keras-hub-nightly 0.16.0.dev20240915160609__tar.gz → 0.16.1.dev202409220340__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- keras_hub_nightly-0.16.1.dev202409220340/PKG-INFO +202 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/README.md +30 -23
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/__init__.py +0 -6
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/__init__.py +1 -0
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub/api/utils/__init__.py +22 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/api_export.py +17 -11
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/resizing_image_converter.py +56 -6
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/csp_darknet/csp_darknet_backbone.py +1 -11
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/csp_darknet/csp_darknet_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/densenet/densenet_backbone.py +2 -12
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/densenet/densenet_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/efficientnet_backbone.py +3 -14
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_decoder_block.py +1 -1
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/mix_transformer_backbone.py +1 -11
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/mix_transformer_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mobilenet/mobilenet_backbone.py +3 -14
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mobilenet/mobilenet_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_vit.py +3 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_backbone.py +1 -21
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_image_classifier.py +9 -4
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_presets.py +6 -6
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet/anchor_generator.py +175 -0
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet/box_matcher.py +259 -0
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet/non_max_supression.py +578 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vgg/vgg_backbone.py +0 -8
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vgg/vgg_image_classifier.py +0 -1
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vit_det/vit_det_backbone.py +0 -9
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tests/test_case.py +11 -3
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/byte_pair_tokenizer.py +1 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/sentence_piece_tokenizer.py +1 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/word_piece_tokenizer.py +1 -0
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/imagenet/__init__.py +13 -0
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/imagenet/imagenet_utils.py +1067 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/preset_utils.py +10 -1
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/tensor_utils.py +14 -14
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/timm/convert_resnet.py +0 -8
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/timm/preset_loader.py +16 -1
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/transformers/__init__.py +13 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/version_utils.py +1 -1
- keras_hub_nightly-0.16.1.dev202409220340/keras_hub_nightly.egg-info/PKG-INFO +202 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/SOURCES.txt +7 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/setup.py +7 -7
- keras_hub_nightly-0.16.0.dev20240915160609/PKG-INFO +0 -33
- keras_hub_nightly-0.16.0.dev20240915160609/keras_hub_nightly.egg-info/PKG-INFO +0 -33
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/samplers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/api/tokenizers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/converters.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/formats.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/iou.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/to_dense.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/to_ragged.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/bounding_box/validate_format.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/alibi_bias.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/f_net_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/masked_lm_head.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/position_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/reversible_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/sine_position_encoding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/token_and_position_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/transformer_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/modeling/transformer_layer_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/audio_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/image_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/masked_lm_mask_generator.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/multi_segment_packer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/preprocessing_layer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/random_deletion.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/random_swap.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/layers/preprocessing/start_end_packer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/bleu.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/edit_distance.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/perplexity.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/rouge_base.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/rouge_l.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/metrics/rouge_n.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/albert/albert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bart/bart_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bert/bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/bloom/bloom_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/csp_darknet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/disentangled_self_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/deberta_v3/relative_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/densenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/distil_bert/distil_bert_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/fusedmbconv.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/efficientnet/mbconv.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/electra_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/electra_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/electra/electra_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/f_net/f_net_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/falcon/falcon_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/feature_pyramid_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gemma/rms_normalization.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt2/gpt2_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/image_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_layernorm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama/llama_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/llama3/llama3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mistral/mistral_transformer_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mix_transformer/mix_transformer_layers.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/mobilenet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/opt/opt_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_decoder_block.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_causal_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_causal_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_layernorm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_rotary_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/phi3/phi3_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_image_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/resnet/resnet_image_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/stable_diffusion_v3 → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/retinanet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/roberta/roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/seq_2_seq_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/seq_2_seq_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/vgg → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/stable_diffusion_v3}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_encoder_block.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/clip_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/mmdit.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/mmdit_block.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/t5_xxl_text_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/vae_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/stable_diffusion_v3/vae_image_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_layer_norm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/t5/t5_transformer_layer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/task.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/vit_det → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/vgg}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/models/xlnet → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/vit_det}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/vit_det/vit_layers.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_audio_converter.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_cached_multi_head_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_decoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/whisper/whisper_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_masked_lm_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_presets.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_text_classifier_preprocessor.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlm_roberta/xlm_roberta_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/samplers → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/models/xlnet}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/relative_attention.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/xlnet_backbone.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/models/xlnet/xlnet_encoder.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/tests → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/samplers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/beam_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/contrastive_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/greedy_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/random_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/serialization.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/top_k_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/samplers/top_p_sampler.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/tokenizers → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/tests}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/utils → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/tokenizers}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/byte_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/utils/timm → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/keras_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/pipeline_model.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/python_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609/keras_hub/src/utils/transformers → keras_hub_nightly-0.16.1.dev202409220340/keras_hub/src/utils/timm}/__init__.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_albert.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_bart.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_bert.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_distilbert.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_gemma.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_gpt2.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_llama3.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_mistral.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/convert_pali_gemma.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/preset_loader.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub/src/utils/transformers/safetensor_utils.py +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/dependency_links.txt +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/requires.txt +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/keras_hub_nightly.egg-info/top_level.txt +0 -0
- {keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/setup.cfg +0 -0
@@ -0,0 +1,202 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: keras-hub-nightly
|
3
|
+
Version: 0.16.1.dev202409220340
|
4
|
+
Summary: Industry-strength Natural Language Processing extensions for Keras.
