keras-hub-nightly 0.16.0.dev20240915160609__tar.gz → 0.16.1.dev202409220340__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (341) hide show
  1. keras_hub_nightly-0.16.1.dev202409220340/PKG-INFO +202 -0
  2. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/README.md +30 -23
  3. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/__init__.py +0 -6
  4. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/__init__.py +1 -0
  5. keras_hub_nightly-0.16.1.dev202409220340/keras_hub/api/utils/__init__.py +22 -0
  6. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/api_export.py +17 -11
  7. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/resizing_image_converter.py +56 -6
  8. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +1 -11
  9. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -1
  10. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/densenet/densenet_backbone.py +2 -12
  11. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -1
  12. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +3 -14
  13. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
  14. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +1 -11
  15. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -1
  16. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +3 -14
  17. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -1
  18. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +3 -0
  19. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_backbone.py +1 -21
  20. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_image_classifier.py +9 -4
  21. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_presets.py +6 -6
  22. keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet/anchor_generator.py +175 -0
  23. keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet/box_matcher.py +259 -0
  24. keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet/non_max_supression.py +578 -0
  25. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vgg/vgg_backbone.py +0 -8
  26. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -1
  27. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -9
  28. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tests/test_case.py +11 -3
  29. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +1 -0
  30. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +1 -0
  31. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/word_piece_tokenizer.py +1 -0
  32. keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/imagenet/__init__.py +13 -0
  33. keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
  34. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/preset_utils.py +10 -1
  35. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/tensor_utils.py +14 -14
  36. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/timm/convert_resnet.py +0 -8
  37. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/timm/preset_loader.py +16 -1
  38. keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/transformers/__init__.py +13 -0
  39. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/version_utils.py +1 -1
  40. keras_hub_nightly-0.16.1.dev202409220340/keras_hub_nightly.egg-info/PKG-INFO +202 -0
  41. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/SOURCES.txt +7 -0
  42. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/setup.py +7 -7
  43. keras_hub_nightly-0.16.0.dev20240915160609/PKG-INFO +0 -33
  44. keras_hub_nightly-0.16.0.dev20240915160609/keras_hub_nightly.egg-info/PKG-INFO +0 -33
  45. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/bounding_box/__init__.py +0 -0
  46. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/layers/__init__.py +0 -0
  47. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/metrics/__init__.py +0 -0
  48. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/models/__init__.py +0 -0
  49. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/samplers/__init__.py +0 -0
  50. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/tokenizers/__init__.py +0 -0
  51. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/__init__.py +0 -0
  52. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/__init__.py +0 -0
  53. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/converters.py +0 -0
  54. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/formats.py +0 -0
  55. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/iou.py +0 -0
  56. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/to_dense.py +0 -0
  57. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/to_ragged.py +0 -0
  58. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/utils.py +0 -0
  59. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/validate_format.py +0 -0
  60. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/__init__.py +0 -0
  61. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/__init__.py +0 -0
  62. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
  63. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
  64. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
  65. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
  66. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
  67. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
  68. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
  69. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
  70. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
  71. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
  72. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
  73. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
  74. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
  75. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
  76. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
  77. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
  78. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
  79. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
  80. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
  81. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
  82. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
  83. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/__init__.py +0 -0
  84. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/bleu.py +0 -0
  85. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/edit_distance.py +0 -0
  86. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/perplexity.py +0 -0
  87. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/rouge_base.py +0 -0
  88. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/rouge_l.py +0 -0
  89. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/rouge_n.py +0 -0
  90. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/__init__.py +0 -0
  91. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/__init__.py +0 -0
  92. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_backbone.py +0 -0
  93. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
  94. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
  95. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_presets.py +0 -0
  96. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
  97. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
  98. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
  99. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/backbone.py +0 -0
  100. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/__init__.py +0 -0
  101. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_backbone.py +0 -0
  102. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_presets.py +0 -0
  103. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
  104. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
  105. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
  106. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/__init__.py +0 -0
  107. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_backbone.py +0 -0
  108. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
  109. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
  110. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_presets.py +0 -0
  111. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
  112. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
  113. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
  114. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/__init__.py +0 -0
  115. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
  116. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
  117. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
  118. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
  119. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
  120. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
  121. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
  122. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/causal_lm.py +0 -0
  123. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
  124. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
  125. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
  126. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
  127. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
  128. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
  129. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
  130. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
  131. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
  132. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
  133. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
  134. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
  135. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
  136. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/densenet/__init__.py +0 -0
  137. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/__init__.py +0 -0
  138. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
  139. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
  140. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
  141. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
  142. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
  143. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
  144. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
  145. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/__init__.py +0 -0
  146. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
  147. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
  148. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/__init__.py +0 -0
  149. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/electra_backbone.py +0 -0
  150. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/electra_presets.py +0 -0
