kececinumbers 0.3.1__tar.gz → 0.3.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.3.1
3
+ Version: 0.3.3
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -38,7 +38,9 @@ Dynamic: summary
38
38
 
39
39
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15377659.svg)](https://doi.org/10.5281/zenodo.15377659)
40
40
 
41
- [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.1-blue)](https://doi.org/10.48546/workflowhub.datafile.14.1)
41
+ [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.2-blue)](https://doi.org/10.48546/workflowhub.datafile.14.2)
42
+
43
+ [![figshare DOI](https://img.shields.io/badge/DOI-10.6084/m9.figshare.29816414-blue)](https://doi.org/10.6084/m9.figshare.29816414)
42
44
 
43
45
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/version.svg)](https://anaconda.org/bilgi/kececinumbers)
44
46
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/latest_release_date.svg)](https://anaconda.org/bilgi/kececinumbers)
@@ -321,11 +323,16 @@ If this library was useful to you in your research, please cite us. Following th
321
323
  ### APA
322
324
 
323
325
  ```
326
+
327
+ Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
328
+
324
329
  Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
325
330
 
326
331
  Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarla Geometrik Yorumlamaları. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16343568
327
332
 
328
- Keçeci, M. (2025). kececinumbers [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.1
333
+ Keçeci, M. (2025). kececinumbers [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29816414
334
+
335
+ Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.2
329
336
 
330
337
  Keçeci, M. (2025). kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659
331
338
 
@@ -340,6 +347,9 @@ Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A pote
340
347
 
341
348
  ### Chicago
342
349
  ```
350
+
351
+ Keçeci, Mehmet. Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.16702475
352
+
343
353
  Keçeci, Mehmet. kececinumbers [Data set]. WorkflowHub, 2025. https://doi.org/10.48546/workflowhub.datafile.14.1
344
354
 
345
355
  Keçeci, Mehmet. "kececinumbers". Open Science Articles (OSAs), Zenodo, 01 May 2025. https://doi.org/10.5281/zenodo.15377659
@@ -352,3 +362,119 @@ Keçeci, Mehmet. "Keçeci Numbers and the Keçeci Prime Number". Authorea. June
352
362
 
