kececinumbers 0.3.4__tar.gz → 0.3.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {kececinumbers-0.3.4/kececinumbers.egg-info → kececinumbers-0.3.6}/PKG-INFO +139 -7
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/README.md +138 -6
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/kececinumbers/__init__.py +1 -1
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/kececinumbers/_version.py +1 -1
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/kececinumbers/kececinumbers.py +3 -3
- {kececinumbers-0.3.4 → kececinumbers-0.3.6/kececinumbers.egg-info}/PKG-INFO +139 -7
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/setup.py +1 -1
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/LICENSE +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/MANIFEST.in +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/kececinumbers.egg-info/SOURCES.txt +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/kececinumbers.egg-info/dependency_links.txt +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/kececinumbers.egg-info/requires.txt +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/kececinumbers.egg-info/top_level.txt +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/pyproject.toml +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/setup.cfg +0 -0
- {kececinumbers-0.3.4 → kececinumbers-0.3.6}/tests/test_sample.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: kececinumbers
|
3
|
-
Version: 0.3.
|
3
|
+
Version: 0.3.6
|
4
4
|
Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
|
5
5
|
Home-page: https://github.com/WhiteSymmetry/kececinumbers
|
6
6
|
Author: Mehmet Keçeci
|
@@ -32,14 +32,12 @@ Dynamic: requires-python
|
|
32
32
|
Dynamic: summary
|
33
33
|
|
34
34
|
# Keçeci Numbers: Keçeci Sayıları
|
35
|
+
---
|
35
36
|
|
36
|
-
[](https://badge.fury.io/py/kececinumbers)
|
37
|
+
[](https://badge.fury.io/py/kececinumbers/)
|
37
38
|
[](https://opensource.org/licenses/MIT)
|
38
|
-
|
39
39
|
[](https://doi.org/10.5281/zenodo.15377659)
|
40
|
-
|
41
40
|
[](https://doi.org/10.48546/workflowhub.datafile.14.2)
|
42
|
-
|
43
41
|
[](https://doi.org/10.6084/m9.figshare.29816414)
|
44
42
|
|
45
43
|
[](https://anaconda.org/bilgi/kececinumbers)
|
@@ -49,13 +47,13 @@ Dynamic: summary
|
|
49
47
|
|
50
48
|
[](https://opensource.org/)
|
51
49
|
[](https://kececinumbers.readthedocs.io/en/latest)
|
52
|
-
|
53
50
|
[](https://www.bestpractices.dev/projects/10536)
|
54
51
|
|
55
52
|
[](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml)
|
56
53
|
[](https://codecov.io/gh/WhiteSymmetry/kececinumbers)
|
57
54
|
[](https://kececinumbers.readthedocs.io/en/latest/)
|
58
55
|
[](https://terrarium.evidencepub.io/v2/gh/WhiteSymmetry/kececinumbers/HEAD)
|
56
|
+
|
59
57
|
[](https://badge.fury.io/py/kececinumbers)
|
60
58
|
[](https://pepy.tech/projects/kececinumbers)
|
61
59
|
[](CODE_OF_CONDUCT.md)
|
@@ -102,6 +100,130 @@ Dynamic: summary
|
|
102
100
|
|
103
101
|
---
|
104
102
|
|
103
|
+
**Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
|
104
|
+
|
105
|
+
This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
|
106
|
+
|
107
|
+
<details>
|
108
|
+
<summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
|
109
|
+
|
110
|
+
**Keçeci Sayıları**, Collatz Varsayımı'ndan esinlenen ve farklı sayı sistemlerinde dinamik diziler üreten, analiz eden ve görselleştiren bir Python kütüphanesidir. Bu kütüphane, tamsayılardan karmaşık sayılara, kuaterniyonlardan nötrosofik sayılara kadar 11 farklı sayı türü üzerinde çalışan birleşik bir algoritma sunar. Akademik araştırmalar ve sayı teorisindeki keşifler için bir araç olarak tasarlanmıştır.
|
111
|
+
|
112
|
+
</details>
|
113
|
+
|
114
|
+
---
|
115
|
+
|
116
|
+
## What are Keçeci Numbers?
|
117
|
+
|
118
|
+
Keçeci Numbers are sequences generated from a starting value using a recursive rule. The process for each step is:
|
119
|
+
|
120
|
+
1. **Add & Record:** A fixed increment value is added to the current value. This new "added value" is recorded in the sequence.
|
121
|
+
2. **Attempt Division:** An attempt is made to divide the "added value" by 3 or 2 (whichever was not used in the previous step). If successful, the result becomes the next element.
|
122
|
+
3. **ASK (Augment/Shrink then Check) Rule:** If the number is indivisible and its principal component is **prime**, a type-specific unit value is added or subtracted. This "modified value" is recorded, and the division is re-attempted.
|
123
|
+
4. **Carry Over:** If division fails again, or if the number is not prime, the value itself (either the "added value" or "modified value") becomes the next element in the sequence.