  151. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
  152. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/__init__.py +0 -0
  153. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
  154. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
  155. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
  156. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
  157. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
  158. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
  159. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
  160. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/__init__.py +0 -0
  161. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
  162. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
  163. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
  164. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
  165. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
  166. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
  167. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
  168. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
  169. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/__init__.py +0 -0
  170. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
  171. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
  172. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
  173. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
  174. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
  175. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
  176. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
  177. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/__init__.py +0 -0
  178. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
  179. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
  180. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
  181. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
  182. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
  183. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
  184. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
  185. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
  186. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
  187. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
  188. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
  189. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
  190. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
  191. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/image_classifier.py +0 -0
  192. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
  193. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/__init__.py +0 -0
  194. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_attention.py +0 -0
  195. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_backbone.py +0 -0
  196. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
  197. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
  198. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_decoder.py +0 -0
  199. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
  200. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_presets.py +0 -0
  201. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
  202. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/__init__.py +0 -0
  203. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
  204. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
  205. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
  206. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
  207. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
  208. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/masked_lm.py +0 -0
  209. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
  210. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/__init__.py +0 -0
  211. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
  212. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
  213. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
  214. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
  215. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
  216. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
  217. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
  218. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
  219. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
  220. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
  221. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mobilenet/__init__.py +0 -0
  222. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/__init__.py +0 -0
  223. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_backbone.py +0 -0
  224. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
  225. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
  226. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_presets.py +0 -0
  227. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
  228. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
  229. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
  230. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
  231. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
  232. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
  233. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
  234. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
  235. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
  236. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/__init__.py +0 -0
  237. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
  238. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
  239. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
  240. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
  241. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
  242. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
  243. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
  244. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
  245. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
  246. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/preprocessor.py +0 -0
  247. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/__init__.py +0 -0
  248. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
  249. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
  250. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/stable_diffusion_v3 → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet}/__init__.py +0 -0
  251. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/__init__.py +0 -0
  252. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
  253. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
  254. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
  255. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
  256. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
  257. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
  258. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
  259. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
  260. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
  261. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/vgg → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/stable_diffusion_v3}/__init__.py +0 -0
  262. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +0 -0
  263. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +0 -0
  264. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +0 -0
  265. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +0 -0
  266. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/mmdit.py +0 -0
  267. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +0 -0
  268. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +0 -0
  269. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +0 -0
  270. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/vae_attention.py +0 -0
  271. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +0 -0
  272. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/__init__.py +0 -0
  273. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_backbone.py +0 -0
  274. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
  275. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
  276. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_presets.py +0 -0
  277. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
  278. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
  279. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/task.py +0 -0
  280. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/text_classifier.py +0 -0
  281. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
  282. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/vit_det → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/vgg}/__init__.py +0 -0
  283. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/xlnet → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/vit_det}/__init__.py +0 -0
  284. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
  285. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/__init__.py +0 -0
  286. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
  287. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
  288. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
  289. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
  290. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
  291. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
  292. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
  293. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
  294. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
  295. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
  296. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
  297. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
  298. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
  299. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
  300. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
  301. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/samplers → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/xlnet}/__init__.py +0 -0
  302. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
  303. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
  304. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
  305. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
  306. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/tests → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/samplers}/__init__.py +0 -0
  307. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/beam_sampler.py +0 -0
  308. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