|
5
|
+
Home-page: https://github.com/keras-team/keras-hub
|
6
|
+
Author: Keras team
|
7
|
+
Author-email: keras-hub@google.com
|
8
|
+
License: Apache License 2.0
|
9
|
+
Classifier: Development Status :: 3 - Alpha
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: Programming Language :: Python :: 3.9
|
12
|
+
Classifier: Programming Language :: Python :: 3.10
|
13
|
+
Classifier: Programming Language :: Python :: 3.11
|
14
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
15
|
+
Classifier: Operating System :: Unix
|
16
|
+
Classifier: Operating System :: Microsoft :: Windows
|
17
|
+
Classifier: Operating System :: MacOS
|
18
|
+
Classifier: Intended Audience :: Science/Research
|
19
|
+
Classifier: Topic :: Scientific/Engineering
|
20
|
+
Classifier: Topic :: Software Development
|
21
|
+
Requires-Python: >=3.9
|
22
|
+
Description-Content-Type: text/markdown
|
23
|
+
Requires-Dist: absl-py
|
24
|
+
Requires-Dist: numpy
|
25
|
+
Requires-Dist: packaging
|
26
|
+
Requires-Dist: regex
|
27
|
+
Requires-Dist: rich
|
28
|
+
Requires-Dist: kagglehub
|
29
|
+
Requires-Dist: tensorflow-text; platform_system != "Darwin"
|
30
|
+
Provides-Extra: extras
|
31
|
+
Requires-Dist: rouge-score; extra == "extras"
|
32
|
+
Requires-Dist: sentencepiece; extra == "extras"
|
33
|
+
|
34
|
+
# KerasNLP: Multi-framework NLP Models
|
35
|
+
[](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
|
36
|
+

|
37
|
+
[](https://github.com/keras-team/keras-hub/issues)
|
38
|
+
|
39
|
+
> [!IMPORTANT]
|
40
|
+
> 📢 KerasNLP is becoming KerasHub! 📢 Read
|
41
|
+
> [the announcement](https://github.com/keras-team/keras-hub/issues/1831).
|
42
|
+
>
|
43
|
+
> We have renamed the repo to KerasHub in preparation for the release, but have not yet
|
44
|
+
> released the new package. Follow the announcement for news.
|
45
|
+
|
46
|
+
KerasNLP is a natural language processing library that works natively
|
47
|
+
with TensorFlow, JAX, or PyTorch. KerasNLP provides a repository of pre-trained
|
48
|
+
models and a collection of lower-level building blocks for language modeling.
|
49
|
+
Built on Keras 3, models can be trained and serialized in any framework
|
50
|
+
and re-used in another without costly migrations.
|
51
|
+
|
52
|
+
This library is an extension of the core Keras API; all high-level modules are
|
53
|
+
Layers and Models that receive that same level of polish as core Keras.
|
54
|
+
If you are familiar with Keras, congratulations! You already understand most of
|
55
|
+
KerasNLP.
|
56
|
+
|
57
|
+
All models support JAX, TensorFlow, and PyTorch from a single model
|
58
|
+
definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
|
59
|
+
be trained on individual accelerators with built-in PEFT techniques, or
|
60
|
+
fine-tuned at scale with model and data parallel training. See our
|
61
|
+
[Getting Started guide](https://keras.io/guides/keras_nlp/getting_started)
|
62
|
+
to start learning our API. Browse our models on
|
63
|
+
[Kaggle](https://www.kaggle.com/organizations/keras/models).
|
64
|
+
We welcome contributions.