|
124
|
+
|
125
|
+
This flexible mechanism provides a rich framework for studying the behavior of numerical sequences in various algebraic systems.
|
126
|
+
|
127
|
+
## Key Features
|
128
|
+
|
129
|
+
* **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
|
130
|
+
* **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
|
131
|
+
* **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
|
132
|
+
* **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
|
133
|
+
* **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
|
134
|
+
|
135
|
+
---
|
136
|
+
|
137
|
+
## Installation
|
138
|
+
|
139
|
+
You can easily install the project using **Conda** or **Pip**:
|
140
|
+
|
141
|
+
```bash
|
142
|
+
# Install with Conda
|
143
|
+
conda install -c bilgi kececinumbers
|
144
|
+
|
145
|
+
# Install with Pip
|
146
|
+
pip install kececinumbers
|
147
|
+
```
|
148
|
+
|
149
|
+
---
|
150
|
+
|
151
|
+
## Quick Start
|
152
|
+
|
153
|
+
The following example creates and visualizes a Keçeci sequence with POSITIVE_REAL numbers.
|
154
|
+
|
155
|
+
```python
|
156
|
+
import matplotlib.pyplot as plt
|
157
|
+
import kececinumbers as kn
|
158
|
+
|
159
|
+
# Generate a Keçeci sequence with specific parameters
|
160
|
+
sequence = kn.get_with_params(
|
161
|
+
kececi_type_choice=kn.TYPE_POSITIVE_REAL,
|
162
|
+
iterations=20,
|
163
|
+
start_value_raw="1",
|
164
|
+
add_value_base_scalar=9.0
|
165
|
+
)
|
166
|
+
|
167
|
+
# If the sequence was generated successfully, plot it
|
168
|
+
if sequence:
|
169
|
+
kn.plot_numbers(sequence, title="My First POSITIVE_REAL Keçeci Sequence")
|
170
|
+
plt.show()
|
171
|
+
|
172
|
+
# Optionally, find and print the Keçeci Prime Number (KPN)
|
173
|
+
kpn = kn.find_kececi_prime_number(sequence)
|
174
|
+
if kpn:
|
175
|
+
print(f"\nKeçeci Prime Number (KPN) found: {kpn}")
|
176
|
+
```
|
177
|
+
|
178
|
+

|
179
|
+
|
180
|
+
---
|
181
|
+
|
182
|
+
The following example creates and visualizes a Keçeci sequence with complex numbers.
|
183
|
+
|
184
|
+
```python
|
185
|
+
import matplotlib.pyplot as plt
|
186
|
+
import kececinumbers as kn
|
187
|
+
|
188
|
+
# Generate a Keçeci sequence with specific parameters
|
189
|
+
# Type: Complex Number, Iterations: 60
|
190
|
+
sequence = kn.get_with_params(
|
191
|
+
kececi_type_choice=kn.TYPE_COMPLEX,
|
192
|
+
iterations=60,
|
193
|
+
start_value_raw="1+2j",
|
194
|
+
add_value_base_scalar=3.0
|
195
|
+
)
|
196
|
+
|
197
|
+
# If the sequence was generated successfully, plot it
|
198
|
+
if sequence:
|
199
|
+
kn.plot_numbers(sequence, title="Complex Keçeci Numbers Example")
|
200
|
+
plt.show()
|
201
|
+
|
202
|
+
# Find the Keçeci Prime Number (KPN) for the sequence
|
203
|
+
kpn = kn.find_kececi_prime_number(sequence)
|
204
|
+
if kpn:
|
205
|
+
print(f"\nKeçeci Prime Number (KPN) found for this sequence: {kpn}")
|
206
|
+
```
|
207
|
+
|
208
|
+

|
209
|
+
|
210
|
+
---
|
211
|
+
|
212
|
+
## The Keçeci Conjecture
|
213
|
+
|
214
|
+
> For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in a finite number of steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
|
215
|
+
|
216
|
+
This conjecture remains unproven, and this library provides a framework for testing it.
|
217
|
+
|
218
|
+
<details>
|
219
|
+
<summary>Click for the conjecture in other languages (Diğer diller için tıklayın)</summary>
|
220
|
+
|
221
|
+
* **🇹🇷 Türkçe:** Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır.
|
222
|
+
* **🇩🇪 Deutsch:** Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (KPN) konvergieren.
