kececinumbers 0.3.4__tar.gz → 0.3.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.3.4
3
+ Version: 0.3.5
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -32,14 +32,12 @@ Dynamic: requires-python
32
32
  Dynamic: summary
33
33
 
34
34
  # Keçeci Numbers: Keçeci Sayıları
35
+ ---
35
36
 
36
- [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers)
37
+ [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers/)
37
38
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
38
-
39
39
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15377659.svg)](https://doi.org/10.5281/zenodo.15377659)
40
-
41
40
  [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.2-blue)](https://doi.org/10.48546/workflowhub.datafile.14.2)
42
-
43
41
  [![figshare DOI](https://img.shields.io/badge/DOI-10.6084/m9.figshare.29816414-blue)](https://doi.org/10.6084/m9.figshare.29816414)
44
42
 
45
43
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/version.svg)](https://anaconda.org/bilgi/kececinumbers)
@@ -49,13 +47,13 @@ Dynamic: summary
49
47
 
50
48
  [![Open Source](https://img.shields.io/badge/Open%20Source-Open%20Source-brightgreen.svg)](https://opensource.org/)
51
49
  [![Documentation Status](https://app.readthedocs.org/projects/kececinumbers/badge/?0.2.0=main)](https://kececinumbers.readthedocs.io/en/latest)
52
-
53
50
  [![OpenSSF Best Practices](https://www.bestpractices.dev/projects/10536/badge)](https://www.bestpractices.dev/projects/10536)
54
51
 
55
52
  [![Python CI](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml/badge.svg?branch=main)](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml)
56
53
  [![codecov](https://codecov.io/gh/WhiteSymmetry/kececinumbers/graph/badge.svg?token=0X78S7TL0W)](https://codecov.io/gh/WhiteSymmetry/kececinumbers)
57
54
  [![Documentation Status](https://readthedocs.org/projects/kececinumbers/badge/?version=latest)](https://kececinumbers.readthedocs.io/en/latest/)
58
55
  [![Binder](https://terrarium.evidencepub.io/badge_logo.svg)](https://terrarium.evidencepub.io/v2/gh/WhiteSymmetry/kececinumbers/HEAD)
56
+
59
57
  [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers)
60
58
  [![PyPI Downloads](https://static.pepy.tech/badge/kececinumbers)](https://pepy.tech/projects/kececinumbers)
61
59
  [![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg)](CODE_OF_CONDUCT.md)
@@ -102,6 +100,130 @@ Dynamic: summary
102
100
 
