kececinumbers 0.6.8__tar.gz → 0.6.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.6.8
3
+ Version: 0.6.9
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -136,7 +136,7 @@ Dynamic: requires-python
136
136
 
137
137
  **Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
138
138
 
139
- This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
139
+ This library provides a unified algorithm that operates on 16 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
140
140
 
141
141
  <details>
142
142
  <summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
@@ -160,11 +160,50 @@ This flexible mechanism provides a rich framework for studying the behavior of n
160
160
 
161
161
  ## Key Features
162
162
 
163
- * **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
163
+ * **16 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
164
164
  * **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
165
165
  * **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
166
166
  * **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
167
167
  * **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
168
+ * 0.6.9: 16 Nubers
169
+ * 0.6.7: 11 Numbers
170
+
171
+ ---
172
+
173
+ ## MODULE CONSTANTS: KEÇECİ NUMBER TYPES
174
+
175
+
176
+ TYPE_POSITIVE_REAL = 1
177
+
178
+ TYPE_NEGATIVE_REAL = 2
179
+
180
+ TYPE_COMPLEX = 3
181
+
182
+ TYPE_FLOAT = 4
183
+
184
+ TYPE_RATIONAL = 5
185
+
186
+ TYPE_QUATERNION = 6
187
+
188
+ TYPE_NEUTROSOPHIC = 7
189
+
190
+ TYPE_NEUTROSOPHIC_COMPLEX = 8
191
+
192
+ TYPE_HYPERREAL = 9
193
+
194
+ TYPE_BICOMPLEX = 10
195
+
196
+ TYPE_NEUTROSOPHIC_BICOMPLEX = 11
197
+
198
+ TYPE_OCTONION = 12
199
+
200
+ TYPE_SEDENION = 13
201
+
202
+ TYPE_CLIFFORD = 14
203
+
204
+ TYPE_DUAL = 15
205
+
206
+ TYPE_SPLIT_COMPLEX = 16
168
207
 
169
208
  ---
170
209
 
@@ -410,7 +449,18 @@ Keçeci Number Types:
410
449
 
411
450
  11: Neutro-Bicomplex
412
451
 
413
- Please select Keçeci Number Type (1-11): 1
452
+ 12: Octonion (in 'e0,e1,e2,e3,e4,e5,e6,e7' format, e.g., '1.0,0.5,-0.2,0.3,0.1,-0.4,0.2,0.0')
453
+
454
+ 13: "Sedenion(in 'e0,e1,...,e15' format, e.g., '1.0', '0.0'): ",
455
+
456
+ 14: "Clifford(in 'scalar,e1,e2,e12,...' format, e.g., '0.1+0.2e1', '1.0+2.0e1+3.0e12')
457
+
458
+ 15: "Dual(in 'real,dual' format, e.g., '2.0,0.5')
459
+
460
+ 16: "Split-Complex(in 'real,split' format, e.g., '1.0,0.8')
461
+
462
+
463
+ Please select Keçeci Number Type (1-16): 1
414
464
 
415
465
  Enter the starting number (e.g., 0 or 2.5, complex:3+4j, rational: 3/4, quaternions: 1) : 0
416
466
 
@@ -69,7 +69,7 @@
69
69
 
70
70
  **Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
71
71
 
72
- This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
72
+ This library provides a unified algorithm that operates on 16 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
73
73
 
74
74
  <details>
75
75
  <summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
@@ -93,11 +93,50 @@ This flexible mechanism provides a rich framework for studying the behavior of n
93
93
 
94
94
  ## Key Features
95
95
 
96
- * **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
96
+ * **16 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
97
97
  * **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
98
98
  * **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
99
99
  * **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
100
100
  * **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
101
+ * 0.6.9: 16 Nubers
102
+ * 0.6.7: 11 Numbers
103
+
104
+ ---
105
+
106
+ ## MODULE CONSTANTS: KEÇECİ NUMBER TYPES
107
+
108
+
109
+ TYPE_POSITIVE_REAL = 1
110
+
111
+ TYPE_NEGATIVE_REAL = 2
112
+
113
+ TYPE_COMPLEX = 3
114
+
115
+ TYPE_FLOAT = 4
116
+
117
+ TYPE_RATIONAL = 5
118
+
119
+ TYPE_QUATERNION = 6
120
+
121
+ TYPE_NEUTROSOPHIC = 7
122
+
123
+ TYPE_NEUTROSOPHIC_COMPLEX = 8
124
+
125
+ TYPE_HYPERREAL = 9
126
+
127
+ TYPE_BICOMPLEX = 10
128
+
129
+ TYPE_NEUTROSOPHIC_BICOMPLEX = 11
130
+
131
+ TYPE_OCTONION = 12
132
+
133
+ TYPE_SEDENION = 13
134
+
135
+ TYPE_CLIFFORD = 14
136
+
137
+ TYPE_DUAL = 15
138
+
139
+ TYPE_SPLIT_COMPLEX = 16
101
140
 
102
141
  ---
103
142
 
@@ -343,7 +382,18 @@ Keçeci Number Types:
343
382
 
344
383
  11: Neutro-Bicomplex
345
384
 
346
- Please select Keçeci Number Type (1-11): 1
385
+ 12: Octonion (in 'e0,e1,e2,e3,e4,e5,e6,e7' format, e.g., '1.0,0.5,-0.2,0.3,0.1,-0.4,0.2,0.0')
386
+
387
+ 13: "Sedenion(in 'e0,e1,...,e15' format, e.g., '1.0', '0.0'): ",
388
+
389
+ 14: "Clifford(in 'scalar,e1,e2,e12,...' format, e.g., '0.1+0.2e1', '1.0+2.0e1+3.0e12')
390
+
391
+ 15: "Dual(in 'real,dual' format, e.g., '2.0,0.5')
392
+
393
+ 16: "Split-Complex(in 'real,split' format, e.g., '1.0,0.8')
394
+
395
+
396
+ Please select Keçeci Number Type (1-16): 1
347
397
 