|
223
|
+
|
224
|
+
</details>
|
225
|
+
---
|
226
|
+
|
105
227
|
## Description / Açıklama
|
106
228
|
|
107
229
|
**Keçeci Numbers (Keçeci Sayıları)**: Keçeci Numbers; An Exploration of a Dynamic Sequence Across Diverse Number Sets: This work introduces a novel numerical sequence concept termed "Keçeci Numbers." Keçeci Numbers are a dynamic sequence generated through an iterative process, originating from a specific starting value and an increment value. In each iteration, the increment value is added to the current value, and this "added value" is recorded in the sequence. Subsequently, a division operation is attempted on this "added value," primarily using the divisors 2 and 3, with the choice of divisor depending on the one used in the previous step. If division is successful, the quotient becomes the next element in the sequence. If the division operation fails, the primality of the "added value" (or its real/scalar part for complex/quaternion numbers, or integer part for rational numbers) is checked. If it is prime, an "Augment/Shrink then Check" (ASK) rule is invoked: a type-specific unit value is added or subtracted (based on the previous ASK application), this "modified value" is recorded in the sequence, and the division operation is re-attempted on it. If division fails again, or if the number is not prime, the "added value" (or the "modified value" post-ASK) itself becomes the next element in the sequence. This mechanism is designed to be applicable across various number sets, including positive and negative real numbers, complex numbers, floating-point numbers, rational numbers, and quaternions. The increment value, ASK unit, and divisibility checks are appropriately adapted for each number type. This flexibility of Keçeci Numbers offers rich potential for studying their behavior in different numerical systems. The patterns exhibited by the sequences, their convergence/divergence properties, and potential for chaotic behavior may constitute interesting research avenues for advanced mathematical analysis and number theory applications. This study outlines the fundamental generation mechanism of Keçeci Numbers and their initial behaviors across diverse number sets.
|
@@ -325,6 +447,16 @@ If this library was useful to you in your research, please cite us. Following th
|
|
325
447
|
|
326
448
|
```
|
327
449
|
|
450
|
+
Keçeci, M. (2025). Keçeci Varsayımının Kuramsal ve Karşılaştırmalı Analizi. ResearchGate. https://dx.doi.org/10.13140/RG.2.2.21825.88165
|
451
|
+
|
452
|
+
Keçeci, M. (2025). Keçeci Varsayımı'nın Hesaplanabilirliği: Sonlu Adımda Kararlı Yapıya Yakınsama Sorunu. WorkflowHub. https://doi.org/10.48546/workflowhub.document.44.1
|
453
|
+
|
454
|
+
Keçeci, M. (2025). Keçeci Varsayımı ve Dinamik Sistemler: Farklı Başlangıç Koşullarında Yakınsama ve Döngüler. Open Science Output Articles (OSOAs), OSF. https://doi.org/10.17605/OSF.IO/68AFN
|
455
|
+
|
456
|
+
Keçeci, M. (2025). Keçeci Varsayımı: Periyodik Çekiciler ve Keçeci Asal Sayısı (KPN) Kavramı. Open Science Knowledge Articles (OSKAs), Knowledge Commons. https://doi.org/10.17613/g60hy-egx74
|
457
|
+
|
458
|
+
Keçeci, M. (2025). Genelleştirilmiş Keçeci Operatörleri: Collatz Yinelemesinin Nötrosofik ve Hiperreel Sayı Sistemlerinde Uzantıları. Authorea. https://doi.org/10.22541/au.175433544.41244947/v1
|
459
|
+
|
328
460
|
Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
|
329
461
|
|
330
462
|
Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
|
@@ -333,7 +465,7 @@ Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarl
|
|
333
465
|
|
334
466
|
Keçeci, M. (2025). kececinumbers [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29816414
|
335
467
|
|
336
|
-
Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.2
|
468
|
+
Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.1; https://doi.org/10.48546/workflowhub.datafile.14.2; https://doi.org/10.48546/workflowhub.datafile.14.3
|
337
469
|
|
338
470
|
Keçeci, M. (2025). kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659
|
339
471
|
|
@@ -1,12 +1,10 @@
|
|
1
1
|
# Keçeci Numbers: Keçeci Sayıları
|
2
|
+
---
|
2
3
|
|
3
|
-
[](https://badge.fury.io/py/kececinumbers)
|
4
|
+
[](https://badge.fury.io/py/kececinumbers/)
|
4
5
|
[](https://opensource.org/licenses/MIT)
|
5
|
-
|
6
6
|
[](https://doi.org/10.5281/zenodo.15377659)
|
7
|
-
|
8
7
|
[](https://doi.org/10.48546/workflowhub.datafile.14.2)
|
9
|
-
|
10
8
|
[](https://doi.org/10.6084/m9.figshare.29816414)
|
11
9
|
|
12
10
|
[](https://anaconda.org/bilgi/kececinumbers)
|
@@ -16,13 +14,13 @@
|
|
16
14
|
|
17
15
|
[](https://opensource.org/)
|
18
16
|
[](https://kececinumbers.readthedocs.io/en/latest)
|
19
|
-
|
20
17
|
[](https://www.bestpractices.dev/projects/10536)
|
21
18
|
|
22
19
|
[](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml)
|
23
20
|
[](https://codecov.io/gh/WhiteSymmetry/kececinumbers)
|
24
21
|
[](https://kececinumbers.readthedocs.io/en/latest/)
|
25
22
|
[](https://terrarium.evidencepub.io/v2/gh/WhiteSymmetry/kececinumbers/HEAD)
|
23
|
+
|
26
24
|
[](https://badge.fury.io/py/kececinumbers)
|
27
25
|
[](https://pepy.tech/projects/kececinumbers)
|
28
26
|
[](CODE_OF_CONDUCT.md)
|
@@ -69,6 +67,130 @@
|
|
69
67
|
|
70
68
|
---
|
71
69
|
|
70
|
+
**Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
|
71
|
+
|
72
|
+
This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
|
73
|
+
|
74
|
+
<details>
|
75
|
+
<summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
|
76
|
+
|
77
|
+
**Keçeci Sayıları**, Collatz Varsayımı'ndan esinlenen ve farklı sayı sistemlerinde dinamik diziler üreten, analiz eden ve görselleştiren bir Python kütüphanesidir. Bu kütüphane, tamsayılardan karmaşık sayılara, kuaterniyonlardan nötrosofik sayılara kadar 11 farklı sayı türü üzerinde çalışan birleşik bir algoritma sunar. Akademik araştırmalar ve sayı teorisindeki keşifler için bir araç olarak tasarlanmıştır.