353
363
  Keçeci, Mehmet. Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.15381697
354
364
  ```
365
+
366
+ ---
367
+
368
+ # Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, Keçeci Hipoteza, 凯杰西猜想, Keçeci Xiǎngcāng, ケジェジ予想, Keçeci Yosō, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, حدس كَچَه جِي ,حدس کچه جی ,کچہ جی حدسیہ
369
+ ---
370
+
371
+ ### 🇹🇷 **Türkçe**
372
+ ```text
373
+ ## Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
374
+
375
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
376
+
377
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
378
+ ```
379
+
380
+ ---
381
+
382
+ ### 🇬🇧 **İngilizce (English)**
383
+ ```text
384
+ ## Keçeci Conjecture - Proposed
385
+
386
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
387
+
388
+ It remains unproven, and this module provides a framework for testing the conjecture.
389
+ ```
390
+
391
+ ---
392
+
393
+ ### 🇩🇪 **Almanca (Deutsch)**
394
+ ```text
395
+ ## Keçeci-Vermutung – Vorgeschlagen
396
+
397
+ Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (Keçeci-Primzahl, KPN) konvergieren. Dieses Verhalten kann als eine Erweiterung der Collatz-Vermutung auf mehrere algebraische Systeme betrachtet werden.
398
+
399
+ Die Vermutung ist bisher unbewiesen, und dieses Modul bietet einen Rahmen, um sie zu untersuchen.
400
+ ```
401
+
402
+ ---
403
+
404
+ ### 🇫🇷 **Fransızca (Français)**
405
+ ```text
406
+ ## Conjecture de Keçeci – Proposée
407
+
408
+ On conjecture que, pour chaque type de nombre Keçeci, les suites générées par la fonction `unified_generator` convergent, en un nombre fini d'étapes, vers une structure périodique ou une représentation première récurrente (Nombre Premier Keçeci, KPN). Ce comportement peut être vu comme une généralisation de la conjecture de Collatz à divers systèmes algébriques.
409
+
410
+ Elle n'est pas encore démontrée, et ce module fournit un cadre pour la tester.
411
+ ```
412
+
413
+
414
+ ---
415
+
416
+ ### 🇷🇺 **Rusça (Русский)**
417
+ ```text
418
+ ## Гипотеза Кечеджи — Предложенная
419
+
420
+ Предполагается, что последовательности, генерируемые функцией `unified_generator` для каждого типа чисел Кечеджи, сходятся к периодической структуре или повторяющемуся простому представлению (Простое число Кечеджи, KPN) за конечное число шагов. Это поведение можно рассматривать как обобщение гипотезы Коллатца на многомерные алгебраические системы.
421
+
422
+ Гипотеза пока не доказана, и данный модуль предоставляет среду для её проверки.
423
+ ```
424
+
425
+ ---
426
+
427
+ ### 🇨🇳 **Çince (中文 - Basitleştirilmiş)**
428
+ ```text
429
+ ## 凯杰西猜想(Keçeci Conjecture)— 提出
430
+
431
+ 据推测,对于每一种凯杰西数类型,由 `unified_generator` 函数生成的序列将在有限步内收敛到周期性结构或重复的素数表示(凯杰西素数,KPN)。这种行为可视为科拉茨猜想在多种代数系统中的推广。
432
+
433
+ 该猜想尚未被证明,本模块提供了一个用于测试该猜想的框架。
434
+ ```
435
+
436
+ ---
437
+
438
+ ### 🇯🇵 **Japonca (日本語)**
439
+ ```text
440
+ ## ケジェジ予想(Keçeci Conjecture)― 提案
441
+
442
+ すべてのケジェジ数型に対して、`unified_generator` 関数によって生成される数列は、有限回のステップ後に周期的な構造または繰り返し現れる素数表現(ケジェジ素数、KPN)に収束すると考えられている。この振る舞いは、コラッツ予想を複数の代数系へと拡張したものと見なせる。
443
+
444
+ この予想は未だ証明されておらず、本モジュールはその検証のための枠組みを提供する。
445
+ ```
446
+
447
+ ---
448
+
449
+ ### 🇸🇦 **Arapça (العربية): "كَچَه جِي"**
450
+ ```text
451
+ ## حدس كَچَه جِي (Keçeci Conjecture) — مقترح
452
+
453
+ يُفترض أن المتتاليات التي يولدها الدالة `unified_generator` لكل نوع من أعداد كَچَه جِي تتقارب، بعد عدد محدود من الخطوات، إلى بنية دورية أو إلى تمثيل أولي متكرر (العدد الأولي لكَچَه جِي، KPN). يمكن اعتبار هذا السلوك تعميمًا لحدس كولاتز على نظم جبرية متعددة.
454
+
455
+ ما زال هذا الحدس غير مثبت، ويقدم هذا الوحدة إطارًا لاختباره.
456
+ ```
457
+
458
+ ---
459
+
460
+ ### 🇮🇷 **Farsça (فارسی): "کچه جی"**
461
+ ```text
462
+ ## حدس کچه جی (Keçeci Conjecture) — پیشنهادی
463
+
464
+ گمان می‌رود که دنباله‌های تولید شده توسط تابع `unified_generator` برای هر نوع از اعداد کچه جی، پس از تعداد محدودی گام، به یک ساختار تناوبی یا نمایش اول تکراری (عدد اول کچه جی، KPN) همگرا شوند. این رفتار را می‌توان تعمیمی از حدس کولاتز به سیستم‌های جبری چندگانه دانست.
465
+
466
+ این حدس هنوز اثبات نشده است و این ماژول چارچوبی برای آزمودن آن فراهم می‌کند.
467
+ ```
468
+
469
+ ---
470
+
471
+ ### 🇵🇰 **Urduca (اردو): "کچہ جی"**
472
+ ```text
473
+ ## کچہ جی حدسیہ (Keçeci Conjecture) — تجویز شدہ
474
+
475
+ ہر قسم کے کچہ جی نمبر کے لیے، یہ تجویز کیا جاتا ہے کہ `unified_generator` فنکشن کے ذریعے تیار کردہ ترادف محدود مراحل کے بعد ایک دوری ساخت یا دہرائے گئے مفرد نمائندگی (کچہ جی مفرد نمبر، KPN) کی طرف مائل ہوتا ہے۔ اس رویے کو کولاتز حدسیہ کی متعدد الجبری نظاموں تک توسیع کے طور پر دیکھا جا سکتا ہے۔
476
+
477
+ ابھی تک یہ ثابت نہیں ہوا ہے، اور یہ ماڈیول اس حدسیہ کی جانچ کے لیے ایک فریم ورک فراہم کرتا ہے۔
478
+ ```
479
+
480
+
@@ -5,7 +5,9 @@
5
5
 
6
6
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15377659.svg)](https://doi.org/10.5281/zenodo.15377659)
7
7
 
8
- [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.1-blue)](https://doi.org/10.48546/workflowhub.datafile.14.1)
8
+ [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.2-blue)](https://doi.org/10.48546/workflowhub.datafile.14.2)
9
+
10
+ [![figshare DOI](https://img.shields.io/badge/DOI-10.6084/m9.figshare.29816414-blue)](https://doi.org/10.6084/m9.figshare.29816414)
9
11
 
10
12
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/version.svg)](https://anaconda.org/bilgi/kececinumbers)
11
13
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/latest_release_date.svg)](https://anaconda.org/bilgi/kececinumbers)
@@ -288,11 +290,16 @@ If this library was useful to you in your research, please cite us. Following th
288
290
  ### APA
289
291
 
290
292
  ```
293
+
294
+ Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
295
+
291
296
  Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
292
297
 
