Can be None and ignored
|
73
71
|
if use_depth_divisor_as_min_depth is set to True.
|
74
72
|
include_initial_padding: bool, whether to include initial zero padding
|
@@ -96,7 +94,6 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
|
|
96
94
|
stackwise_block_types=[["fused"] * 3 + ["unfused"] * 3],
|
97
95
|
width_coefficient=1.0,
|
98
96
|
depth_coefficient=1.0,
|
99
|
-
include_rescaling=False,
|
100
97
|
)
|
101
98
|
images = np.ones((1, 256, 256, 3))
|
102
99
|
outputs = efficientnet.predict(images)
|
@@ -116,7 +113,6 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
|
|
116
113
|
stackwise_squeeze_and_excite_ratios,
|
117
114
|
stackwise_strides,
|
118
115
|
stackwise_block_types,
|
119
|
-
include_rescaling=True,
|
120
116
|
dropout=0.2,
|
121
117
|
depth_divisor=8,
|
122
118
|
min_depth=8,
|
@@ -129,14 +125,9 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
|
|
129
125
|
batch_norm_momentum=0.9,
|
130
126
|
**kwargs,
|
131
127
|
):
|
132
|
-
|
133
|
-
|
134
|
-
x = img_input
|
135
|
-
|
136
|
-
if include_rescaling:
|
137
|
-
# Use common rescaling strategy across keras
|
138
|
-
x = keras.layers.Rescaling(scale=1.0 / 255.0)(x)
|
128
|
+
image_input = keras.layers.Input(shape=input_shape)
|
139
129
|
|
130
|
+
x = image_input # Intermediate result.
|
140
131
|
if include_initial_padding:
|
141
132
|
x = keras.layers.ZeroPadding2D(
|
142
133
|
padding=self._correct_pad_downsample(x, 3),
|
@@ -282,10 +273,9 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
|
|
282
273
|
curr_pyramid_level += 1
|
283
274
|
|
284
275
|
# Create model.
|
285
|
-
super().__init__(inputs=
|
276
|
+
super().__init__(inputs=image_input, outputs=x, **kwargs)
|
286
277
|
|
287
278
|
# === Config ===
|
288
|
-
self.include_rescaling = include_rescaling
|
289
279
|
self.width_coefficient = width_coefficient
|
290
280
|
self.depth_coefficient = depth_coefficient
|
291
281
|
self.dropout = dropout
|
@@ -313,7 +303,6 @@ class EfficientNetBackbone(FeaturePyramidBackbone):
|
|
313
303
|
config = super().get_config()
|
314
304
|
config.update(
|
315
305
|
{
|
316
|
-
"include_rescaling": self.include_rescaling,
|
317
306
|
"width_coefficient": self.width_coefficient,
|
318
307
|
"depth_coefficient": self.depth_coefficient,
|
319
308
|
"dropout": self.dropout,
|
@@ -36,7 +36,6 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
36
36
|
end_value,
|
37
37
|
patch_sizes,
|
38
38
|
strides,
|
39
|
-
include_rescaling=True,
|
40
39
|
image_shape=(None, None, 3),
|
41
40
|
hidden_dims=None,
|
42
41
|
**kwargs,
|
@@ -60,9 +59,6 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
60
59
|
value projections. If set to > 1, a `Conv2D` layer is used to
|
61
60
|
reduce the length of the sequence.
|
62
61
|
end_value: The end value of the sequence.
|
63
|
-
include_rescaling: bool, whether to rescale the inputs. If set
|
64
|
-
to `True`, inputs will be passed through a `Rescaling(1/255.0)`
|
65
|
-
layer. Defaults to `True`.
|
66
62
|
image_shape: optional shape tuple, defaults to (None, None, 3).
|
67
63
|
hidden_dims: the embedding dims per hierarchical layer, used as
|
68
64
|
the levels of the feature pyramid.