|
78
|
+
|
79
|
+
</details>
|
80
|
+
|
81
|
+
---
|
82
|
+
|
83
|
+
## What are Keçeci Numbers?
|
84
|
+
|
85
|
+
Keçeci Numbers are sequences generated from a starting value using a recursive rule. The process for each step is:
|
86
|
+
|
87
|
+
1. **Add & Record:** A fixed increment value is added to the current value. This new "added value" is recorded in the sequence.
|
88
|
+
2. **Attempt Division:** An attempt is made to divide the "added value" by 3 or 2 (whichever was not used in the previous step). If successful, the result becomes the next element.
|
89
|
+
3. **ASK (Augment/Shrink then Check) Rule:** If the number is indivisible and its principal component is **prime**, a type-specific unit value is added or subtracted. This "modified value" is recorded, and the division is re-attempted.
|
90
|
+
4. **Carry Over:** If division fails again, or if the number is not prime, the value itself (either the "added value" or "modified value") becomes the next element in the sequence.
|
91
|
+
|
92
|
+
This flexible mechanism provides a rich framework for studying the behavior of numerical sequences in various algebraic systems.
|
93
|
+
|
94
|
+
## Key Features
|
95
|
+
|
96
|
+
* **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
|
97
|
+
* **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
|
98
|
+
* **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
|
99
|
+
* **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
|
100
|
+
* **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
|
101
|
+
|
102
|
+
---
|
103
|
+
|
104
|
+
## Installation
|
105
|
+
|
106
|
+
You can easily install the project using **Conda** or **Pip**:
|
107
|
+
|
108
|
+
```bash
|
109
|
+
# Install with Conda
|
110
|
+
conda install -c bilgi kececinumbers
|
111
|
+
|
112
|
+
# Install with Pip
|
113
|
+
pip install kececinumbers
|
114
|
+
```
|
115
|
+
|
116
|
+
---
|
117
|
+
|
118
|
+
## Quick Start
|
119
|
+
|
120
|
+
The following example creates and visualizes a Keçeci sequence with POSITIVE_REAL numbers.
|
121
|
+
|
122
|
+
```python
|
123
|
+
import matplotlib.pyplot as plt
|
124
|
+
import kececinumbers as kn
|
125
|
+
|
126
|
+
# Generate a Keçeci sequence with specific parameters
|
127
|
+
sequence = kn.get_with_params(
|
128
|
+
kececi_type_choice=kn.TYPE_POSITIVE_REAL,
|
129
|
+
iterations=20,
|
130
|
+
start_value_raw="1",
|
131
|
+
add_value_base_scalar=9.0
|
132
|
+
)
|
133
|
+
|
134
|
+
# If the sequence was generated successfully, plot it
|
135
|
+
if sequence:
|
136
|
+
kn.plot_numbers(sequence, title="My First POSITIVE_REAL Keçeci Sequence")
|
137
|
+
plt.show()
|
138
|
+
|
139
|
+
# Optionally, find and print the Keçeci Prime Number (KPN)
|
140
|
+
kpn = kn.find_kececi_prime_number(sequence)
|
141
|
+
if kpn:
|
142
|
+
print(f"\nKeçeci Prime Number (KPN) found: {kpn}")
|
143
|
+
```
|
144
|
+
|
145
|
+

|
146
|
+
|
147
|
+
---
|
148
|
+
|
149
|
+
The following example creates and visualizes a Keçeci sequence with complex numbers.