  309. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/greedy_sampler.py +0 -0
  310. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/random_sampler.py +0 -0
  311. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/sampler.py +0 -0
  312. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/serialization.py +0 -0
  313. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/top_k_sampler.py +0 -0
  314. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/top_p_sampler.py +0 -0
  315. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/tokenizers → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/tests}/__init__.py +0 -0
  316. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/utils → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/tokenizers}/__init__.py +0 -0
  317. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
  318. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
  319. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/tokenizer.py +0 -0
  320. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
  321. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
  322. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/utils/timm → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils}/__init__.py +0 -0
  323. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/keras_utils.py +0 -0
  324. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/pipeline_model.py +0 -0
  325. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/python_utils.py +0 -0
  326. {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/utils/transformers → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/timm}/__init__.py +0 -0
  327. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
  328. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
  329. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
  330. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
  331. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
  332. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
  333. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
  334. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
  335. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
  336. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
  337. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
  338. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
  339. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/requires.txt +0 -0
  340. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/top_level.txt +0 -0
  341. {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/setup.cfg +0 -0
@@ -0,0 +1,202 @@
1
+ Metadata-Version: 2.1
2
+ Name: keras-hub-nightly
3
+ Version: 0.16.1.dev202409220340
4
+ Summary: Industry-strength Natural Language Processing extensions for Keras.
5
+ Home-page: https://github.com/keras-team/keras-hub
6
+ Author: Keras team
7
+ Author-email: keras-hub@google.com
8
+ License: Apache License 2.0
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.9
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3 :: Only
15
+ Classifier: Operating System :: Unix
16
+ Classifier: Operating System :: Microsoft :: Windows
17
+ Classifier: Operating System :: MacOS
18
+ Classifier: Intended Audience :: Science/Research
19
+ Classifier: Topic :: Scientific/Engineering
20
+ Classifier: Topic :: Software Development
21
+ Requires-Python: >=3.9
22
+ Description-Content-Type: text/markdown
23
+ Requires-Dist: absl-py
24
+ Requires-Dist: numpy
25
+ Requires-Dist: packaging
26
+ Requires-Dist: regex
27
+ Requires-Dist: rich
28
+ Requires-Dist: kagglehub
29
+ Requires-Dist: tensorflow-text; platform_system != "Darwin"
30
+ Provides-Extra: extras
31
+ Requires-Dist: rouge-score; extra == "extras"
32
+ Requires-Dist: sentencepiece; extra == "extras"
33
+
34
+ # KerasNLP: Multi-framework NLP Models
35
+ [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
36
+ ![Python](https://img.shields.io/badge/python-v3.9.0+-success.svg)
37
+ [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
38
+
39
+ > [!IMPORTANT]
40
+ > 📢 KerasNLP is becoming KerasHub! 📢 Read
41
+ > [the announcement](https://github.com/keras-team/keras-hub/issues/1831).
42
+ >
43
+ > We have renamed the repo to KerasHub in preparation for the release, but have not yet
44
+ > released the new package. Follow the announcement for news.
45
+
46
+ KerasNLP is a natural language processing library that works natively
47
+ with TensorFlow, JAX, or PyTorch. KerasNLP provides a repository of pre-trained
48
+ models and a collection of lower-level building blocks for language modeling.
49
+ Built on Keras 3, models can be trained and serialized in any framework
50
+ and re-used in another without costly migrations.
51
+
52
+ This library is an extension of the core Keras API; all high-level modules are
53
+ Layers and Models that receive that same level of polish as core Keras.
54
+ If you are familiar with Keras, congratulations! You already understand most of
55
+ KerasNLP.
56
+
57
+ All models support JAX, TensorFlow, and PyTorch from a single model
58
+ definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
59
+ be trained on individual accelerators with built-in PEFT techniques, or
60
+ fine-tuned at scale with model and data parallel training. See our
61
+ [Getting Started guide](https://keras.io/guides/keras_nlp/getting_started)
62
+ to start learning our API. Browse our models on
63
+ [Kaggle](https://www.kaggle.com/organizations/keras/models).
64
+ We welcome contributions.
65
+
66
+ ## Quick Links
67
+
68
+ ### For everyone
69
+
70
+ - [Home Page](https://keras.io/keras_nlp)
71
+ - [Developer Guides](https://keras.io/guides/keras_nlp)
72
+ - [API Reference](https://keras.io/api/keras_nlp)
73
+ - [Pre-trained Models](https://www.kaggle.com/organizations/keras/models)
74
+
75
+ ### For contributors
76
+
77
+ - [Contributing Guide](CONTRIBUTING.md)
78
+ - [Roadmap](ROADMAP.md)
79
+ - [Style Guide](STYLE_GUIDE.md)
80
+ - [API Design Guide](API_DESIGN_GUIDE.md)
81
+ - [Call for Contributions](https://github.com/keras-team/keras-hub/issues?q=is%3Aissue+is%3Aopen+label%3A%22contributions+welcome%22)
82
+
83
+ ## Quickstart
84
+
85
+ Fine-tune BERT on IMDb movie reviews:
86
+
87
+ ```python
88
+ import os
89
+ os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
90
+
91
+ import keras_nlp
92
+ import tensorflow_datasets as tfds
93
+
94
+ imdb_train, imdb_test = tfds.load(
95
+ "imdb_reviews",
96
+ split=["train", "test"],
97
+ as_supervised=True,
98
+ batch_size=16,
99
+ )
100
+ # Load a BERT model.
101
+ classifier = keras_nlp.models.Classifier.from_preset(
102
+ "bert_base_en",
103
+ num_classes=2,
104
+ activation="softmax",
105
+ )
106
+ # Fine-tune on IMDb movie reviews.
107
+ classifier.fit(imdb_train, validation_data=imdb_test)
108
+ # Predict two new examples.
109
+ classifier.predict(["What an amazing movie!", "A total waste of my time."])
110
+ ```
111
+
112
+ Try it out [in a colab](https://colab.research.google.com/gist/mattdangerw/e457e42d5ea827110c8d5cb4eb9d9a07/kerasnlp-quickstart.ipynb).
113
+ For more in depth guides and examples, visit
114
+ [keras.io/keras_nlp](https://keras.io/keras_nlp/).
115
+
116
+ ## Installation
117
+
118
+ To install the latest KerasNLP release with Keras 3, simply run:
119
+
120
+ ```
121
+ pip install --upgrade keras-nlp
122
+ ```
123
+
124
+ To install the latest nightly changes for both KerasNLP and Keras, you can use
125
+ our nightly package.
126
+
127
+ ```
128
+ pip install --upgrade keras-nlp-nightly
129
+ ```
130
+
131
+ Note that currently, installing KerasNLP will always pull in TensorFlow for use
132
+ of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
133
+ training can still happen on any backend.
134
+
135
+ Read [Getting started with Keras](https://keras.io/getting_started/) for more
136
+ information on installing Keras 3 and compatibility with different frameworks.
137
+
138
+ > [!IMPORTANT]
139
+ > We recommend using KerasNLP with TensorFlow 2.16 or later, as TF 2.16 packages
140
+ > Keras 3 by default.
141
+
142
+ ## Configuring your backend
143
+
144
+ If you have Keras 3 installed in your environment (see installation above),
145
+ you can use KerasNLP with any of JAX, TensorFlow and PyTorch. To do so, set the
146
+ `KERAS_BACKEND` environment variable. For example:
147
+
148
+ ```shell
149
+ export KERAS_BACKEND=jax
150
+ ```
151
+
152
+ Or in Colab, with:
153
+
154
+ ```python
155
+ import os
156
+ os.environ["KERAS_BACKEND"] = "jax"
157
+
158
+ import keras_nlp
159
+ ```
160
+
161
+ > [!IMPORTANT]
162
+ > Make sure to set the `KERAS_BACKEND` before import any Keras libraries, it
163
+ > will be used to set up Keras when it is first imported.
164
+
165
+ ## Compatibility
166
+
167
+ We follow [Semantic Versioning](https://semver.org/), and plan to
168
+ provide backwards compatibility guarantees both for code and saved models built
169
+ with our components. While we continue with pre-release `0.y.z` development, we
170
+ may break compatibility at any time and APIs should not be consider stable.
171
+
172
+ ## Disclaimer
173
+
174
+ KerasNLP provides access to pre-trained models via the `keras_nlp.models` API.
175
+ These pre-trained models are provided on an "as is" basis, without warranties
176
+ or conditions of any kind. The following underlying models are provided by third
177
+ parties, and subject to separate licenses:
178
+ BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper,
179
+ and XLM-RoBERTa.
180
+
181
+ ## Citing KerasNLP
182
+
183
+ If KerasNLP helps your research, we appreciate your citations.
184
+ Here is the BibTeX entry:
185
+
186
+ ```bibtex
187
+ @misc{kerasnlp2022,
188
+ title={KerasNLP},
189
+ author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet,
190
+ Fran\c{c}ois and others},
191
+ year={2022},
192
+ howpublished={\url{https://github.com/keras-team/keras-hub}},
193
+ }
194
+ ```
195
+
196
+ ## Acknowledgements
197
+
198
+ Thank you to all of our wonderful contributors!
199
+
200
+ <a href="https://github.com/keras-team/keras-hub/graphs/contributors">
201
+ <img src="https://contrib.rocks/image?repo=keras-team/keras-hub" />
202
+ </a>
@@ -1,10 +1,17 @@
1
- # KerasHub: Multi-framework NLP Models
1
+ # KerasNLP: Multi-framework NLP Models
2
2
  [![](https://github.com/keras-team/keras-hub/workflows/Tests/badge.svg?branch=master)](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
3
3
  ![Python](https://img.shields.io/badge/python-v3.9.0+-success.svg)
4
4
  [![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)](https://github.com/keras-team/keras-hub/issues)
5
5
 