293
298
  Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarla Geometrik Yorumlamaları. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16343568
294
299
 
295
- Keçeci, M. (2025). kececinumbers [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.1
300
+ Keçeci, M. (2025). kececinumbers [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29816414
301
+
302
+ Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.2
296
303
 
297
304
  Keçeci, M. (2025). kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659
298
305
 
@@ -307,6 +314,9 @@ Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A pote
307
314
 
308
315
  ### Chicago
309
316
  ```
317
+
318
+ Keçeci, Mehmet. Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.16702475
319
+
310
320
  Keçeci, Mehmet. kececinumbers [Data set]. WorkflowHub, 2025. https://doi.org/10.48546/workflowhub.datafile.14.1
311
321
 
312
322
  Keçeci, Mehmet. "kececinumbers". Open Science Articles (OSAs), Zenodo, 01 May 2025. https://doi.org/10.5281/zenodo.15377659
@@ -319,3 +329,119 @@ Keçeci, Mehmet. "Keçeci Numbers and the Keçeci Prime Number". Authorea. June
319
329
 
320
330
  Keçeci, Mehmet. Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.15381697
321
331
  ```
332
+
333
+ ---
334
+
335
+ # Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, Keçeci Hipoteza, 凯杰西猜想, Keçeci Xiǎngcāng, ケジェジ予想, Keçeci Yosō, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, حدس كَچَه جِي ,حدس کچه جی ,کچہ جی حدسیہ
336
+ ---
337
+
338
+ ### 🇹🇷 **Türkçe**
339
+ ```text
340
+ ## Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
341
+
342
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
343
+
344
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
345
+ ```
346
+
347
+ ---
348
+
349
+ ### 🇬🇧 **İngilizce (English)**
350
+ ```text
351
+ ## Keçeci Conjecture - Proposed
352
+
353
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
354
+
355
+ It remains unproven, and this module provides a framework for testing the conjecture.
356
+ ```
357
+
358
+ ---
359
+
360
+ ### 🇩🇪 **Almanca (Deutsch)**
361
+ ```text
362
+ ## Keçeci-Vermutung – Vorgeschlagen
363
+
364
+ Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (Keçeci-Primzahl, KPN) konvergieren. Dieses Verhalten kann als eine Erweiterung der Collatz-Vermutung auf mehrere algebraische Systeme betrachtet werden.
365
+
366
+ Die Vermutung ist bisher unbewiesen, und dieses Modul bietet einen Rahmen, um sie zu untersuchen.
367
+ ```
368
+
369
+ ---
370
+
371
+ ### 🇫🇷 **Fransızca (Français)**
372
+ ```text
373
+ ## Conjecture de Keçeci – Proposée
374
+
375
+ On conjecture que, pour chaque type de nombre Keçeci, les suites générées par la fonction `unified_generator` convergent, en un nombre fini d'étapes, vers une structure périodique ou une représentation première récurrente (Nombre Premier Keçeci, KPN). Ce comportement peut être vu comme une généralisation de la conjecture de Collatz à divers systèmes algébriques.