|
@@ -123,11 +119,7 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
123
119
|
|
124
120
|
# === Functional Model ===
|
125
121
|
image_input = keras.layers.Input(shape=image_shape)
|
126
|
-
x = image_input
|
127
|
-
|
128
|
-
if include_rescaling:
|
129
|
-
x = keras.layers.Rescaling(scale=1 / 255)(x)
|
130
|
-
|
122
|
+
x = image_input # Intermediate result.
|
131
123
|
pyramid_outputs = {}
|
132
124
|
for i in range(num_layers):
|
133
125
|
# Compute new height/width after the `proj`
|
@@ -151,7 +143,6 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
151
143
|
|
152
144
|
# === Config ===
|
153
145
|
self.depths = depths
|
154
|
-
self.include_rescaling = include_rescaling
|
155
146
|
self.image_shape = image_shape
|
156
147
|
self.hidden_dims = hidden_dims
|
157
148
|
self.pyramid_outputs = pyramid_outputs
|
@@ -167,7 +158,6 @@ class MiTBackbone(FeaturePyramidBackbone):
|
|
167
158
|
config.update(
|
168
159
|
{
|
169
160
|
"depths": self.depths,
|
170
|
-
"include_rescaling": self.include_rescaling,
|
171
161
|
"hidden_dims": self.hidden_dims,
|
172
162
|
"image_shape": self.image_shape,
|
173
163
|
"num_layers": self.num_layers,
|
@@ -54,9 +54,6 @@ class MobileNetBackbone(Backbone):
|
|
54
54
|
model. 0 if dont want to add Squeeze and Excite layer.
|
55
55
|
stackwise_activation: list of activation functions, for each inverted
|
56
56
|
residual block in the model.
|
57
|
-
include_rescaling: bool, whether to rescale the inputs. If set to True,
|
58
|
-
inputs will be passed through a `Rescaling(scale=1 / 255)`
|
59
|
-
layer.
|
60
57
|
image_shape: optional shape tuple, defaults to (224, 224, 3).
|
61
58
|
depth_multiplier: float, controls the width of the network.
|
62
59
|
- If `depth_multiplier` < 1.0, proportionally decreases the number
|
@@ -92,7 +89,6 @@ class MobileNetBackbone(Backbone):
|
|
92
89
|
stackwise_num_strides=[2, 2, 1],
|
93
90
|
stackwise_se_ratio=[0.25, None, 0.25],
|
94
91
|
stackwise_activation=["relu", "relu6", "hard_swish"],
|
95
|
-
include_rescaling=False,
|
96
92
|
output_num_filters=1280,
|
97
93
|
input_activation='hard_swish',
|
98
94
|
output_activation='hard_swish',
|
@@ -111,7 +107,6 @@ class MobileNetBackbone(Backbone):
|
|
111
107
|
stackwise_num_strides,
|
112
108
|
stackwise_se_ratio,
|
113
109
|
stackwise_activation,
|
114
|
-
include_rescaling,
|
115
110
|
output_num_filters,
|
116
111
|
inverted_res_block,
|
117
112
|
image_shape=(224, 224, 3),
|
@@ -126,12 +121,8 @@ class MobileNetBackbone(Backbone):
|
|
126
121
|
-1 if keras.config.image_data_format() == "channels_last" else 1
|
127
122
|
)
|
128
123
|
|
129
|
-
|
130
|
-
x =
|
131
|
-
|
132
|
-
if include_rescaling:
|
133
|
-
x = keras.layers.Rescaling(scale=1 / 255)(x)
|
134
|
-
|
124
|
+
image_input = keras.layers.Input(shape=image_shape)
|
125
|
+
x = image_input # Intermediate result.