6
- KerasHub is a natural language processing library that works natively
7
- with TensorFlow, JAX, or PyTorch. KerasHub provides a repository of pre-trained
6
+ > [!IMPORTANT]
7
+ > 📢 KerasNLP is becoming KerasHub! 📢 Read
8
+ > [the announcement](https://github.com/keras-team/keras-hub/issues/1831).
9
+ >
10
+ > We have renamed the repo to KerasHub in preparation for the release, but have not yet
11
+ > released the new package. Follow the announcement for news.
12
+
13
+ KerasNLP is a natural language processing library that works natively
14
+ with TensorFlow, JAX, or PyTorch. KerasNLP provides a repository of pre-trained
8
15
  models and a collection of lower-level building blocks for language modeling.
9
16
  Built on Keras 3, models can be trained and serialized in any framework
10
17
  and re-used in another without costly migrations.
@@ -12,13 +19,13 @@ and re-used in another without costly migrations.
12
19
  This library is an extension of the core Keras API; all high-level modules are
13
20
  Layers and Models that receive that same level of polish as core Keras.
14
21
  If you are familiar with Keras, congratulations! You already understand most of
15
- KerasHub.
22
+ KerasNLP.
16
23
 
17
24
  All models support JAX, TensorFlow, and PyTorch from a single model
18
25
  definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
19
26
  be trained on individual accelerators with built-in PEFT techniques, or
20
27
  fine-tuned at scale with model and data parallel training. See our
21
- [Getting Started guide](https://keras.io/guides/keras_hub/getting_started)
28
+ [Getting Started guide](https://keras.io/guides/keras_nlp/getting_started)
22
29
  to start learning our API. Browse our models on
23
30
  [Kaggle](https://www.kaggle.com/organizations/keras/models).
24
31
  We welcome contributions.
@@ -27,9 +34,9 @@ We welcome contributions.
27
34
 