103
101
  ---
104
102
 
103
+ **Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
104
+
105
+ This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
106
+
107
+ <details>
108
+ <summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
109
+
110
+ **Keçeci Sayıları**, Collatz Varsayımı'ndan esinlenen ve farklı sayı sistemlerinde dinamik diziler üreten, analiz eden ve görselleştiren bir Python kütüphanesidir. Bu kütüphane, tamsayılardan karmaşık sayılara, kuaterniyonlardan nötrosofik sayılara kadar 11 farklı sayı türü üzerinde çalışan birleşik bir algoritma sunar. Akademik araştırmalar ve sayı teorisindeki keşifler için bir araç olarak tasarlanmıştır.
111
+
112
+ </details>
113
+
114
+ ---
115
+
116
+ ## What are Keçeci Numbers?
117
+
118
+ Keçeci Numbers are sequences generated from a starting value using a recursive rule. The process for each step is:
119
+
120
+ 1. **Add & Record:** A fixed increment value is added to the current value. This new "added value" is recorded in the sequence.
121
+ 2. **Attempt Division:** An attempt is made to divide the "added value" by 3 or 2 (whichever was not used in the previous step). If successful, the result becomes the next element.
122
+ 3. **ASK (Augment/Shrink then Check) Rule:** If the number is indivisible and its principal component is **prime**, a type-specific unit value is added or subtracted. This "modified value" is recorded, and the division is re-attempted.
123
+ 4. **Carry Over:** If division fails again, or if the number is not prime, the value itself (either the "added value" or "modified value") becomes the next element in the sequence.
124
+
125
+ This flexible mechanism provides a rich framework for studying the behavior of numerical sequences in various algebraic systems.
126
+
127
+ ## Key Features
128
+
129
+ * **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
130
+ * **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
131
+ * **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
132
+ * **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
133
+ * **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
134
+
135
+ ---
136
+
137
+ ## Installation
138
+
139
+ You can easily install the project using **Conda** or **Pip**:
140
+
141
+ ```bash
142
+ # Install with Conda
143
+ conda install -c bilgi kececinumbers
144
+
145
+ # Install with Pip
146
+ pip install kececinumbers
147
+ ```
148
+
149
+ ---
150
+
151
+ ## Quick Start
152
+
153
+ The following example creates and visualizes a Keçeci sequence with POSITIVE_REAL numbers.
154
+
155
+ ```python
156
+ import matplotlib.pyplot as plt
157
+ import kececinumbers as kn
158
+
159
+ # Generate a Keçeci sequence with specific parameters
160
+ sequence = kn.get_with_params(
161
+ kececi_type_choice=kn.TYPE_POSITIVE_REAL,
162
+ iterations=20,
163
+ start_value_raw="1",
164
+ add_value_base_scalar=9.0
165
+ )
166
+
167
+ # If the sequence was generated successfully, plot it
168
+ if sequence:
169
+ kn.plot_numbers(sequence, title="My First POSITIVE_REAL Keçeci Sequence")
170
+ plt.show()
171
+
172
+ # Optionally, find and print the Keçeci Prime Number (KPN)
173
+ kpn = kn.find_kececi_prime_number(sequence)
174
+ if kpn:
175
+ print(f"\nKeçeci Prime Number (KPN) found: {kpn}")
176
+ ```
177
+
178
+ ![Keçeci Numbers Example](https://github.com/WhiteSymmetry/kececinumbers/blob/main/examples/kn-1.png?raw=true)
179
+
180
+ ---
181
+
182
+ The following example creates and visualizes a Keçeci sequence with complex numbers.
183
+
184
+ ```python
185
+ import matplotlib.pyplot as plt
186
+ import kececinumbers as kn
187
+
188
+ # Generate a Keçeci sequence with specific parameters
189
+ # Type: Complex Number, Iterations: 60
190
+ sequence = kn.get_with_params(
191
+ kececi_type_choice=kn.TYPE_COMPLEX,
192
+ iterations=60,
193
+ start_value_raw="1+2j",
194
+ add_value_base_scalar=3.0
195
+ )
196
+
197
+ # If the sequence was generated successfully, plot it
198
+ if sequence:
199
+ kn.plot_numbers(sequence, title="Complex Keçeci Numbers Example")
200
+ plt.show()
201
+
202
+ # Find the Keçeci Prime Number (KPN) for the sequence
203
+ kpn = kn.find_kececi_prime_number(sequence)
204
+ if kpn:
205
+ print(f"\nKeçeci Prime Number (KPN) found for this sequence: {kpn}")
206
+ ```
207
+
208
+ ![Keçeci Numbers Example](https://github.com/WhiteSymmetry/kececinumbers/blob/main/examples/kn-c.png?raw=true)
209
+
210
+ ---
211
+
212
+ ## The Keçeci Conjecture
213
+
214
+ > For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in a finite number of steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
215
+
216
+ This conjecture remains unproven, and this library provides a framework for testing it.
217
+
218
+ <details>
219
+ <summary>Click for the conjecture in other languages (Diğer diller için tıklayın)</summary>
220
+
221
+ * **🇹🇷 Türkçe:** Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır.
222
+ * **🇩🇪 Deutsch:** Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (KPN) konvergieren.
223
+
224
+ </details>
225
+ ---
226
+
105
227
  ## Description / Açıklama
106
228
 