|
135
126
|
input_num_filters = adjust_channels(input_num_filters)
|
136
127
|
x = keras.layers.Conv2D(
|
137
128
|
input_num_filters,
|
@@ -195,7 +186,7 @@ class MobileNetBackbone(Backbone):
|
|
195
186
|
)(x)
|
196
187
|
x = keras.layers.Activation(output_activation)(x)
|
197
188
|
|
198
|
-
super().__init__(inputs=
|
189
|
+
super().__init__(inputs=image_input, outputs=x, **kwargs)
|
199
190
|
|
200
191
|
# === Config ===
|
201
192
|
self.stackwise_expansion = stackwise_expansion
|
@@ -204,7 +195,6 @@ class MobileNetBackbone(Backbone):
|
|
204
195
|
self.stackwise_num_strides = stackwise_num_strides
|
205
196
|
self.stackwise_se_ratio = stackwise_se_ratio
|
206
197
|
self.stackwise_activation = stackwise_activation
|
207
|
-
self.include_rescaling = include_rescaling
|
208
198
|
self.depth_multiplier = depth_multiplier
|
209
199
|
self.input_num_filters = input_num_filters
|
210
200
|
self.output_num_filters = output_num_filters
|
@@ -223,7 +213,6 @@ class MobileNetBackbone(Backbone):
|
|
223
213
|
"stackwise_num_strides": self.stackwise_num_strides,
|
224
214
|
"stackwise_se_ratio": self.stackwise_se_ratio,
|
225
215
|
"stackwise_activation": self.stackwise_activation,
|
226
|
-
"include_rescaling": self.include_rescaling,
|
227
216
|
"image_shape": self.image_shape,
|
228
217
|
"depth_multiplier": self.depth_multiplier,
|
229
218
|
"input_num_filters": self.input_num_filters,
|
@@ -56,7 +56,6 @@ class MobileNetImageClassifier(ImageClassifier):
|
|
56
56
|
stackwise_stride = [2, 2, 1],
|
57
57
|
stackwise_se_ratio = [ 0.25, None, 0.25],
|
58
58
|
stackwise_activation = ["relu", "relu", "hard_swish"],
|
59
|
-
include_rescaling = False,
|
60
59
|
output_filter=1280,
|
61
60
|
activation="hard_swish",
|
62
61
|
inverted_res_block=True,
|
@@ -476,6 +476,9 @@ class PaliGemmaVit(keras.Model):
|
|
476
476
|
shape=(image_size, image_size, 3), name="images"
|
477
477
|
)
|
478
478
|
x = image_input # Intermediate result.
|
479
|
+
# TODO we have moved this rescaling to preprocessing layers for most
|
480
|
+
# models. We should consider removing it here, though it would break
|
481
|
+
# compatibility.
|
479
482
|
if include_rescaling:
|
480
483
|
rescaling = keras.layers.Rescaling(
|
481
484
|
scale=1.0 / 127.5, offset=-1.0, name="rescaling"
|
@@ -44,9 +44,6 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
44
44
|
additional pooling operation rather than performing downsampling within
|
45
45
|
the convolutional layers themselves.
|
46
46
|
|
47
|
-
Note that `ResNetBackbone` expects the inputs to be images with a value
|
48
|
-
range of `[0, 255]` when `include_rescaling=True`.
|
49
|
-
|
50
47
|
Args:
|
51
48
|
input_conv_filters: list of ints. The number of filters of the initial
|
52
49
|
convolution(s).
|
@@ -65,9 +62,6 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
65
62
|
variants.
|
66
63
|
use_pre_activation: boolean. Whether to use pre-activation or not.
|
67
64
|
`True` for ResNetV2, `False` for ResNet.
|
68
|
-
include_rescaling: boolean. If `True`, rescale the input using
|
69
|
-
`Rescaling` and `Normalization` layers. If `False`, do nothing.
|
70
|
-
Defaults to `True`.
|
71
65
|
image_shape: tuple. The input shape without the batch size.
|
72
66
|
Defaults to `(None, None, 3)`.