376
+
377
+ Elle n'est pas encore démontrée, et ce module fournit un cadre pour la tester.
378
+ ```
379
+
380
+
381
+ ---
382
+
383
+ ### 🇷🇺 **Rusça (Русский)**
384
+ ```text
385
+ ## Гипотеза Кечеджи — Предложенная
386
+
387
+ Предполагается, что последовательности, генерируемые функцией `unified_generator` для каждого типа чисел Кечеджи, сходятся к периодической структуре или повторяющемуся простому представлению (Простое число Кечеджи, KPN) за конечное число шагов. Это поведение можно рассматривать как обобщение гипотезы Коллатца на многомерные алгебраические системы.
388
+
389
+ Гипотеза пока не доказана, и данный модуль предоставляет среду для её проверки.
390
+ ```
391
+
392
+ ---
393
+
394
+ ### 🇨🇳 **Çince (中文 - Basitleştirilmiş)**
395
+ ```text
396
+ ## 凯杰西猜想(Keçeci Conjecture)— 提出
397
+
398
+ 据推测,对于每一种凯杰西数类型,由 `unified_generator` 函数生成的序列将在有限步内收敛到周期性结构或重复的素数表示(凯杰西素数,KPN)。这种行为可视为科拉茨猜想在多种代数系统中的推广。
399
+
400
+ 该猜想尚未被证明,本模块提供了一个用于测试该猜想的框架。
401
+ ```
402
+
403
+ ---
404
+
405
+ ### 🇯🇵 **Japonca (日本語)**
406
+ ```text
407
+ ## ケジェジ予想(Keçeci Conjecture)― 提案
408
+
409
+ すべてのケジェジ数型に対して、`unified_generator` 関数によって生成される数列は、有限回のステップ後に周期的な構造または繰り返し現れる素数表現(ケジェジ素数、KPN)に収束すると考えられている。この振る舞いは、コラッツ予想を複数の代数系へと拡張したものと見なせる。
410
+
411
+ この予想は未だ証明されておらず、本モジュールはその検証のための枠組みを提供する。
412
+ ```
413
+
414
+ ---
415
+
416
+ ### 🇸🇦 **Arapça (العربية): "كَچَه جِي"**
417
+ ```text
418
+ ## حدس كَچَه جِي (Keçeci Conjecture) — مقترح
419
+
420
+ يُفترض أن المتتاليات التي يولدها الدالة `unified_generator` لكل نوع من أعداد كَچَه جِي تتقارب، بعد عدد محدود من الخطوات، إلى بنية دورية أو إلى تمثيل أولي متكرر (العدد الأولي لكَچَه جِي، KPN). يمكن اعتبار هذا السلوك تعميمًا لحدس كولاتز على نظم جبرية متعددة.
421
+
422
+ ما زال هذا الحدس غير مثبت، ويقدم هذا الوحدة إطارًا لاختباره.
423
+ ```
424
+
425
+ ---
426
+
427
+ ### 🇮🇷 **Farsça (فارسی): "کچه جی"**
428
+ ```text
429
+ ## حدس کچه جی (Keçeci Conjecture) — پیشنهادی
430
+
431
+ گمان می‌رود که دنباله‌های تولید شده توسط تابع `unified_generator` برای هر نوع از اعداد کچه جی، پس از تعداد محدودی گام، به یک ساختار تناوبی یا نمایش اول تکراری (عدد اول کچه جی، KPN) همگرا شوند. این رفتار را می‌توان تعمیمی از حدس کولاتز به سیستم‌های جبری چندگانه دانست.
432
+
433
+ این حدس هنوز اثبات نشده است و این ماژول چارچوبی برای آزمودن آن فراهم می‌کند.
434
+ ```
435
+
436
+ ---
437
+
438
+ ### 🇵🇰 **Urduca (اردو): "کچہ جی"**
439
+ ```text
440
+ ## کچہ جی حدسیہ (Keçeci Conjecture) — تجویز شدہ
441
+
442
+ ہر قسم کے کچہ جی نمبر کے لیے، یہ تجویز کیا جاتا ہے کہ `unified_generator` فنکشن کے ذریعے تیار کردہ ترادف محدود مراحل کے بعد ایک دوری ساخت یا دہرائے گئے مفرد نمائندگی (کچہ جی مفرد نمبر، KPN) کی طرف مائل ہوتا ہے۔ اس رویے کو کولاتز حدسیہ کی متعدد الجبری نظاموں تک توسیع کے طور پر دیکھا جا سکتا ہے۔
443
+
444
+ ابھی تک یہ ثابت نہیں ہوا ہے، اور یہ ماڈیول اس حدسیہ کی جانچ کے لیے ایک فریم ورک فراہم کرتا ہے۔
445
+ ```
446
+
447
+
@@ -34,4 +34,4 @@ def eski_fonksiyon():
34
34
 