|
65
|
+
|
66
|
+
## Quick Links
|
67
|
+
|
68
|
+
### For everyone
|
69
|
+
|
70
|
+
- [Home Page](https://keras.io/keras_nlp)
|
71
|
+
- [Developer Guides](https://keras.io/guides/keras_nlp)
|
72
|
+
- [API Reference](https://keras.io/api/keras_nlp)
|
73
|
+
- [Pre-trained Models](https://www.kaggle.com/organizations/keras/models)
|
74
|
+
|
75
|
+
### For contributors
|
76
|
+
|
77
|
+
- [Contributing Guide](CONTRIBUTING.md)
|
78
|
+
- [Roadmap](ROADMAP.md)
|
79
|
+
- [Style Guide](STYLE_GUIDE.md)
|
80
|
+
- [API Design Guide](API_DESIGN_GUIDE.md)
|
81
|
+
- [Call for Contributions](https://github.com/keras-team/keras-hub/issues?q=is%3Aissue+is%3Aopen+label%3A%22contributions+welcome%22)
|
82
|
+
|
83
|
+
## Quickstart
|
84
|
+
|
85
|
+
Fine-tune BERT on IMDb movie reviews:
|
86
|
+
|
87
|
+
```python
|
88
|
+
import os
|
89
|
+
os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
|
90
|
+
|
91
|
+
import keras_nlp
|
92
|
+
import tensorflow_datasets as tfds
|
93
|
+
|
94
|
+
imdb_train, imdb_test = tfds.load(
|
95
|
+
"imdb_reviews",
|
96
|
+
split=["train", "test"],
|
97
|
+
as_supervised=True,
|
98
|
+
batch_size=16,
|
99
|
+
)
|
100
|
+
# Load a BERT model.
|
101
|
+
classifier = keras_nlp.models.Classifier.from_preset(
|
102
|
+
"bert_base_en",
|
103
|
+
num_classes=2,
|
104
|
+
activation="softmax",
|
105
|
+
)
|
106
|
+
# Fine-tune on IMDb movie reviews.
|
107
|
+
classifier.fit(imdb_train, validation_data=imdb_test)
|
108
|
+
# Predict two new examples.
|
109
|
+
classifier.predict(["What an amazing movie!", "A total waste of my time."])
|
110
|
+
```
|
111
|
+
|
112
|
+
Try it out [in a colab](https://colab.research.google.com/gist/mattdangerw/e457e42d5ea827110c8d5cb4eb9d9a07/kerasnlp-quickstart.ipynb).
|
113
|
+
For more in depth guides and examples, visit
|
114
|
+
[keras.io/keras_nlp](https://keras.io/keras_nlp/).
|
115
|
+
|
116
|
+
## Installation
|
117
|
+
|
118
|
+
To install the latest KerasNLP release with Keras 3, simply run:
|
119
|
+
|
120
|
+
```
|
121
|
+
pip install --upgrade keras-nlp
|
122
|
+
```
|
123
|
+
|
124
|
+
To install the latest nightly changes for both KerasNLP and Keras, you can use
|
125
|
+
our nightly package.
|
126
|
+
|
127
|
+
```
|
128
|
+
pip install --upgrade keras-nlp-nightly
|
129
|
+
```
|
130
|
+
|
131
|
+
Note that currently, installing KerasNLP will always pull in TensorFlow for use
|
132
|
+
of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
|
133
|
+
training can still happen on any backend.
|
134
|
+
|
135
|
+
Read [Getting started with Keras](https://keras.io/getting_started/) for more
|
136
|
+
information on installing Keras 3 and compatibility with different frameworks.
|
137
|
+
|
138
|
+
> [!IMPORTANT]
|
139
|
+
> We recommend using KerasNLP with TensorFlow 2.16 or later, as TF 2.16 packages
|
140
|
+
> Keras 3 by default.
|
141
|
+
|
142
|
+
## Configuring your backend
|
143
|
+
|
144
|
+
If you have Keras 3 installed in your environment (see installation above),
|
145
|
+
you can use KerasNLP with any of JAX, TensorFlow and PyTorch. To do so, set the
|
146
|
+
`KERAS_BACKEND` environment variable. For example:
|
147
|
+
|
148
|
+
```shell
|
149
|
+
export KERAS_BACKEND=jax
|
150
|
+
```
|
151
|
+
|
152
|
+
Or in Colab, with:
|
153
|
+
|
154
|
+
```python
|
155
|
+
import os
|
156
|
+
os.environ["KERAS_BACKEND"] = "jax"
|
157
|
+
|
158
|
+
import keras_nlp
|
159
|
+
```
|
160
|
+
|
161
|
+
> [!IMPORTANT]
|
162
|
+
> Make sure to set the `KERAS_BACKEND` before import any Keras libraries, it
|
163
|
+
> will be used to set up Keras when it is first imported.