28
35
  ### For everyone
29
36
 
30
- - [Home Page](https://keras.io/keras_hub)
31
- - [Developer Guides](https://keras.io/guides/keras_hub)
32
- - [API Reference](https://keras.io/api/keras_hub)
37
+ - [Home Page](https://keras.io/keras_nlp)
38
+ - [Developer Guides](https://keras.io/guides/keras_nlp)
39
+ - [API Reference](https://keras.io/api/keras_nlp)
33
40
  - [Pre-trained Models](https://www.kaggle.com/organizations/keras/models)
34
41
 
35
42
  ### For contributors
@@ -48,7 +55,7 @@ Fine-tune BERT on IMDb movie reviews:
48
55
  import os
49
56
  os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
50
57
 
51
- import keras_hub
58
+ import keras_nlp
52
59
  import tensorflow_datasets as tfds
53
60
 
54
61
  imdb_train, imdb_test = tfds.load(
@@ -58,7 +65,7 @@ imdb_train, imdb_test = tfds.load(
58
65
  batch_size=16,
59
66
  )
60
67
  # Load a BERT model.
61
- classifier = keras_hub.models.Classifier.from_preset(
68
+ classifier = keras_nlp.models.Classifier.from_preset(
62
69
  "bert_base_en",
63
70
  num_classes=2,
64
71
  activation="softmax",
@@ -71,24 +78,24 @@ classifier.predict(["What an amazing movie!", "A total waste of my time."])
71
78
 
72
79
  Try it out [in a colab](https://colab.research.google.com/gist/mattdangerw/e457e42d5ea827110c8d5cb4eb9d9a07/kerasnlp-quickstart.ipynb).
73
80
  For more in depth guides and examples, visit
74
- [keras.io/keras_hub](https://keras.io/keras_hub/).
81
+ [keras.io/keras_nlp](https://keras.io/keras_nlp/).
75
82
 
76
83
  ## Installation
77
84
 
78
- To install the latest KerasHub release with Keras 3, simply run:
85
+ To install the latest KerasNLP release with Keras 3, simply run:
79
86
 
80
87
  ```
81
- pip install --upgrade keras-hub
88
+ pip install --upgrade keras-nlp
82
89
  ```
83
90
 
84
- To install the latest nightly changes for both KerasHub and Keras, you can use
91
+ To install the latest nightly changes for both KerasNLP and Keras, you can use
85
92
  our nightly package.
86
93
 
87
94
  ```
88
- pip install --upgrade keras-hub-nightly
95
+ pip install --upgrade keras-nlp-nightly
89
96
  ```
90
97
 
91
- Note that currently, installing KerasHub will always pull in TensorFlow for use
98
+ Note that currently, installing KerasNLP will always pull in TensorFlow for use
92
99
  of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
93
100
  training can still happen on any backend.
94
101
 