107
229
  **Keçeci Numbers (Keçeci Sayıları)**: Keçeci Numbers; An Exploration of a Dynamic Sequence Across Diverse Number Sets: This work introduces a novel numerical sequence concept termed "Keçeci Numbers." Keçeci Numbers are a dynamic sequence generated through an iterative process, originating from a specific starting value and an increment value. In each iteration, the increment value is added to the current value, and this "added value" is recorded in the sequence. Subsequently, a division operation is attempted on this "added value," primarily using the divisors 2 and 3, with the choice of divisor depending on the one used in the previous step. If division is successful, the quotient becomes the next element in the sequence. If the division operation fails, the primality of the "added value" (or its real/scalar part for complex/quaternion numbers, or integer part for rational numbers) is checked. If it is prime, an "Augment/Shrink then Check" (ASK) rule is invoked: a type-specific unit value is added or subtracted (based on the previous ASK application), this "modified value" is recorded in the sequence, and the division operation is re-attempted on it. If division fails again, or if the number is not prime, the "added value" (or the "modified value" post-ASK) itself becomes the next element in the sequence. This mechanism is designed to be applicable across various number sets, including positive and negative real numbers, complex numbers, floating-point numbers, rational numbers, and quaternions. The increment value, ASK unit, and divisibility checks are appropriately adapted for each number type. This flexibility of Keçeci Numbers offers rich potential for studying their behavior in different numerical systems. The patterns exhibited by the sequences, their convergence/divergence properties, and potential for chaotic behavior may constitute interesting research avenues for advanced mathematical analysis and number theory applications. This study outlines the fundamental generation mechanism of Keçeci Numbers and their initial behaviors across diverse number sets.
@@ -1,12 +1,10 @@
1
1
  # Keçeci Numbers: Keçeci Sayıları
2
+ ---
2
3
 
3
- [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers)
4
+ [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers/)
4
5
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
5
-
6
6
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15377659.svg)](https://doi.org/10.5281/zenodo.15377659)
7
-
8
7
  [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.2-blue)](https://doi.org/10.48546/workflowhub.datafile.14.2)
9
-
10
8
  [![figshare DOI](https://img.shields.io/badge/DOI-10.6084/m9.figshare.29816414-blue)](https://doi.org/10.6084/m9.figshare.29816414)
11
9
 
12
10
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/version.svg)](https://anaconda.org/bilgi/kececinumbers)
@@ -16,13 +14,13 @@
16
14
 
17
15
  [![Open Source](https://img.shields.io/badge/Open%20Source-Open%20Source-brightgreen.svg)](https://opensource.org/)
18
16
  [![Documentation Status](https://app.readthedocs.org/projects/kececinumbers/badge/?0.2.0=main)](https://kececinumbers.readthedocs.io/en/latest)
19
-
20
17
  [![OpenSSF Best Practices](https://www.bestpractices.dev/projects/10536/badge)](https://www.bestpractices.dev/projects/10536)
21
18
 
22
19
  [![Python CI](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml/badge.svg?branch=main)](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml)
23
20
  [![codecov](https://codecov.io/gh/WhiteSymmetry/kececinumbers/graph/badge.svg?token=0X78S7TL0W)](https://codecov.io/gh/WhiteSymmetry/kececinumbers)
24
21
  [![Documentation Status](https://readthedocs.org/projects/kececinumbers/badge/?version=latest)](https://kececinumbers.readthedocs.io/en/latest/)
25
22
  [![Binder](https://terrarium.evidencepub.io/badge_logo.svg)](https://terrarium.evidencepub.io/v2/gh/WhiteSymmetry/kececinumbers/HEAD)
23
+
26
24
  [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers)
27
25
  [![PyPI Downloads](https://static.pepy.tech/badge/kececinumbers)](https://pepy.tech/projects/kececinumbers)
28
26
  [![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg)](CODE_OF_CONDUCT.md)
@@ -69,6 +67,130 @@
69
67
 