|
164
|
+
|
165
|
+
## Compatibility
|
166
|
+
|
167
|
+
We follow [Semantic Versioning](https://semver.org/), and plan to
|
168
|
+
provide backwards compatibility guarantees both for code and saved models built
|
169
|
+
with our components. While we continue with pre-release `0.y.z` development, we
|
170
|
+
may break compatibility at any time and APIs should not be consider stable.
|
171
|
+
|
172
|
+
## Disclaimer
|
173
|
+
|
174
|
+
KerasNLP provides access to pre-trained models via the `keras_nlp.models` API.
|
175
|
+
These pre-trained models are provided on an "as is" basis, without warranties
|
176
|
+
or conditions of any kind. The following underlying models are provided by third
|
177
|
+
parties, and subject to separate licenses:
|
178
|
+
BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper,
|
179
|
+
and XLM-RoBERTa.
|
180
|
+
|
181
|
+
## Citing KerasNLP
|
182
|
+
|
183
|
+
If KerasNLP helps your research, we appreciate your citations.
|
184
|
+
Here is the BibTeX entry:
|
185
|
+
|
186
|
+
```bibtex
|
187
|
+
@misc{kerasnlp2022,
|
188
|
+
title={KerasNLP},
|
189
|
+
author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet,
|
190
|
+
Fran\c{c}ois and others},
|
191
|
+
year={2022},
|
192
|
+
howpublished={\url{https://github.com/keras-team/keras-hub}},
|
193
|
+
}
|
194
|
+
```
|
195
|
+
|
196
|
+
## Acknowledgements
|
197
|
+
|
198
|
+
Thank you to all of our wonderful contributors!
|
199
|
+
|
200
|
+
<a href="https://github.com/keras-team/keras-hub/graphs/contributors">
|
201
|
+
<img src="https://contrib.rocks/image?repo=keras-team/keras-hub" />
|
202
|
+
</a>
|
{keras_hub_nightly-0.16.0.dev20240915160609 → keras_hub_nightly-0.16.1.dev202409220340}/README.md
RENAMED
@@ -1,10 +1,17 @@
|
|
1
|
-
#
|
1
|
+
# KerasNLP: Multi-framework NLP Models
|
2
2
|
[](https://github.com/keras-team/keras-hub/actions?query=workflow%3ATests+branch%3Amaster)
|
3
3
|

|
4
4
|
[](https://github.com/keras-team/keras-hub/issues)
|
5
5
|
|
6
|
-
|
7
|
-
|
6
|
+
> [!IMPORTANT]
|
7
|
+
> 📢 KerasNLP is becoming KerasHub! 📢 Read
|
8
|
+
> [the announcement](https://github.com/keras-team/keras-hub/issues/1831).
|
9
|
+
>
|
10
|
+
> We have renamed the repo to KerasHub in preparation for the release, but have not yet
|
11
|
+
> released the new package. Follow the announcement for news.
|
12
|
+
|
13
|
+
KerasNLP is a natural language processing library that works natively
|
14
|
+
with TensorFlow, JAX, or PyTorch. KerasNLP provides a repository of pre-trained
|
8
15
|
models and a collection of lower-level building blocks for language modeling.
|
9
16
|
Built on Keras 3, models can be trained and serialized in any framework
|
10
17
|
and re-used in another without costly migrations.
|
@@ -12,13 +19,13 @@ and re-used in another without costly migrations.
|
|
12
19
|
This library is an extension of the core Keras API; all high-level modules are
|
13
20
|
Layers and Models that receive that same level of polish as core Keras.
|
14
21
|
If you are familiar with Keras, congratulations! You already understand most of
|
15
|
-
|
22
|
+
KerasNLP.
|
16
23
|
|
17
24
|
All models support JAX, TensorFlow, and PyTorch from a single model
|
18
25
|
definition and can be fine-tuned on GPUs and TPUs out of the box. Models can
|
19
26
|
be trained on individual accelerators with built-in PEFT techniques, or
|
20
27
|
fine-tuned at scale with model and data parallel training. See our
|
21
|
-
[Getting Started guide](https://keras.io/guides/
|
28
|
+
[Getting Started guide](https://keras.io/guides/keras_nlp/getting_started)
|
22
29
|
to start learning our API. Browse our models on
|
23
30
|
[Kaggle](https://www.kaggle.com/organizations/keras/models).
|
24
31
|
We welcome contributions.
|
@@ -27,9 +34,9 @@ We welcome contributions.