|
150
|
+
|
151
|
+
```python
|
152
|
+
import matplotlib.pyplot as plt
|
153
|
+
import kececinumbers as kn
|
154
|
+
|
155
|
+
# Generate a Keçeci sequence with specific parameters
|
156
|
+
# Type: Complex Number, Iterations: 60
|
157
|
+
sequence = kn.get_with_params(
|
158
|
+
kececi_type_choice=kn.TYPE_COMPLEX,
|
159
|
+
iterations=60,
|
160
|
+
start_value_raw="1+2j",
|
161
|
+
add_value_base_scalar=3.0
|
162
|
+
)
|
163
|
+
|
164
|
+
# If the sequence was generated successfully, plot it
|
165
|
+
if sequence:
|
166
|
+
kn.plot_numbers(sequence, title="Complex Keçeci Numbers Example")
|
167
|
+
plt.show()
|
168
|
+
|
169
|
+
# Find the Keçeci Prime Number (KPN) for the sequence
|
170
|
+
kpn = kn.find_kececi_prime_number(sequence)
|
171
|
+
if kpn:
|
172
|
+
print(f"\nKeçeci Prime Number (KPN) found for this sequence: {kpn}")
|
173
|
+
```
|
174
|
+
|
175
|
+

|
176
|
+
|
177
|
+
---
|
178
|
+
|
179
|
+
## The Keçeci Conjecture
|
180
|
+
|
181
|
+
> For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in a finite number of steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
|
182
|
+
|
183
|
+
This conjecture remains unproven, and this library provides a framework for testing it.
|
184
|
+
|
185
|
+
<details>
|
186
|
+
<summary>Click for the conjecture in other languages (Diğer diller için tıklayın)</summary>
|
187
|
+
|
188
|
+
* **🇹🇷 Türkçe:** Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır.
|
189
|
+
* **🇩🇪 Deutsch:** Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (KPN) konvergieren.
|
190
|
+
|
191
|
+
</details>
|
192
|
+
---
|
193
|
+
|
72
194
|
## Description / Açıklama
|
73
195
|
|
74
196
|
**Keçeci Numbers (Keçeci Sayıları)**: Keçeci Numbers; An Exploration of a Dynamic Sequence Across Diverse Number Sets: This work introduces a novel numerical sequence concept termed "Keçeci Numbers." Keçeci Numbers are a dynamic sequence generated through an iterative process, originating from a specific starting value and an increment value. In each iteration, the increment value is added to the current value, and this "added value" is recorded in the sequence. Subsequently, a division operation is attempted on this "added value," primarily using the divisors 2 and 3, with the choice of divisor depending on the one used in the previous step. If division is successful, the quotient becomes the next element in the sequence. If the division operation fails, the primality of the "added value" (or its real/scalar part for complex/quaternion numbers, or integer part for rational numbers) is checked. If it is prime, an "Augment/Shrink then Check" (ASK) rule is invoked: a type-specific unit value is added or subtracted (based on the previous ASK application), this "modified value" is recorded in the sequence, and the division operation is re-attempted on it. If division fails again, or if the number is not prime, the "added value" (or the "modified value" post-ASK) itself becomes the next element in the sequence. This mechanism is designed to be applicable across various number sets, including positive and negative real numbers, complex numbers, floating-point numbers, rational numbers, and quaternions. The increment value, ASK unit, and divisibility checks are appropriately adapted for each number type. This flexibility of Keçeci Numbers offers rich potential for studying their behavior in different numerical systems. The patterns exhibited by the sequences, their convergence/divergence properties, and potential for chaotic behavior may constitute interesting research avenues for advanced mathematical analysis and number theory applications. This study outlines the fundamental generation mechanism of Keçeci Numbers and their initial behaviors across diverse number sets.
|
@@ -292,6 +414,16 @@ If this library was useful to you in your research, please cite us. Following th
|
|
292
414
|
|
293
415
|
```
|
294
416
|
|
417
|
+
Keçeci, M. (2025). Keçeci Varsayımının Kuramsal ve Karşılaştırmalı Analizi. ResearchGate. https://dx.doi.org/10.13140/RG.2.2.21825.88165
|
418
|
+
|
419
|
+
Keçeci, M. (2025). Keçeci Varsayımı'nın Hesaplanabilirliği: Sonlu Adımda Kararlı Yapıya Yakınsama Sorunu. WorkflowHub. https://doi.org/10.48546/workflowhub.document.44.1
|
420
|
+
|
421
|
+
Keçeci, M. (2025). Keçeci Varsayımı ve Dinamik Sistemler: Farklı Başlangıç Koşullarında Yakınsama ve Döngüler. Open Science Output Articles (OSOAs), OSF. https://doi.org/10.17605/OSF.IO/68AFN
|
422
|
+
|
423
|
+
Keçeci, M. (2025). Keçeci Varsayımı: Periyodik Çekiciler ve Keçeci Asal Sayısı (KPN) Kavramı. Open Science Knowledge Articles (OSKAs), Knowledge Commons. https://doi.org/10.17613/g60hy-egx74
|
424
|
+
|
425
|
+
Keçeci, M. (2025). Genelleştirilmiş Keçeci Operatörleri: Collatz Yinelemesinin Nötrosofik ve Hiperreel Sayı Sistemlerinde Uzantıları. Authorea. https://doi.org/10.22541/au.175433544.41244947/v1
|
426
|
+
|
295
427
|
Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
|
296
428
|
|
297
429
|
Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
|
@@ -300,7 +432,7 @@ Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarl
|
|
300
432
|
|
301
433
|
Keçeci, M. (2025). kececinumbers [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29816414
|
302
434
|
|
303
|
-
Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.2
|
435
|
+
Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.1; https://doi.org/10.48546/workflowhub.datafile.14.2; https://doi.org/10.48546/workflowhub.datafile.14.3
|
304
436
|
|
305
437
|
Keçeci, M. (2025). kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659
|
306
438
|
|
@@ -205,7 +205,7 @@ class HyperrealNumber:
|
|
205
205
|
raise TypeError("Modulo only supported with a scalar divisor.")