@@ -96,13 +103,13 @@ Read [Getting started with Keras](https://keras.io/getting_started/) for more
96
103
  information on installing Keras 3 and compatibility with different frameworks.
97
104
 
98
105
  > [!IMPORTANT]
99
- > We recommend using KerasHub with TensorFlow 2.16 or later, as TF 2.16 packages
106
+ > We recommend using KerasNLP with TensorFlow 2.16 or later, as TF 2.16 packages
100
107
  > Keras 3 by default.
101
108
 
102
109
  ## Configuring your backend
103
110
 
104
111
  If you have Keras 3 installed in your environment (see installation above),
105
- you can use KerasHub with any of JAX, TensorFlow and PyTorch. To do so, set the
112
+ you can use KerasNLP with any of JAX, TensorFlow and PyTorch. To do so, set the
106
113
  `KERAS_BACKEND` environment variable. For example:
107
114
 
108
115
  ```shell
@@ -115,7 +122,7 @@ Or in Colab, with:
115
122
  import os
116
123
  os.environ["KERAS_BACKEND"] = "jax"
117
124
 
118
- import keras_hub
125
+ import keras_nlp
119
126
  ```
120
127
 
121
128
  > [!IMPORTANT]
@@ -131,21 +138,21 @@ may break compatibility at any time and APIs should not be consider stable.
131
138
 
132
139
  ## Disclaimer
133
140
 
134
- KerasHub provides access to pre-trained models via the `keras_hub.models` API.
141
+ KerasNLP provides access to pre-trained models via the `keras_nlp.models` API.
135
142
  These pre-trained models are provided on an "as is" basis, without warranties
136
143
  or conditions of any kind. The following underlying models are provided by third
137
144
  parties, and subject to separate licenses:
138
145
  BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper,
139
146
  and XLM-RoBERTa.
140
147
 
141
- ## Citing KerasHub
148
+ ## Citing KerasNLP
142
149
 
143
- If KerasHub helps your research, we appreciate your citations.
150
+ If KerasNLP helps your research, we appreciate your citations.
144
151
  Here is the BibTeX entry:
145
152
 