|
|
27
34
|
|
28
35
|
### For everyone
|
29
36
|
|
30
|
-
- [Home Page](https://keras.io/
|
31
|
-
- [Developer Guides](https://keras.io/guides/
|
32
|
-
- [API Reference](https://keras.io/api/
|
37
|
+
- [Home Page](https://keras.io/keras_nlp)
|
38
|
+
- [Developer Guides](https://keras.io/guides/keras_nlp)
|
39
|
+
- [API Reference](https://keras.io/api/keras_nlp)
|
33
40
|
- [Pre-trained Models](https://www.kaggle.com/organizations/keras/models)
|
34
41
|
|
35
42
|
### For contributors
|
@@ -48,7 +55,7 @@ Fine-tune BERT on IMDb movie reviews:
|
|
48
55
|
import os
|
49
56
|
os.environ["KERAS_BACKEND"] = "jax" # Or "tensorflow" or "torch"!
|
50
57
|
|
51
|
-
import
|
58
|
+
import keras_nlp
|
52
59
|
import tensorflow_datasets as tfds
|
53
60
|
|
54
61
|
imdb_train, imdb_test = tfds.load(
|
@@ -58,7 +65,7 @@ imdb_train, imdb_test = tfds.load(
|
|
58
65
|
batch_size=16,
|
59
66
|
)
|
60
67
|
# Load a BERT model.
|
61
|
-
classifier =
|
68
|
+
classifier = keras_nlp.models.Classifier.from_preset(
|
62
69
|
"bert_base_en",
|
63
70
|
num_classes=2,
|
64
71
|
activation="softmax",
|
@@ -71,24 +78,24 @@ classifier.predict(["What an amazing movie!", "A total waste of my time."])
|
|
71
78
|
|
72
79
|
Try it out [in a colab](https://colab.research.google.com/gist/mattdangerw/e457e42d5ea827110c8d5cb4eb9d9a07/kerasnlp-quickstart.ipynb).
|
73
80
|
For more in depth guides and examples, visit
|
74
|
-
[keras.io/
|
81
|
+
[keras.io/keras_nlp](https://keras.io/keras_nlp/).
|
75
82
|
|
76
83
|
## Installation
|
77
84
|
|
78
|
-
To install the latest
|
85
|
+
To install the latest KerasNLP release with Keras 3, simply run:
|
79
86
|
|
80
87
|
```
|
81
|
-
pip install --upgrade keras-
|
88
|
+
pip install --upgrade keras-nlp
|
82
89
|
```
|
83
90
|
|
84
|
-
To install the latest nightly changes for both
|
91
|
+
To install the latest nightly changes for both KerasNLP and Keras, you can use
|
85
92
|
our nightly package.
|
86
93
|
|
87
94
|
```
|
88
|
-
pip install --upgrade keras-
|
95
|
+
pip install --upgrade keras-nlp-nightly
|
89
96
|
```
|
90
97
|
|
91
|
-
Note that currently, installing
|
98
|
+
Note that currently, installing KerasNLP will always pull in TensorFlow for use
|
92
99
|
of the `tf.data` API for preprocessing. Even when pre-processing with `tf.data`,
|
93
100
|
training can still happen on any backend.
|
94
101
|
|
@@ -96,13 +103,13 @@ Read [Getting started with Keras](https://keras.io/getting_started/) for more
|
|
96
103
|
information on installing Keras 3 and compatibility with different frameworks.
|
97
104
|
|
98
105
|
> [!IMPORTANT]
|
99
|
-
> We recommend using
|
106
|
+
> We recommend using KerasNLP with TensorFlow 2.16 or later, as TF 2.16 packages
|
100
107
|
> Keras 3 by default.
|
101
108
|
|
102
109
|
## Configuring your backend
|
103
110
|
|
104
111
|
If you have Keras 3 installed in your environment (see installation above),
|
105
|
-
you can use
|
112
|
+
you can use KerasNLP with any of JAX, TensorFlow and PyTorch. To do so, set the
|
106
113
|
`KERAS_BACKEND` environment variable. For example:
|
107
114
|
|
108
115
|
```shell
|
@@ -115,7 +122,7 @@ Or in Colab, with:
|
|
115
122
|
import os
|
116
123
|
os.environ["KERAS_BACKEND"] = "jax"
|
117
124
|
|
118
|
-
import
|
125
|
+
import keras_nlp
|
119
126
|
```
|
120
127
|
|
121
128
|
> [!IMPORTANT]
|
@@ -131,21 +138,21 @@ may break compatibility at any time and APIs should not be consider stable.
|
|
131
138
|
|
132
139
|
## Disclaimer
|
133
140
|
|
134
|
-
|
141
|
+
KerasNLP provides access to pre-trained models via the `keras_nlp.models` API.