70
68
  ---
71
69
 
70
+ **Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
71
+
72
+ This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
73
+
74
+ <details>
75
+ <summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
76
+
77
+ **Keçeci Sayıları**, Collatz Varsayımı'ndan esinlenen ve farklı sayı sistemlerinde dinamik diziler üreten, analiz eden ve görselleştiren bir Python kütüphanesidir. Bu kütüphane, tamsayılardan karmaşık sayılara, kuaterniyonlardan nötrosofik sayılara kadar 11 farklı sayı türü üzerinde çalışan birleşik bir algoritma sunar. Akademik araştırmalar ve sayı teorisindeki keşifler için bir araç olarak tasarlanmıştır.
78
+
79
+ </details>
80
+
81
+ ---
82
+
83
+ ## What are Keçeci Numbers?
84
+
85
+ Keçeci Numbers are sequences generated from a starting value using a recursive rule. The process for each step is:
86
+
87
+ 1. **Add & Record:** A fixed increment value is added to the current value. This new "added value" is recorded in the sequence.
88
+ 2. **Attempt Division:** An attempt is made to divide the "added value" by 3 or 2 (whichever was not used in the previous step). If successful, the result becomes the next element.
89
+ 3. **ASK (Augment/Shrink then Check) Rule:** If the number is indivisible and its principal component is **prime**, a type-specific unit value is added or subtracted. This "modified value" is recorded, and the division is re-attempted.
90
+ 4. **Carry Over:** If division fails again, or if the number is not prime, the value itself (either the "added value" or "modified value") becomes the next element in the sequence.
91
+
92
+ This flexible mechanism provides a rich framework for studying the behavior of numerical sequences in various algebraic systems.
93
+
94
+ ## Key Features
95
+
96
+ * **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
97
+ * **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
98
+ * **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
99
+ * **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
100
+ * **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
101
+
102
+ ---
103
+
104
+ ## Installation
105
+
106
+ You can easily install the project using **Conda** or **Pip**:
107
+
108
+ ```bash
109
+ # Install with Conda
110
+ conda install -c bilgi kececinumbers
111
+
112
+ # Install with Pip
113
+ pip install kececinumbers
114
+ ```
115
+
116
+ ---
117
+
118
+ ## Quick Start
119
+
120
+ The following example creates and visualizes a Keçeci sequence with POSITIVE_REAL numbers.
121
+
122
+ ```python
123
+ import matplotlib.pyplot as plt
124
+ import kececinumbers as kn
125
+
126
+ # Generate a Keçeci sequence with specific parameters
127
+ sequence = kn.get_with_params(
128
+ kececi_type_choice=kn.TYPE_POSITIVE_REAL,
129
+ iterations=20,
130
+ start_value_raw="1",
131
+ add_value_base_scalar=9.0
132
+ )
133
+
134
+ # If the sequence was generated successfully, plot it
135
+ if sequence:
136
+ kn.plot_numbers(sequence, title="My First POSITIVE_REAL Keçeci Sequence")
137
+ plt.show()
138
+
139
+ # Optionally, find and print the Keçeci Prime Number (KPN)
140
+ kpn = kn.find_kececi_prime_number(sequence)
141
+ if kpn:
142
+ print(f"\nKeçeci Prime Number (KPN) found: {kpn}")
143
+ ```
144
+
145
+ ![Keçeci Numbers Example](https://github.com/WhiteSymmetry/kececinumbers/blob/main/examples/kn-1.png?raw=true)
146
+
147
+ ---
148
+
149
+ The following example creates and visualizes a Keçeci sequence with complex numbers.
150
+
151
+ ```python
152
+ import matplotlib.pyplot as plt
153
+ import kececinumbers as kn
154
+
155
+ # Generate a Keçeci sequence with specific parameters
156
+ # Type: Complex Number, Iterations: 60
157
+ sequence = kn.get_with_params(
158
+ kececi_type_choice=kn.TYPE_COMPLEX,
159
+ iterations=60,
160
+ start_value_raw="1+2j",
161
+ add_value_base_scalar=3.0
162
+ )
163
+
164
+ # If the sequence was generated successfully, plot it
165
+ if sequence:
166
+ kn.plot_numbers(sequence, title="Complex Keçeci Numbers Example")
167
+ plt.show()
168
+
169
+ # Find the Keçeci Prime Number (KPN) for the sequence
170
+ kpn = kn.find_kececi_prime_number(sequence)
171
+ if kpn:
172
+ print(f"\nKeçeci Prime Number (KPN) found for this sequence: {kpn}")
173
+ ```
174
+
175
+ ![Keçeci Numbers Example](https://github.com/WhiteSymmetry/kececinumbers/blob/main/examples/kn-c.png?raw=true)
176
+
177
+ ---
178
+
179
+ ## The Keçeci Conjecture
180
+
181
+ > For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in a finite number of steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
182
+
183
+ This conjecture remains unproven, and this library provides a framework for testing it.
184
+
185
+ <details>
186
+ <summary>Click for the conjecture in other languages (Diğer diller için tıklayın)</summary>
187
+
188
+ * **🇹🇷 Türkçe:** Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır.
189
+ * **🇩🇪 Deutsch:** Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (KPN) konvergieren.
190
+
191
+ </details>
192
+ ---
193
+
72
194
  ## Description / Açıklama
73
195
 