146
153
  ```bibtex
147
154
  @misc{kerasnlp2022,
148
- title={KerasHub},
155
+ title={KerasNLP},
149
156
  author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet,
150
157
  Fran\c{c}ois and others},
151
158
  year={2022},
@@ -11,12 +11,6 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
- """DO NOT EDIT.
15
-
16
- This file was autogenerated. Do not edit it by hand,
17
- since your modifications would be overwritten.
18
- """
19
-
20
14
  import os
21
15
 
22
16
  # sentencepiece segfaults on some version of tensorflow if tf is imported first.
@@ -23,6 +23,7 @@ from keras_hub.api import metrics
23
23
  from keras_hub.api import models
24
24
  from keras_hub.api import samplers
25
25
  from keras_hub.api import tokenizers
26
+ from keras_hub.api import utils
26
27
  from keras_hub.src.utils.preset_utils import upload_preset
27
28
  from keras_hub.src.version_utils import __version__
28
29
  from keras_hub.src.version_utils import version
@@ -0,0 +1,22 @@
1
+ # Copyright 2024 The KerasHub Authors
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # https://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """DO NOT EDIT.
15
+
16
+ This file was autogenerated. Do not edit it by hand,
17
+ since your modifications would be overwritten.
18
+ """
19
+
20
+ from keras_hub.src.utils.imagenet.imagenet_utils import (
21
+ decode_imagenet_predictions,
22
+ )
@@ -14,7 +14,7 @@
14
14
 
15
15
  import types
16
16
 
17
- import keras
17
+ from keras.saving import register_keras_serializable
18
18
 
19
19
  try:
20
20
  import namex
@@ -22,14 +22,20 @@ except ImportError:
22
22
  namex = None
23
23
 
24
24
 
25
- def maybe_register_serializable(symbol):
25
+ def maybe_register_serializable(path, symbol):
26
+ if isinstance(path, (list, tuple)):
27
+ # If we have multiple export names, actually make sure to register these
28
+ # first. This makes sure we have a backward compat mapping of old
29
+ # serialized names to new class.
30
+ for name in path:
31
+ name = name.split(".")[-1]
32
+ register_keras_serializable(package="keras_nlp", name=name)(symbol)
33
+ register_keras_serializable(package="keras_hub", name=name)(symbol)
26
34
  if isinstance(symbol, types.FunctionType) or hasattr(symbol, "get_config"):
27
- # We register twice, first with the old name, second with the new name,
28
- # so loading still works under the old name.
29
- # TODO replace keras_nlp with keras-hub after rename.
30
- compat_name = "keras_nlp"
31
- keras.saving.register_keras_serializable(package=compat_name)(symbol)
32
- keras.saving.register_keras_serializable(package="keras_hub")(symbol)
35
+ # We register twice, first with keras_nlp, second with keras_hub,
36
+ # so loading still works for classes saved as "keras_nlp".
37
+ register_keras_serializable(package="keras_nlp")(symbol)
38
+ register_keras_serializable(package="keras_hub")(symbol)
33
39
 
34
40
 
35
41
  if namex:
@@ -39,15 +45,15 @@ if namex:
39
45
  super().__init__(package="keras_hub", path=path)
40
46
 
41
47
  def __call__(self, symbol):
42
- maybe_register_serializable(symbol)
48
+ maybe_register_serializable(self.path, symbol)
43
49
  return super().__call__(symbol)
44
50
 
45
51
  else:
46
52
 
47
53
  class keras_hub_export:
48
54
  def __init__(self, path):
49
- pass
55
+ self.path = path
50
56
 
51
57
  def __call__(self, symbol):
52
- maybe_register_serializable(symbol)
58
+ maybe_register_serializable(self.path, symbol)
53
59
  return symbol
@@ -12,9 +12,11 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  import keras
15
+ from keras import ops
15
16
 
16
17
  from keras_hub.src.api_export import keras_hub_export
17
18
  from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
19
+ from keras_hub.src.utils.keras_utils import standardize_data_format
18
20
  from keras_hub.src.utils.tensor_utils import preprocessing_function
19
21
 
20
22
 
@@ -23,13 +25,23 @@ class ResizingImageConverter(ImageConverter):
23
25
  """An `ImageConverter` that simply resizes the input image.
24
26
 
25
27
  The `ResizingImageConverter` is a subclass of `ImageConverter` for models
26
- that simply need to resize image tensors before using them for modeling.
27
- The layer will take as input a raw image tensor (batched or unbatched) in the
28
- channels last or channels first format, and output a resize tensor.
28
+ that need to resize (and optionally rescale) image tensors before using them
29
+ for modeling. The layer will take as input a raw image tensor (batched or
30
+ unbatched) in the channels last or channels first format, and output a
31
+ resize tensor.
29
32
 
30
33
  Args:
31
- height: Integer, the height of the output shape.
32
- width: Integer, the width of the output shape.
34
+ height: int, the height of the output shape.
35
+ width: int, the width of the output shape.
36
+ scale: float or `None`. If set, the image we be rescaled with a
37
+ `keras.layers.Rescaling` layer, multiplying the image by this
38
+ scale.
39
+ mean: tuples of floats per channel or `None`. If set, the image will be
40
+ normalized per channel by subtracting mean.
41
+ If set, also set `variance`.
42
+ variance: tuples of floats per channel or `None`. If set, the image will
43
+ be normalized per channel by dividing by `sqrt(variance)`.
44
+ If set, also set `mean`.
33
45
  crop_to_aspect_ratio: If `True`, resize the images without aspect
34
46
  ratio distortion. When the original aspect ratio differs
35
47
  from the target aspect ratio, the output image will be
@@ -64,6 +76,9 @@ class ResizingImageConverter(ImageConverter):
64
76
  self,
65
77
  height,
66
78
  width,
79
+ scale=None,
80
+ mean=None,
81
+ variance=None,
67
82
  crop_to_aspect_ratio=True,
68
83
  interpolation="bilinear",
69
84
  data_format=None,
@@ -78,7 +93,26 @@ class ResizingImageConverter(ImageConverter):
78
93
  crop_to_aspect_ratio=crop_to_aspect_ratio,
79
94
  interpolation=interpolation,
80
95
  data_format=data_format,
96
+ dtype=self.dtype_policy,
97
+ name="resizing",
81
98
  )
99
+ if scale is not None:
100
+ self.rescaling = keras.layers.Rescaling(
101
+ scale=scale,
102
+ dtype=self.dtype_policy,
103
+ name="rescaling",
104
+ )
105
+ else:
106
+ self.rescaling = None
107
+ if (mean is not None) != (variance is not None):
108
+ raise ValueError(
109
+ "Both `mean` and `variance` should be set or `None`. Received "
110
+ f"`mean={mean}`, `variance={variance}`."
111
+ )
112
+ self.scale = scale
113
+ self.mean = mean
114
+ self.variance = variance
115
+ self.data_format = standardize_data_format(data_format)
82
116
 
83
117
  def image_size(self):
84
118
  """Returns the preprocessed size of a single image."""
@@ -86,7 +120,20 @@ class ResizingImageConverter(ImageConverter):
86
120
 
87
121
  @preprocessing_function
88
122
  def call(self, inputs):
89
- return self.resizing(inputs)
123
+ x = self.resizing(inputs)
124
+ if self.rescaling:
125
+ x = self.rescaling(x)
126
+ if self.mean is not None:
127
+ # Avoid `layers.Normalization` so this works batched and unbatched.
128
+ channels_first = self.data_format == "channels_first"
129
+ if len(ops.shape(inputs)) == 3:
130
+ broadcast_dims = (1, 2) if channels_first else (0, 1)
131
+ else:
132
+ broadcast_dims = (0, 2, 3) if channels_first else (0, 1, 2)
133
+ mean = ops.expand_dims(ops.array(self.mean), broadcast_dims)
134
+ std = ops.expand_dims(ops.sqrt(self.variance), broadcast_dims)
135
+ x = (x - mean) / std
136
+ return x
90
137
 
91
138
  def get_config(self):
92
139
  config = super().get_config()
@@ -96,6 +143,9 @@ class ResizingImageConverter(ImageConverter):
96
143
  "width": self.resizing.width,
97
144
  "interpolation": self.resizing.interpolation,
98
145
  "crop_to_aspect_ratio": self.resizing.crop_to_aspect_ratio,
146
+ "scale": self.scale,
147
+ "mean": self.mean,
148
+ "variance": self.variance,
99
149
  }
100
150
  )
101
151
  return config
@@ -31,9 +31,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
31
31
  level in the model.
32
32
  stackwise_depth: A list of ints, the depth for each dark level in the
33
33
  model.
34
- include_rescaling: boolean. If `True`, rescale the input using
35
- `Rescaling(1 / 255.0)` layer. If `False`, do nothing. Defaults to
36
- `True`.
37
34
  block_type: str. One of `"basic_block"` or `"depthwise_block"`.
38
35
  Use `"depthwise_block"` for depthwise conv block
39
36
  `"basic_block"` for basic conv block.
@@ -55,7 +52,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
55
52
  model = keras_hub.models.CSPDarkNetBackbone(
56
53
  stackwise_num_filters=[128, 256, 512, 1024],
57
54
  stackwise_depth=[3, 9, 9, 3],
58
- include_rescaling=False,
59
55
  )
60
56
  model(input_data)
61
57
  ```
@@ -65,7 +61,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
65
61
  self,
66
62
  stackwise_num_filters,
67
63
  stackwise_depth,
68
- include_rescaling=True,
69
64
  block_type="basic_block",
70
65
  image_shape=(None, None, 3),
71
66
  **kwargs,
@@ -82,10 +77,7 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
82
77
  base_channels = stackwise_num_filters[0] // 2
83
78
 