|
135
142
|
These pre-trained models are provided on an "as is" basis, without warranties
|
136
143
|
or conditions of any kind. The following underlying models are provided by third
|
137
144
|
parties, and subject to separate licenses:
|
138
145
|
BART, BLOOM, DeBERTa, DistilBERT, GPT-2, Llama, Mistral, OPT, RoBERTa, Whisper,
|
139
146
|
and XLM-RoBERTa.
|
140
147
|
|
141
|
-
## Citing
|
148
|
+
## Citing KerasNLP
|
142
149
|
|
143
|
-
If
|
150
|
+
If KerasNLP helps your research, we appreciate your citations.
|
144
151
|
Here is the BibTeX entry:
|
145
152
|
|
146
153
|
```bibtex
|
147
154
|
@misc{kerasnlp2022,
|
148
|
-
title={
|
155
|
+
title={KerasNLP},
|
149
156
|
author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet,
|
150
157
|
Fran\c{c}ois and others},
|
151
158
|
year={2022},
|
@@ -11,12 +11,6 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
-
"""DO NOT EDIT.
|
15
|
-
|
16
|
-
This file was autogenerated. Do not edit it by hand,
|
17
|
-
since your modifications would be overwritten.
|
18
|
-
"""
|
19
|
-
|
20
14
|
import os
|
21
15
|
|
22
16
|
# sentencepiece segfaults on some version of tensorflow if tf is imported first.
|
@@ -23,6 +23,7 @@ from keras_hub.api import metrics
|
|
23
23
|
from keras_hub.api import models
|
24
24
|
from keras_hub.api import samplers
|
25
25
|
from keras_hub.api import tokenizers
|
26
|
+
from keras_hub.api import utils
|
26
27
|
from keras_hub.src.utils.preset_utils import upload_preset
|
27
28
|
from keras_hub.src.version_utils import __version__
|
28
29
|
from keras_hub.src.version_utils import version
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# Copyright 2024 The KerasHub Authors
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# https://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
"""DO NOT EDIT.
|
15
|
+
|
16
|
+
This file was autogenerated. Do not edit it by hand,
|
17
|
+
since your modifications would be overwritten.
|
18
|
+
"""
|
19
|
+
|
20
|
+
from keras_hub.src.utils.imagenet.imagenet_utils import (
|
21
|
+
decode_imagenet_predictions,
|
22
|
+
)
|
@@ -14,7 +14,7 @@
|
|
14
14
|
|
15
15
|
import types
|
16
16
|
|
17
|
-
import
|
17
|
+
from keras.saving import register_keras_serializable
|
18
18
|
|
19
19
|
try:
|
20
20
|
import namex
|
@@ -22,14 +22,20 @@ except ImportError:
|
|
22
22
|
namex = None
|
23
23
|
|
24
24
|
|
25
|
-
def maybe_register_serializable(symbol):
|
25
|
+
def maybe_register_serializable(path, symbol):
|
26
|
+
if isinstance(path, (list, tuple)):
|
27
|
+
# If we have multiple export names, actually make sure to register these
|
28
|
+
# first. This makes sure we have a backward compat mapping of old
|
29
|
+
# serialized names to new class.
|
30
|
+
for name in path:
|
31
|
+
name = name.split(".")[-1]
|
32
|
+
register_keras_serializable(package="keras_nlp", name=name)(symbol)
|
33
|
+
register_keras_serializable(package="keras_hub", name=name)(symbol)
|
26
34
|
if isinstance(symbol, types.FunctionType) or hasattr(symbol, "get_config"):
|
27
|
-
# We register twice, first with
|
28
|
-
# so loading still works
|
29
|
-
|
30
|
-
|
31
|
-
keras.saving.register_keras_serializable(package=compat_name)(symbol)
|
32
|
-
keras.saving.register_keras_serializable(package="keras_hub")(symbol)
|
35
|
+
# We register twice, first with keras_nlp, second with keras_hub,
|
36
|
+
# so loading still works for classes saved as "keras_nlp".
|
37
|
+
register_keras_serializable(package="keras_nlp")(symbol)
|
38
|
+
register_keras_serializable(package="keras_hub")(symbol)
|
33
39
|
|
34
40
|
|
35
41
|
if namex:
|
@@ -39,15 +45,15 @@ if namex:
|
|
39
45
|
super().__init__(package="keras_hub", path=path)
|
40
46
|
|
41
47
|
def __call__(self, symbol):
|
42
|
-
maybe_register_serializable(symbol)
|
48
|
+
maybe_register_serializable(self.path, symbol)
|
43
49
|
return super().__call__(symbol)
|
44
50
|
|
45
51
|
else:
|
46
52
|
|
47
53
|
class keras_hub_export:
|
48
54
|
def __init__(self, path):
|
49
|
-
|
55
|
+
self.path = path
|
50
56
|
|
51
57
|
def __call__(self, symbol):
|
52
|
-
maybe_register_serializable(symbol)
|
58
|
+
maybe_register_serializable(self.path, symbol)
|
53
59
|
return symbol
|
@@ -12,9 +12,11 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
import keras
|
15
|
+
from keras import ops
|
15
16
|
|
16
17
|
from keras_hub.src.api_export import keras_hub_export
|
17
18
|
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter
|
19
|
+
from keras_hub.src.utils.keras_utils import standardize_data_format
|
18
20
|
from keras_hub.src.utils.tensor_utils import preprocessing_function
|
19
21
|
|
20
22
|
|
@@ -23,13 +25,23 @@ class ResizingImageConverter(ImageConverter):
|
|
23
25
|
"""An `ImageConverter` that simply resizes the input image.