35
35
 
36
36
  # Paket sürüm numarası
37
- __version__ = "0.3.1"
37
+ __version__ = "0.3.3"
@@ -1,6 +1,6 @@
1
1
  # _version.py
2
2
 
3
- __version__ = "0.3.1"
3
+ __version__ = "0.3.3"
4
4
  __license__ = "MIT"
5
5
  __description__ = "Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets."
6
6
  __author__ = "Mehmet Keçeci"
@@ -19,6 +19,22 @@ Key Features:
19
19
  - Helper functions for mathematical properties like primality and divisibility.
20
20
  - Advanced plotting capabilities tailored to each number system.
21
21
  - Functions for interactive use or programmatic integration.
22
+ """
23
+ """
24
+ Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, 凯杰西猜想, ケジェジ予想, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, كَچَه جِي ,حدس کچه جی, کچہ جی حدسیہ
25
+
26
+ Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
27
+
28
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
29
+
30
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
31
+
32
+ # Keçeci Conjecture - Proposed
33
+
34
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
35
+
36
+ It remains unproven, and this module provides a framework for testing the conjecture.
37
+
22
38
  """
23
39
 
24
40
  # --- Standard Library Imports ---
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.3.1
3
+ Version: 0.3.3
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -38,7 +38,9 @@ Dynamic: summary
38
38
 
39
39
  [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15377659.svg)](https://doi.org/10.5281/zenodo.15377659)
40
40
 
41
- [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.1-blue)](https://doi.org/10.48546/workflowhub.datafile.14.1)
41
+ [![WorkflowHub DOI](https://img.shields.io/badge/DOI-10.48546%2Fworkflowhub.datafile.14.2-blue)](https://doi.org/10.48546/workflowhub.datafile.14.2)
42
+
43
+ [![figshare DOI](https://img.shields.io/badge/DOI-10.6084/m9.figshare.29816414-blue)](https://doi.org/10.6084/m9.figshare.29816414)
42
44
 
43
45
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/version.svg)](https://anaconda.org/bilgi/kececinumbers)
44
46
  [![Anaconda-Server Badge](https://anaconda.org/bilgi/kececinumbers/badges/latest_release_date.svg)](https://anaconda.org/bilgi/kececinumbers)
@@ -321,11 +323,16 @@ If this library was useful to you in your research, please cite us. Following th
321
323
  ### APA
322
324
 