74
196
  **Keçeci Numbers (Keçeci Sayıları)**: Keçeci Numbers; An Exploration of a Dynamic Sequence Across Diverse Number Sets: This work introduces a novel numerical sequence concept termed "Keçeci Numbers." Keçeci Numbers are a dynamic sequence generated through an iterative process, originating from a specific starting value and an increment value. In each iteration, the increment value is added to the current value, and this "added value" is recorded in the sequence. Subsequently, a division operation is attempted on this "added value," primarily using the divisors 2 and 3, with the choice of divisor depending on the one used in the previous step. If division is successful, the quotient becomes the next element in the sequence. If the division operation fails, the primality of the "added value" (or its real/scalar part for complex/quaternion numbers, or integer part for rational numbers) is checked. If it is prime, an "Augment/Shrink then Check" (ASK) rule is invoked: a type-specific unit value is added or subtracted (based on the previous ASK application), this "modified value" is recorded in the sequence, and the division operation is re-attempted on it. If division fails again, or if the number is not prime, the "added value" (or the "modified value" post-ASK) itself becomes the next element in the sequence. This mechanism is designed to be applicable across various number sets, including positive and negative real numbers, complex numbers, floating-point numbers, rational numbers, and quaternions. The increment value, ASK unit, and divisibility checks are appropriately adapted for each number type. This flexibility of Keçeci Numbers offers rich potential for studying their behavior in different numerical systems. The patterns exhibited by the sequences, their convergence/divergence properties, and potential for chaotic behavior may constitute interesting research avenues for advanced mathematical analysis and number theory applications. This study outlines the fundamental generation mechanism of Keçeci Numbers and their initial behaviors across diverse number sets.
@@ -20,7 +20,7 @@ import warnings
20
20
  # importlib.reload(kececinumbers) # F821 undefined name 'kececinumbers'
21
21
 
22
22
  # Paket sürüm numarası
23
- __version__ = "0.3.4"
23
+ __version__ = "0.3.5"
24
24
  __author__ = "Mehmet Keçeci"
25
25
  __email__ = "mkececi@yaani.com"
26
26
 
@@ -1,6 +1,6 @@
1
1
  # _version.py
2
2
 
3
- __version__ = "0.3.4"
3
+ __version__ = "0.3.5"
4
4
  __license__ = "MIT"
5
5
  __description__ = "Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets."
6
6
  __author__ = "Mehmet Keçeci"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.3.4
3
+ Version: 0.3.5
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -32,14 +32,12 @@ Dynamic: requires-python
32
32
  Dynamic: summary
33
33
 
34
34
  # Keçeci Numbers: Keçeci Sayıları
35
+ ---
35
36
 
36
- [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers)
37
+ [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers/)
37
38
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
38
-
39
39
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15377659.svg)](https://doi.org/10.5281/zenodo.15377659)
40
-
41
40
  [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.2-blue)](https://doi.org/10.48546/workflowhub.datafile.14.2)
42
-
43
41
  [![figshare DOI](https://img.shields.io/badge/DOI-10.6084/m9.figshare.29816414-blue)](https://doi.org/10.6084/m9.figshare.29816414)
44
42
 
45
43
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/version.svg)](https://anaconda.org/bilgi/kececinumbers)
@@ -49,13 +47,13 @@ Dynamic: summary
49
47
 
50
48
  [![Open Source](https://img.shields.io/badge/Open%20Source-Open%20Source-brightgreen.svg)](https://opensource.org/)
51
49
  [![Documentation Status](https://app.readthedocs.org/projects/kececinumbers/badge/?0.2.0=main)](https://kececinumbers.readthedocs.io/en/latest)
52
-
53
50
  [![OpenSSF Best Practices](https://www.bestpractices.dev/projects/10536/badge)](https://www.bestpractices.dev/projects/10536)
54
51
 
55
52
  [![Python CI](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml/badge.svg?branch=main)](https://github.com/WhiteSymmetry/kececinumbers/actions/workflows/python_ci.yml)
56
53
  [![codecov](https://codecov.io/gh/WhiteSymmetry/kececinumbers/graph/badge.svg?token=0X78S7TL0W)](https://codecov.io/gh/WhiteSymmetry/kececinumbers)
57
54
  [![Documentation Status](https://readthedocs.org/projects/kececinumbers/badge/?version=latest)](https://kececinumbers.readthedocs.io/en/latest/)
58
55
  [![Binder](https://terrarium.evidencepub.io/badge_logo.svg)](https://terrarium.evidencepub.io/v2/gh/WhiteSymmetry/kececinumbers/HEAD)
56
+
59
57
  [![PyPI version](https://badge.fury.io/py/kececinumbers.svg)](https://badge.fury.io/py/kececinumbers)
60
58
  [![PyPI Downloads](https://static.pepy.tech/badge/kececinumbers)](https://pepy.tech/projects/kececinumbers)
61
59
  [![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg)](CODE_OF_CONDUCT.md)
@@ -102,6 +100,130 @@ Dynamic: summary
102
100
 