|
24
26
|
|
25
27
|
The `ResizingImageConverter` is a subclass of `ImageConverter` for models
|
26
|
-
that
|
27
|
-
The layer will take as input a raw image tensor (batched or
|
28
|
-
channels last or channels first format, and output a
|
28
|
+
that need to resize (and optionally rescale) image tensors before using them
|
29
|
+
for modeling. The layer will take as input a raw image tensor (batched or
|
30
|
+
unbatched) in the channels last or channels first format, and output a
|
31
|
+
resize tensor.
|
29
32
|
|
30
33
|
Args:
|
31
|
-
height:
|
32
|
-
width:
|
34
|
+
height: int, the height of the output shape.
|
35
|
+
width: int, the width of the output shape.
|
36
|
+
scale: float or `None`. If set, the image we be rescaled with a
|
37
|
+
`keras.layers.Rescaling` layer, multiplying the image by this
|
38
|
+
scale.
|
39
|
+
mean: tuples of floats per channel or `None`. If set, the image will be
|
40
|
+
normalized per channel by subtracting mean.
|
41
|
+
If set, also set `variance`.
|
42
|
+
variance: tuples of floats per channel or `None`. If set, the image will
|
43
|
+
be normalized per channel by dividing by `sqrt(variance)`.
|
44
|
+
If set, also set `mean`.
|
33
45
|
crop_to_aspect_ratio: If `True`, resize the images without aspect
|
34
46
|
ratio distortion. When the original aspect ratio differs
|
35
47
|
from the target aspect ratio, the output image will be
|
@@ -64,6 +76,9 @@ class ResizingImageConverter(ImageConverter):
|
|
64
76
|
self,
|
65
77
|
height,
|
66
78
|
width,
|
79
|
+
scale=None,
|
80
|
+
mean=None,
|
81
|
+
variance=None,
|
67
82
|
crop_to_aspect_ratio=True,
|
68
83
|
interpolation="bilinear",
|
69
84
|
data_format=None,
|
@@ -78,7 +93,26 @@ class ResizingImageConverter(ImageConverter):
|
|
78
93
|
crop_to_aspect_ratio=crop_to_aspect_ratio,
|
79
94
|
interpolation=interpolation,
|
80
95
|
data_format=data_format,
|
96
|
+
dtype=self.dtype_policy,
|
97
|
+
name="resizing",
|
81
98
|
)
|
99
|
+
if scale is not None:
|
100
|
+
self.rescaling = keras.layers.Rescaling(
|
101
|
+
scale=scale,
|
102
|
+
dtype=self.dtype_policy,
|
103
|
+
name="rescaling",
|
104
|
+
)
|
105
|
+
else:
|
106
|
+
self.rescaling = None
|
107
|
+
if (mean is not None) != (variance is not None):
|
108
|
+
raise ValueError(
|
109
|
+
"Both `mean` and `variance` should be set or `None`. Received "
|
110
|
+
f"`mean={mean}`, `variance={variance}`."
|
111
|
+
)
|
112
|
+
self.scale = scale
|
113
|
+
self.mean = mean
|
114
|
+
self.variance = variance
|
115
|
+
self.data_format = standardize_data_format(data_format)
|
82
116
|
|
83
117
|
def image_size(self):
|
84
118
|
"""Returns the preprocessed size of a single image."""