|
206
206
|
|
207
207
|
def __str__(self) -> str:
|
208
|
-
return f"Hyperreal({self.sequence[:
|
208
|
+
return f"Hyperreal({self.sequence[:30]}...)"
|
209
209
|
|
210
210
|
@dataclass
|
211
211
|
class BicomplexNumber:
|
@@ -595,7 +595,7 @@ def print_detailed_report(sequence: List[Any], params: Dict[str, Any]):
|
|
595
595
|
print(f" - Keçeci Prime Number (KPN): {kpn if kpn is not None else 'Not found'}")
|
596
596
|
|
597
597
|
print("\n[Sequence Preview]")
|
598
|
-
preview_count = min(len(sequence),
|
598
|
+
preview_count = min(len(sequence), 30)
|
599
599
|
print(f" --- First {preview_count} Numbers ---")
|
600
600
|
for i in range(preview_count):
|
601
601
|
print(f" {i}: {sequence[i]}")
|
@@ -632,7 +632,7 @@ def get_with_params(kececi_type_choice: int, iterations: int, start_value_raw: s
|
|
632
632
|
)
|
633
633
|
|
634
634
|
if generated_sequence:
|
635
|
-
print(f"Generated {len(generated_sequence)} numbers. Preview: {generated_sequence[:
|
635
|
+
print(f"Generated {len(generated_sequence)} numbers. Preview: {generated_sequence[:30]}...")
|
636
636
|
kpn = find_kececi_prime_number(generated_sequence)
|
637
637
|
if kpn is not None:
|
638
638
|
print(f"Keçeci Prime Number for this sequence: {kpn}")
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: kececinumbers
|
3
|
-
Version: 0.3.
|
3
|
+
Version: 0.3.6
|
4
4
|
Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
|
5
5
|
Home-page: https://github.com/WhiteSymmetry/kececinumbers
|
6
6
|
Author: Mehmet Keçeci
|
@@ -32,14 +32,12 @@ Dynamic: requires-python
|
|
32
32
|
Dynamic: summary
|
33
33
|
|
34
34
|
# Keçeci Numbers: Keçeci Sayıları
|
35
|
+
---
|
35
36
|
|
36
|
-
[](https://badge.fury.io/py/kececinumbers)
|
37
|
+
[](https://badge.fury.io/py/kececinumbers/)
|
37
38
|
[](https://opensource.org/licenses/MIT)
|
38
|
-
|
39
39
|
[](https://doi.org/10.5281/zenodo.15377659)
|
40
|
-
|
41
40
|
[](https://doi.org/10.48546/workflowhub.datafile.14.2)
|
42
|
-
|
43
41
|
[](https://doi.org/10.6084/m9.figshare.29816414)
|
44
42
|
|
45
43
|
[](https://anaconda.org/bilgi/kececinumbers)
|
@@ -49,13 +47,13 @@ Dynamic: summary
|
|
49
47
|
|
50
48
|
[](https://opensource.org/)
|
51
49
|
[](https://kececinumbers.readthedocs.io/en/latest)
|
52
|
-
|
53
50
|
[](https://www.bestpractices.dev/projects/10536)
|
54
51
|
|
55
52
|
[](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml)
|
56
53
|
[](https://codecov.io/gh/WhiteSymmetry/kececinumbers)
|
57
54
|
[](https://kececinumbers.readthedocs.io/en/latest/)
|
58
55
|
[](https://terrarium.evidencepub.io/v2/gh/WhiteSymmetry/kececinumbers/HEAD)
|
56
|
+
|
59
57
|
[](https://badge.fury.io/py/kececinumbers)
|
60
58
|
[](https://pepy.tech/projects/kececinumbers)
|
61
59
|
[](CODE_OF_CONDUCT.md)
|
@@ -102,6 +100,130 @@ Dynamic: summary
|
|
102
100
|
|
103
101
|
---
|
104
102
|
|
103
|
+
**Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
|
104
|
+
|
105
|
+
This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
|
106
|
+
|
107
|
+
<details>
|
108
|
+
<summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
|
109
|
+
|
110
|
+
**Keçeci Sayıları**, Collatz Varsayımı'ndan esinlenen ve farklı sayı sistemlerinde dinamik diziler üreten, analiz eden ve görselleştiren bir Python kütüphanesidir. Bu kütüphane, tamsayılardan karmaşık sayılara, kuaterniyonlardan nötrosofik sayılara kadar 11 farklı sayı türü üzerinde çalışan birleşik bir algoritma sunar. Akademik araştırmalar ve sayı teorisindeki keşifler için bir araç olarak tasarlanmıştır.