84
79
  image_input = layers.Input(shape=image_shape)
85
- x = image_input
86
- if include_rescaling:
87
- x = layers.Rescaling(scale=1 / 255.0)(x)
88
-
80
+ x = image_input # Intermediate result.
89
81
  x = apply_focus(channel_axis, name="stem_focus")(x)
90
82
  x = apply_darknet_conv_block(
91
83
  base_channels,
@@ -130,7 +122,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
130
122
  # === Config ===
131
123
  self.stackwise_num_filters = stackwise_num_filters
132
124
  self.stackwise_depth = stackwise_depth
133
- self.include_rescaling = include_rescaling
134
125
  self.block_type = block_type
135
126
  self.image_shape = image_shape
136
127
  self.pyramid_outputs = pyramid_outputs
@@ -141,7 +132,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
141
132
  {
142
133
  "stackwise_num_filters": self.stackwise_num_filters,
143
134
  "stackwise_depth": self.stackwise_depth,
144
- "include_rescaling": self.include_rescaling,
145
135
  "block_type": self.block_type,
146
136
  "image_shape": self.image_shape,
147
137
  }
@@ -76,7 +76,6 @@ class CSPDarkNetImageClassifier(ImageClassifier):
76
76
  backbone = keras_hub.models.CSPDarkNetBackbone(
77
77
  stackwise_num_filters=[128, 256, 512, 1024],
78
78
  stackwise_depth=[3, 9, 9, 3],
79
- include_rescaling=False,
80
79
  block_type="basic_block",
81
80
  image_shape = (224, 224, 3),
82
81
  )