|
@@ -86,7 +120,20 @@ class ResizingImageConverter(ImageConverter):
|
|
86
120
|
|
87
121
|
@preprocessing_function
|
88
122
|
def call(self, inputs):
|
89
|
-
|
123
|
+
x = self.resizing(inputs)
|
124
|
+
if self.rescaling:
|
125
|
+
x = self.rescaling(x)
|
126
|
+
if self.mean is not None:
|
127
|
+
# Avoid `layers.Normalization` so this works batched and unbatched.
|
128
|
+
channels_first = self.data_format == "channels_first"
|
129
|
+
if len(ops.shape(inputs)) == 3:
|
130
|
+
broadcast_dims = (1, 2) if channels_first else (0, 1)
|
131
|
+
else:
|
132
|
+
broadcast_dims = (0, 2, 3) if channels_first else (0, 1, 2)
|
133
|
+
mean = ops.expand_dims(ops.array(self.mean), broadcast_dims)
|
134
|
+
std = ops.expand_dims(ops.sqrt(self.variance), broadcast_dims)
|
135
|
+
x = (x - mean) / std
|
136
|
+
return x
|
90
137
|
|
91
138
|
def get_config(self):
|
92
139
|
config = super().get_config()
|
@@ -96,6 +143,9 @@ class ResizingImageConverter(ImageConverter):
|
|
96
143
|
"width": self.resizing.width,
|
97
144
|
"interpolation": self.resizing.interpolation,
|
98
145
|
"crop_to_aspect_ratio": self.resizing.crop_to_aspect_ratio,
|
146
|
+
"scale": self.scale,
|
147
|
+
"mean": self.mean,
|
148
|
+
"variance": self.variance,
|
99
149
|
}
|
100
150
|
)
|
101
151
|
return config
|
@@ -31,9 +31,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
31
31
|
level in the model.
|
32
32
|
stackwise_depth: A list of ints, the depth for each dark level in the
|
33
33
|
model.
|
34
|
-
include_rescaling: boolean. If `True`, rescale the input using
|
35
|
-
`Rescaling(1 / 255.0)` layer. If `False`, do nothing. Defaults to
|
36
|
-
`True`.
|
37
34
|
block_type: str. One of `"basic_block"` or `"depthwise_block"`.
|
38
35
|
Use `"depthwise_block"` for depthwise conv block
|
39
36
|
`"basic_block"` for basic conv block.
|
@@ -55,7 +52,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
55
52
|
model = keras_hub.models.CSPDarkNetBackbone(
|
56
53
|
stackwise_num_filters=[128, 256, 512, 1024],
|
57
54
|
stackwise_depth=[3, 9, 9, 3],
|
58
|
-
include_rescaling=False,
|
59
55
|
)
|
60
56
|
model(input_data)
|
61
57
|
```
|
@@ -65,7 +61,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
65
61
|
self,
|
66
62
|
stackwise_num_filters,
|
67
63
|
stackwise_depth,
|
68
|
-
include_rescaling=True,
|
69
64
|
block_type="basic_block",
|
70
65
|
image_shape=(None, None, 3),
|
71
66
|
**kwargs,
|
@@ -82,10 +77,7 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
82
77
|
base_channels = stackwise_num_filters[0] // 2
|
83
78
|
|
84
79
|
image_input = layers.Input(shape=image_shape)
|
85
|
-
x = image_input
|
86
|
-
if include_rescaling:
|
87
|
-
x = layers.Rescaling(scale=1 / 255.0)(x)
|
88
|
-
|
80
|
+
x = image_input # Intermediate result.
|
89
81
|
x = apply_focus(channel_axis, name="stem_focus")(x)
|
90
82
|
x = apply_darknet_conv_block(
|
91
83
|
base_channels,
|
@@ -130,7 +122,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
130
122
|
# === Config ===
|
131
123
|
self.stackwise_num_filters = stackwise_num_filters
|
132
124
|
self.stackwise_depth = stackwise_depth
|
133
|
-
self.include_rescaling = include_rescaling
|
134
125
|
self.block_type = block_type
|
135
126
|
self.image_shape = image_shape
|
136
127
|
self.pyramid_outputs = pyramid_outputs
|
@@ -141,7 +132,6 @@ class CSPDarkNetBackbone(FeaturePyramidBackbone):
|
|
141
132
|
{
|
142
133
|
"stackwise_num_filters": self.stackwise_num_filters,
|
143
134
|
"stackwise_depth": self.stackwise_depth,
|
144
|
-
"include_rescaling": self.include_rescaling,
|
145
135
|
"block_type": self.block_type,
|
146
136
|
"image_shape": self.image_shape,
|
147
137
|
}
|
@@ -76,7 +76,6 @@ class CSPDarkNetImageClassifier(ImageClassifier):
|
|
76
76
|
backbone = keras_hub.models.CSPDarkNetBackbone(
|
77
77
|
stackwise_num_filters=[128, 256, 512, 1024],
|
78
78
|
stackwise_depth=[3, 9, 9, 3],
|
79
|
-
include_rescaling=False,
|
80
79
|
block_type="basic_block",
|
81
80
|
image_shape = (224, 224, 3),
|
82
81
|
)
|