|
111
|
+
|
112
|
+
</details>
|
113
|
+
|
114
|
+
---
|
115
|
+
|
116
|
+
## What are Keçeci Numbers?
|
117
|
+
|
118
|
+
Keçeci Numbers are sequences generated from a starting value using a recursive rule. The process for each step is:
|
119
|
+
|
120
|
+
1. **Add & Record:** A fixed increment value is added to the current value. This new "added value" is recorded in the sequence.
|
121
|
+
2. **Attempt Division:** An attempt is made to divide the "added value" by 3 or 2 (whichever was not used in the previous step). If successful, the result becomes the next element.
|
122
|
+
3. **ASK (Augment/Shrink then Check) Rule:** If the number is indivisible and its principal component is **prime**, a type-specific unit value is added or subtracted. This "modified value" is recorded, and the division is re-attempted.
|
123
|
+
4. **Carry Over:** If division fails again, or if the number is not prime, the value itself (either the "added value" or "modified value") becomes the next element in the sequence.
|
124
|
+
|
125
|
+
This flexible mechanism provides a rich framework for studying the behavior of numerical sequences in various algebraic systems.
|
126
|
+
|
127
|
+
## Key Features
|
128
|
+
|
129
|
+
* **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
|
130
|
+
* **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
|
131
|
+
* **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
|
132
|
+
* **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
|
133
|
+
* **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
|
134
|
+
|
135
|
+
---
|
136
|
+
|
137
|
+
## Installation
|
138
|
+
|
139
|
+
You can easily install the project using **Conda** or **Pip**:
|
140
|
+
|
141
|
+
```bash
|
142
|
+
# Install with Conda
|
143
|
+
conda install -c bilgi kececinumbers
|
144
|
+
|
145
|
+
# Install with Pip
|
146
|
+
pip install kececinumbers
|
147
|
+
```
|
148
|
+
|
149
|
+
---
|
150
|
+
|
151
|
+
## Quick Start
|
152
|
+
|
153
|
+
The following example creates and visualizes a Keçeci sequence with POSITIVE_REAL numbers.
|
154
|
+
|
155
|
+
```python
|
156
|
+
import matplotlib.pyplot as plt
|
157
|
+
import kececinumbers as kn
|
158
|
+
|
159
|
+
# Generate a Keçeci sequence with specific parameters
|
160
|
+
sequence = kn.get_with_params(
|
161
|
+
kececi_type_choice=kn.TYPE_POSITIVE_REAL,
|
162
|
+
iterations=20,
|
163
|
+
start_value_raw="1",
|
164
|
+
add_value_base_scalar=9.0
|
165
|
+
)
|
166
|
+
|
167
|
+
# If the sequence was generated successfully, plot it
|
168
|
+
if sequence:
|
169
|
+
kn.plot_numbers(sequence, title="My First POSITIVE_REAL Keçeci Sequence")
|
170
|
+
plt.show()
|
171
|
+
|
172
|
+
# Optionally, find and print the Keçeci Prime Number (KPN)
|
173
|
+
kpn = kn.find_kececi_prime_number(sequence)
|
174
|
+
if kpn:
|
175
|
+
print(f"\nKeçeci Prime Number (KPN) found: {kpn}")
|
176
|
+
```
|
177
|
+
|
178
|
+

|
179
|
+
|
180
|
+
---
|
181
|
+
|
182
|
+
The following example creates and visualizes a Keçeci sequence with complex numbers.
|
183
|
+
|
184
|
+
```python
|
185
|
+
import matplotlib.pyplot as plt
|
186
|
+
import kececinumbers as kn
|
187
|
+
|
188
|
+
# Generate a Keçeci sequence with specific parameters
|
189
|
+
# Type: Complex Number, Iterations: 60
|
190
|
+
sequence = kn.get_with_params(
|
191
|
+
kececi_type_choice=kn.TYPE_COMPLEX,
|
192
|
+
iterations=60,
|
193
|
+
start_value_raw="1+2j",
|
194
|
+
add_value_base_scalar=3.0
|
195
|
+
)
|
196
|
+
|
197
|
+
# If the sequence was generated successfully, plot it
|
198
|
+
if sequence:
|
199
|
+
kn.plot_numbers(sequence, title="Complex Keçeci Numbers Example")
|
200
|
+
plt.show()
|
201
|
+
|
202
|
+
# Find the Keçeci Prime Number (KPN) for the sequence
|
203
|
+
kpn = kn.find_kececi_prime_number(sequence)
|
204
|
+
if kpn:
|
205
|
+
print(f"\nKeçeci Prime Number (KPN) found for this sequence: {kpn}")
|
206
|
+
```
|
207
|
+
|
208
|
+

|
209
|
+
|
210
|
+
---
|
211
|
+
|
212
|
+
## The Keçeci Conjecture
|
213
|
+
|
214
|
+
> For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in a finite number of steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
|
215
|
+
|
216
|
+
This conjecture remains unproven, and this library provides a framework for testing it.