|
73
67
|
pooling: `None` or str. Pooling mode for feature extraction. Defaults
|
@@ -124,7 +118,6 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
124
118
|
stackwise_num_strides,
|
125
119
|
block_type,
|
126
120
|
use_pre_activation=False,
|
127
|
-
include_rescaling=True,
|
128
121
|
image_shape=(None, None, 3),
|
129
122
|
data_format=None,
|
130
123
|
dtype=None,
|
@@ -170,18 +163,7 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
170
163
|
|
171
164
|
# === Functional Model ===
|
172
165
|
image_input = layers.Input(shape=image_shape)
|
173
|
-
|
174
|
-
x = layers.Rescaling(scale=1 / 255.0, dtype=dtype)(image_input)
|
175
|
-
x = layers.Normalization(
|
176
|
-
axis=bn_axis,
|
177
|
-
mean=(0.485, 0.456, 0.406),
|
178
|
-
variance=(0.229**2, 0.224**2, 0.225**2),
|
179
|
-
dtype=dtype,
|
180
|
-
name="normalization",
|
181
|
-
)(x)
|
182
|
-
else:
|
183
|
-
x = image_input
|
184
|
-
|
166
|
+
x = image_input # Intermediate result.
|
185
167
|
# The padding between torch and tensorflow/jax differs when `strides>1`.
|
186
168
|
# Therefore, we need to manually pad the tensor.
|
187
169
|
x = layers.ZeroPadding2D(
|
@@ -299,7 +281,6 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
299
281
|
self.stackwise_num_strides = stackwise_num_strides
|
300
282
|
self.block_type = block_type
|
301
283
|
self.use_pre_activation = use_pre_activation
|
302
|
-
self.include_rescaling = include_rescaling
|
303
284
|
self.image_shape = image_shape
|
304
285
|
self.pyramid_outputs = pyramid_outputs
|
305
286
|
self.data_format = data_format
|
@@ -315,7 +296,6 @@ class ResNetBackbone(FeaturePyramidBackbone):
|
|
315
296
|
"stackwise_num_strides": self.stackwise_num_strides,
|
316
297
|
"block_type": self.block_type,
|
317
298
|
"use_pre_activation": self.use_pre_activation,
|
318
|
-
"include_rescaling": self.include_rescaling,
|
319
299
|
"image_shape": self.image_shape,
|
320
300
|
}
|
321
301
|
)
|
@@ -25,7 +25,7 @@ backbone_presets = {
|
|
25
25
|
"path": "resnet",
|
26
26
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
27
27
|
},
|
28
|
-
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_18_imagenet/
|
28
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_18_imagenet/3",
|
29
29
|
},
|
30
30
|
"resnet_50_imagenet": {
|
31
31
|
"metadata": {
|
@@ -38,7 +38,7 @@ backbone_presets = {
|
|
38
38
|
"path": "resnet",
|
39
39
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
40
40
|
},
|
41
|
-
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_50_imagenet/
|
41
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_50_imagenet/3",
|
42
42
|
},
|
43
43
|
"resnet_101_imagenet": {
|
44
44
|
"metadata": {
|
@@ -51,7 +51,7 @@ backbone_presets = {
|
|
51
51
|
"path": "resnet",
|
52
52
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
53
53
|
},
|
54
|
-
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_101_imagenet/
|
54
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_101_imagenet/3",
|
55
55
|
},
|
56
56
|
"resnet_152_imagenet": {
|
57
57
|
"metadata": {
|
@@ -64,7 +64,7 @@ backbone_presets = {
|
|
64
64
|
"path": "resnet",
|
65
65
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
66
66
|
},
|
67
|
-
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_152_imagenet/
|
67
|
+
"kaggle_handle": "kaggle://kerashub/resnetv1/keras/resnet_152_imagenet/3",
|
68
68
|
},
|
69
69
|
"resnet_v2_50_imagenet": {
|
70
70
|
"metadata": {
|
@@ -77,7 +77,7 @@ backbone_presets = {
|
|
77
77
|
"path": "resnet",
|
78
78
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
79
79
|
},
|
80
|
-
"kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_50_imagenet/
|
80
|
+
"kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_50_imagenet/3",
|
81
81
|
},
|
82
82
|
"resnet_v2_101_imagenet": {
|
83
83
|
"metadata": {
|
@@ -90,6 +90,6 @@ backbone_presets = {
|
|
90
90
|
"path": "resnet",
|
91
91
|
"model_card": "https://arxiv.org/abs/2110.00476",
|
92
92
|
},
|
93
|
-
"kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_101_imagenet/
|
93
|
+
"kaggle_handle": "kaggle://kerashub/resnetv2/keras/resnet_v2_101_imagenet/3",
|
94
94
|
},
|
95
95
|
}
|
@@ -33,8 +33,6 @@ class VGGBackbone(Backbone):
|
|
33
33
|
stackwise_num_filters: list of ints, filter size for convolutional
|
34
34
|
blocks per VGG block. For both VGG16 and VGG19 this is [
|
35
35
|
64, 128, 256, 512, 512].