348
398
  Enter the starting number (e.g., 0 or 2.5, complex:3+4j, rational: 3/4, quaternions: 1) : 0
349
399
 
@@ -22,7 +22,7 @@ import warnings
22
22
  # importlib.reload(kececinumbers) # F821 undefined name 'kececinumbers'
23
23
 
24
24
  # Paket sürüm numarası
25
- __version__ = "0.6.8"
25
+ __version__ = "0.6.9"
26
26
  __author__ = "Mehmet Keçeci"
27
27
  __email__ = "mkececi@yaani.com"
28
28
 
@@ -1,7 +1,7 @@
1
1
  # -*- coding: utf-8 -*-
2
2
  # _version.py
3
3
 
4
- __version__ = "0.6.8"
4
+ __version__ = "0.6.9"
5
5
  __license__ = "MIT"
6
6
  __description__ = "Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets."
7
7
  __author__ = "Mehmet Keçeci"
@@ -63,7 +63,7 @@ except ImportError:
63
63
 
64
64
 
65
65
  # ==============================================================================
66
- # --- MODULE CONSTANTS: KEÇECI NUMBER TYPES ---
66
+ # --- MODULE CONSTANTS: Keçeci NUMBER TYPES ---
67
67
  # ==============================================================================
68
68
  TYPE_POSITIVE_REAL = 1
69
69
  TYPE_NEGATIVE_REAL = 2
@@ -82,8 +82,6 @@ TYPE_CLIFFORD = 14
82
82
  TYPE_DUAL = 15
83
83
  TYPE_SPLIT_COMPLEX = 16
84
84
 
85
-
86
-
87
85
  # ==============================================================================
88
86
  # --- CUSTOM NUMBER CLASS DEFINITIONS ---
89
87
  # ==============================================================================
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.6.8
3
+ Version: 0.6.9
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -136,7 +136,7 @@ Dynamic: requires-python
136
136
 
137
137
  **Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
138
138
 
139
- This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
139
+ This library provides a unified algorithm that operates on 16 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
140
140
 
141
141
  <details>
142
142
  <summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
@@ -160,11 +160,50 @@ This flexible mechanism provides a rich framework for studying the behavior of n
160
160
 
161
161
  ## Key Features
162
162
 
163
- * **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
163
+ * **16 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
164
164
  * **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
165
165
  * **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
166
166
  * **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
167
167
  * **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
168
+ * 0.6.9: 16 Nubers
169
+ * 0.6.7: 11 Numbers
170
+
171
+ ---
172
+
173
+ ## MODULE CONSTANTS: KEÇECİ NUMBER TYPES
174
+
175
+
176
+ TYPE_POSITIVE_REAL = 1
177
+
178
+ TYPE_NEGATIVE_REAL = 2
179
+
180
+ TYPE_COMPLEX = 3
181
+
182
+ TYPE_FLOAT = 4
183
+
184
+ TYPE_RATIONAL = 5
185
+
186
+ TYPE_QUATERNION = 6
187
+
188
+ TYPE_NEUTROSOPHIC = 7
189
+
190
+ TYPE_NEUTROSOPHIC_COMPLEX = 8
191
+
192
+ TYPE_HYPERREAL = 9
193
+
194
+ TYPE_BICOMPLEX = 10
195
+
196
+ TYPE_NEUTROSOPHIC_BICOMPLEX = 11
197
+
198
+ TYPE_OCTONION = 12
199
+
200
+ TYPE_SEDENION = 13
201
+
202
+ TYPE_CLIFFORD = 14
203
+
204
+ TYPE_DUAL = 15
205
+
206
+ TYPE_SPLIT_COMPLEX = 16
168
207
 
169
208
  ---
170
209
 
@@ -410,7 +449,18 @@ Keçeci Number Types:
410
449
 
411
450
  11: Neutro-Bicomplex
412
451
 
413
- Please select Keçeci Number Type (1-11): 1
452
+ 12: Octonion (in 'e0,e1,e2,e3,e4,e5,e6,e7' format, e.g., '1.0,0.5,-0.2,0.3,0.1,-0.4,0.2,0.0')
453
+
454
+ 13: "Sedenion(in 'e0,e1,...,e15' format, e.g., '1.0', '0.0'): ",
455
+
456
+ 14: "Clifford(in 'scalar,e1,e2,e12,...' format, e.g., '0.1+0.2e1', '1.0+2.0e1+3.0e12')
457
+
458
+ 15: "Dual(in 'real,dual' format, e.g., '2.0,0.5')
459
+
460
+ 16: "Split-Complex(in 'real,split' format, e.g., '1.0,0.8')
461
+
462
+
463
+ Please select Keçeci Number Type (1-16): 1
414
464
 
415
465
  Enter the starting number (e.g., 0 or 2.5, complex:3+4j, rational: 3/4, quaternions: 1) : 0
416
466
 
@@ -6,7 +6,7 @@ build-backend = "setuptools.build_meta"
6
6
 
7
7
  [project]
8
8
  name = "kececinumbers"
9
- version = "0.6.8"
9
+ version = "0.6.9"
10
10
 
11
11
  # Diğer proje bilgileri (isteğe bağlı ama tavsiye edilir)
12
12
  authors = [
File without changes
File without changes
File without changes
File without changes