|
217
|
+
|
218
|
+
<details>
|
219
|
+
<summary>Click for the conjecture in other languages (Diğer diller için tıklayın)</summary>
|
220
|
+
|
221
|
+
* **🇹🇷 Türkçe:** Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır.
|
222
|
+
* **🇩🇪 Deutsch:** Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (KPN) konvergieren.
|
223
|
+
|
224
|
+
</details>
|
225
|
+
---
|
226
|
+
|
105
227
|
## Description / Açıklama
|
106
228
|
|
107
229
|
**Keçeci Numbers (Keçeci Sayıları)**: Keçeci Numbers; An Exploration of a Dynamic Sequence Across Diverse Number Sets: This work introduces a novel numerical sequence concept termed "Keçeci Numbers." Keçeci Numbers are a dynamic sequence generated through an iterative process, originating from a specific starting value and an increment value. In each iteration, the increment value is added to the current value, and this "added value" is recorded in the sequence. Subsequently, a division operation is attempted on this "added value," primarily using the divisors 2 and 3, with the choice of divisor depending on the one used in the previous step. If division is successful, the quotient becomes the next element in the sequence. If the division operation fails, the primality of the "added value" (or its real/scalar part for complex/quaternion numbers, or integer part for rational numbers) is checked. If it is prime, an "Augment/Shrink then Check" (ASK) rule is invoked: a type-specific unit value is added or subtracted (based on the previous ASK application), this "modified value" is recorded in the sequence, and the division operation is re-attempted on it. If division fails again, or if the number is not prime, the "added value" (or the "modified value" post-ASK) itself becomes the next element in the sequence. This mechanism is designed to be applicable across various number sets, including positive and negative real numbers, complex numbers, floating-point numbers, rational numbers, and quaternions. The increment value, ASK unit, and divisibility checks are appropriately adapted for each number type. This flexibility of Keçeci Numbers offers rich potential for studying their behavior in different numerical systems. The patterns exhibited by the sequences, their convergence/divergence properties, and potential for chaotic behavior may constitute interesting research avenues for advanced mathematical analysis and number theory applications. This study outlines the fundamental generation mechanism of Keçeci Numbers and their initial behaviors across diverse number sets.
|
@@ -325,6 +447,16 @@ If this library was useful to you in your research, please cite us. Following th
|
|
325
447
|
|
326
448
|
```
|
327
449
|
|
450
|
+
Keçeci, M. (2025). Keçeci Varsayımının Kuramsal ve Karşılaştırmalı Analizi. ResearchGate. https://dx.doi.org/10.13140/RG.2.2.21825.88165
|
451
|
+
|
452
|
+
Keçeci, M. (2025). Keçeci Varsayımı'nın Hesaplanabilirliği: Sonlu Adımda Kararlı Yapıya Yakınsama Sorunu. WorkflowHub. https://doi.org/10.48546/workflowhub.document.44.1
|
453
|
+
|
454
|
+
Keçeci, M. (2025). Keçeci Varsayımı ve Dinamik Sistemler: Farklı Başlangıç Koşullarında Yakınsama ve Döngüler. Open Science Output Articles (OSOAs), OSF. https://doi.org/10.17605/OSF.IO/68AFN
|
455
|
+
|
456
|
+
Keçeci, M. (2025). Keçeci Varsayımı: Periyodik Çekiciler ve Keçeci Asal Sayısı (KPN) Kavramı. Open Science Knowledge Articles (OSKAs), Knowledge Commons. https://doi.org/10.17613/g60hy-egx74
|
457
|
+
|
458
|
+
Keçeci, M. (2025). Genelleştirilmiş Keçeci Operatörleri: Collatz Yinelemesinin Nötrosofik ve Hiperreel Sayı Sistemlerinde Uzantıları. Authorea. https://doi.org/10.22541/au.175433544.41244947/v1
|
459
|
+
|
328
460
|
Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
|
329
461
|
|
330
462
|
Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
|
@@ -333,7 +465,7 @@ Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarl
|
|
333
465
|
|
334
466
|
Keçeci, M. (2025). kececinumbers [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29816414
|
335
467
|
|
336
|
-
Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.2
|
468
|
+
Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.1; https://doi.org/10.48546/workflowhub.datafile.14.2; https://doi.org/10.48546/workflowhub.datafile.14.3
|
337
469
|
|
338
470
|
Keçeci, M. (2025). kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659
|
339
471
|
|
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
|
3
3
|
|
4
4
|
setup(
|
5
5
|
name="kececinumbers",
|
6
|
-
version="0.3.
|
6
|
+
version="0.3.6",
|
7
7
|
description="Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets",
|
8
8
|
long_description=open("README.md").read(),
|
9
9
|
long_description_content_type="text/markdown",
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|