103
101
  ---
104
102
 
103
+ **Keçeci Numbers** is a Python library for generating, analyzing, and visualizing dynamic sequences inspired by the Collatz Conjecture across diverse number systems.
104
+
105
+ This library provides a unified algorithm that operates on 11 different number types, from standard integers to complex algebraic structures like quaternions and neutrosophic numbers. It is designed as a tool for academic research and exploration in number theory.
106
+
107
+ <details>
108
+ <summary>🇹🇷 Türkçe Açıklama (Click to expand)</summary>
109
+
110
+ **Keçeci Sayıları**, Collatz Varsayımı'ndan esinlenen ve farklı sayı sistemlerinde dinamik diziler üreten, analiz eden ve görselleştiren bir Python kütüphanesidir. Bu kütüphane, tamsayılardan karmaşık sayılara, kuaterniyonlardan nötrosofik sayılara kadar 11 farklı sayı türü üzerinde çalışan birleşik bir algoritma sunar. Akademik araştırmalar ve sayı teorisindeki keşifler için bir araç olarak tasarlanmıştır.
111
+
112
+ </details>
113
+
114
+ ---
115
+
116
+ ## What are Keçeci Numbers?
117
+
118
+ Keçeci Numbers are sequences generated from a starting value using a recursive rule. The process for each step is:
119
+
120
+ 1. **Add & Record:** A fixed increment value is added to the current value. This new "added value" is recorded in the sequence.
121
+ 2. **Attempt Division:** An attempt is made to divide the "added value" by 3 or 2 (whichever was not used in the previous step). If successful, the result becomes the next element.
122
+ 3. **ASK (Augment/Shrink then Check) Rule:** If the number is indivisible and its principal component is **prime**, a type-specific unit value is added or subtracted. This "modified value" is recorded, and the division is re-attempted.
123
+ 4. **Carry Over:** If division fails again, or if the number is not prime, the value itself (either the "added value" or "modified value") becomes the next element in the sequence.
124
+
125
+ This flexible mechanism provides a rich framework for studying the behavior of numerical sequences in various algebraic systems.
126
+
127
+ ## Key Features
128
+
129
+ * **11 Different Number Types:** Supports integers, rationals, complex numbers, quaternions, neutrosophic numbers, and more.
130
+ * **Unified Generator:** Uses a single, consistent `unified_generator` algorithm for all number types.
131
+ * **Advanced Visualization:** Provides a multi-dimensional `plot_numbers` function tailored to the nature of each number system.
132
+ * **Keçeci Prime Number (KPN) Analysis:** Identifies the most recurring prime representation in sequences to analyze their convergence behavior.
133
+ * **Interactive and Programmatic Usage:** Supports both interactive parameter input (`get_interactive`) and direct use in scripts (`get_with_params`).
134
+
135
+ ---
136
+
137
+ ## Installation
138
+
139
+ You can easily install the project using **Conda** or **Pip**:
140
+
141
+ ```bash
142
+ # Install with Conda
143
+ conda install -c bilgi kececinumbers
144
+
145
+ # Install with Pip
146
+ pip install kececinumbers
147
+ ```
148
+
149
+ ---
150
+
151
+ ## Quick Start
152
+
153
+ The following example creates and visualizes a Keçeci sequence with POSITIVE_REAL numbers.
154
+
155
+ ```python
156
+ import matplotlib.pyplot as plt
157
+ import kececinumbers as kn
158
+
159
+ # Generate a Keçeci sequence with specific parameters
160
+ sequence = kn.get_with_params(
161
+ kececi_type_choice=kn.TYPE_POSITIVE_REAL,
162
+ iterations=20,
163
+ start_value_raw="1",
164
+ add_value_base_scalar=9.0
165
+ )
166
+
167
+ # If the sequence was generated successfully, plot it
168
+ if sequence:
169
+ kn.plot_numbers(sequence, title="My First POSITIVE_REAL Keçeci Sequence")
170
+ plt.show()
171
+
172
+ # Optionally, find and print the Keçeci Prime Number (KPN)
173
+ kpn = kn.find_kececi_prime_number(sequence)
174
+ if kpn:
175
+ print(f"\nKeçeci Prime Number (KPN) found: {kpn}")
176
+ ```
177
+
178
+ ![Keçeci Numbers Example](https://github.com/WhiteSymmetry/kececinumbers/blob/main/examples/kn-1.png?raw=true)
179
+
180
+ ---
181
+
182
+ The following example creates and visualizes a Keçeci sequence with complex numbers.
183
+
184
+ ```python
185
+ import matplotlib.pyplot as plt
186
+ import kececinumbers as kn
187
+
188
+ # Generate a Keçeci sequence with specific parameters
189
+ # Type: Complex Number, Iterations: 60
190
+ sequence = kn.get_with_params(
191
+ kececi_type_choice=kn.TYPE_COMPLEX,
192
+ iterations=60,
193
+ start_value_raw="1+2j",
194
+ add_value_base_scalar=3.0
195
+ )
196
+
197
+ # If the sequence was generated successfully, plot it
198
+ if sequence:
199
+ kn.plot_numbers(sequence, title="Complex Keçeci Numbers Example")
200
+ plt.show()
201
+
202
+ # Find the Keçeci Prime Number (KPN) for the sequence
203
+ kpn = kn.find_kececi_prime_number(sequence)
204
+ if kpn:
205
+ print(f"\nKeçeci Prime Number (KPN) found for this sequence: {kpn}")
206
+ ```
207
+
208
+ ![Keçeci Numbers Example](https://github.com/WhiteSymmetry/kececinumbers/blob/main/examples/kn-c.png?raw=true)
209
+
210
+ ---
211
+
212
+ ## The Keçeci Conjecture
213
+
214
+ > For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in a finite number of steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
215
+
216
+ This conjecture remains unproven, and this library provides a framework for testing it.
217
+
218
+ <details>
219
+ <summary>Click for the conjecture in other languages (Diğer diller için tıklayın)</summary>
220
+
221
+ * **🇹🇷 Türkçe:** Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır.
222
+ * **🇩🇪 Deutsch:** Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (KPN) konvergieren.
223
+
224
+ </details>
225
+ ---
226
+
105
227
  ## Description / Açıklama
106
228
 