|
36
|
-
include_rescaling: bool, whether to rescale the inputs. If set to
|
37
|
-
True, inputs will be passed through a `Rescaling(1/255.0)` layer.
|
38
36
|
image_shape: tuple, optional shape tuple, defaults to (224, 224, 3).
|
39
37
|
pooling: bool, Optional pooling mode for feature extraction
|
40
38
|
when `include_top` is `False`.
|
@@ -61,7 +59,6 @@ class VGGBackbone(Backbone):
|
|
61
59
|
stackwise_num_repeats = [2, 2, 3, 3, 3],
|
62
60
|
stackwise_num_filters = [64, 128, 256, 512, 512],
|
63
61
|
image_shape = (224, 224, 3),
|
64
|
-
include_rescaling = False,
|
65
62
|
pooling = "avg",
|
66
63
|
)
|
67
64
|
model(input_data)
|
@@ -72,7 +69,6 @@ class VGGBackbone(Backbone):
|
|
72
69
|
self,
|
73
70
|
stackwise_num_repeats,
|
74
71
|
stackwise_num_filters,
|
75
|
-
include_rescaling,
|
76
72
|
image_shape=(224, 224, 3),
|
77
73
|
pooling="avg",
|
78
74
|
**kwargs,
|
@@ -82,8 +78,6 @@ class VGGBackbone(Backbone):
|
|
82
78
|
img_input = keras.layers.Input(shape=image_shape)
|
83
79
|
x = img_input
|
84
80
|
|
85
|
-
if include_rescaling:
|
86
|
-
x = layers.Rescaling(scale=1 / 255.0)(x)
|
87
81
|
for stack_index in range(len(stackwise_num_repeats) - 1):
|
88
82
|
x = apply_vgg_block(
|
89
83
|
x=x,
|
@@ -105,7 +99,6 @@ class VGGBackbone(Backbone):
|
|
105
99
|
# === Config ===
|
106
100
|
self.stackwise_num_repeats = stackwise_num_repeats
|
107
101
|
self.stackwise_num_filters = stackwise_num_filters
|
108
|
-
self.include_rescaling = include_rescaling
|
109
102
|
self.image_shape = image_shape
|
110
103
|
self.pooling = pooling
|
111
104
|
|
@@ -113,7 +106,6 @@ class VGGBackbone(Backbone):
|
|
113
106
|
return {
|
114
107
|
"stackwise_num_repeats": self.stackwise_num_repeats,
|
115
108
|
"stackwise_num_filters": self.stackwise_num_filters,
|
116
|
-
"include_rescaling": self.include_rescaling,
|
117
109
|
"image_shape": self.image_shape,
|
118
110
|
"pooling": self.pooling,
|
119
111
|
}
|
@@ -66,7 +66,6 @@ class VGGImageClassifier(ImageClassifier):
|
|
66
66
|
stackwise_num_repeats = [2, 2, 3, 3, 3],
|
67
67
|
stackwise_num_filters = [64, 128, 256, 512, 512],
|
68
68
|
image_shape = (224, 224, 3),
|
69
|
-
include_rescaling = False,
|
70
69
|
pooling = "avg",
|
71
70
|
)
|
72
71
|
classifier = keras_hub.models.VGGImageClassifier(
|