107
229
  **Keçeci Numbers (Keçeci Sayıları)**: Keçeci Numbers; An Exploration of a Dynamic Sequence Across Diverse Number Sets: This work introduces a novel numerical sequence concept termed "Keçeci Numbers." Keçeci Numbers are a dynamic sequence generated through an iterative process, originating from a specific starting value and an increment value. In each iteration, the increment value is added to the current value, and this "added value" is recorded in the sequence. Subsequently, a division operation is attempted on this "added value," primarily using the divisors 2 and 3, with the choice of divisor depending on the one used in the previous step. If division is successful, the quotient becomes the next element in the sequence. If the division operation fails, the primality of the "added value" (or its real/scalar part for complex/quaternion numbers, or integer part for rational numbers) is checked. If it is prime, an "Augment/Shrink then Check" (ASK) rule is invoked: a type-specific unit value is added or subtracted (based on the previous ASK application), this "modified value" is recorded in the sequence, and the division operation is re-attempted on it. If division fails again, or if the number is not prime, the "added value" (or the "modified value" post-ASK) itself becomes the next element in the sequence. This mechanism is designed to be applicable across various number sets, including positive and negative real numbers, complex numbers, floating-point numbers, rational numbers, and quaternions. The increment value, ASK unit, and divisibility checks are appropriately adapted for each number type. This flexibility of Keçeci Numbers offers rich potential for studying their behavior in different numerical systems. The patterns exhibited by the sequences, their convergence/divergence properties, and potential for chaotic behavior may constitute interesting research avenues for advanced mathematical analysis and number theory applications. This study outlines the fundamental generation mechanism of Keçeci Numbers and their initial behaviors across diverse number sets.
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name="kececinumbers",
6
- version="0.3.4",
6
+ version="0.3.5",
7
7
  description="Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets",
8
8
  long_description=open("README.md").read(),
9
9
  long_description_content_type="text/markdown",
File without changes
File without changes
File without changes