323
325
  ```
326
+
327
+ Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
328
+
324
329
  Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
325
330
 
326
331
  Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarla Geometrik Yorumlamaları. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16343568
327
332
 
328
- Keçeci, M. (2025). kececinumbers [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.1
333
+ Keçeci, M. (2025). kececinumbers [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29816414
334
+
335
+ Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.2
329
336
 
330
337
  Keçeci, M. (2025). kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659
331
338
 
@@ -340,6 +347,9 @@ Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A pote
340
347
 
341
348
  ### Chicago
342
349
  ```
350
+
351
+ Keçeci, Mehmet. Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.16702475
352
+
343
353
  Keçeci, Mehmet. kececinumbers [Data set]. WorkflowHub, 2025. https://doi.org/10.48546/workflowhub.datafile.14.1
344
354
 
345
355
  Keçeci, Mehmet. "kececinumbers". Open Science Articles (OSAs), Zenodo, 01 May 2025. https://doi.org/10.5281/zenodo.15377659
@@ -352,3 +362,119 @@ Keçeci, Mehmet. "Keçeci Numbers and the Keçeci Prime Number". Authorea. June
352
362
 
353
363
  Keçeci, Mehmet. Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.15381697
354
364
  ```
365
+
366
+ ---
367
+
368
+ # Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, Keçeci Hipoteza, 凯杰西猜想, Keçeci Xiǎngcāng, ケジェジ予想, Keçeci Yosō, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, حدس كَچَه جِي ,حدس کچه جی ,کچہ جی حدسیہ
369
+ ---
370
+
371
+ ### 🇹🇷 **Türkçe**
372
+ ```text
373
+ ## Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
374
+
375
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
376
+
377
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
378
+ ```
379
+
380
+ ---
381
+
382
+ ### 🇬🇧 **İngilizce (English)**
383
+ ```text
384
+ ## Keçeci Conjecture - Proposed
385
+
386
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
387
+
388
+ It remains unproven, and this module provides a framework for testing the conjecture.
389
+ ```
390
+
391
+ ---
392
+
393
+ ### 🇩🇪 **Almanca (Deutsch)**
394
+ ```text
395
+ ## Keçeci-Vermutung – Vorgeschlagen
396
+
397
+ Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (Keçeci-Primzahl, KPN) konvergieren. Dieses Verhalten kann als eine Erweiterung der Collatz-Vermutung auf mehrere algebraische Systeme betrachtet werden.
398
+
399
+ Die Vermutung ist bisher unbewiesen, und dieses Modul bietet einen Rahmen, um sie zu untersuchen.
400
+ ```
401
+
402
+ ---
403
+
404
+ ### 🇫🇷 **Fransızca (Français)**
405
+ ```text
406
+ ## Conjecture de Keçeci – Proposée
407
+
408
+ On conjecture que, pour chaque type de nombre Keçeci, les suites générées par la fonction `unified_generator` convergent, en un nombre fini d'étapes, vers une structure périodique ou une représentation première récurrente (Nombre Premier Keçeci, KPN). Ce comportement peut être vu comme une généralisation de la conjecture de Collatz à divers systèmes algébriques.
409
+
410
+ Elle n'est pas encore démontrée, et ce module fournit un cadre pour la tester.
411
+ ```
412
+
413
+
414
+ ---
415
+
416
+ ### 🇷🇺 **Rusça (Русский)**
417
+ ```text
418
+ ## Гипотеза Кечеджи — Предложенная
419
+
420
+ Предполагается, что последовательности, генерируемые функцией `unified_generator` для каждого типа чисел Кечеджи, сходятся к периодической структуре или повторяющемуся простому представлению (Простое число Кечеджи, KPN) за конечное число шагов. Это поведение можно рассматривать как обобщение гипотезы Коллатца на многомерные алгебраические системы.
421
+
422
+ Гипотеза пока не доказана, и данный модуль предоставляет среду для её проверки.
423
+ ```
424
+
425
+ ---
426
+
427
+ ### 🇨🇳 **Çince (中文 - Basitleştirilmiş)**
428
+ ```text
429
+ ## 凯杰西猜想(Keçeci Conjecture)— 提出
430
+
431
+ 据推测,对于每一种凯杰西数类型,由 `unified_generator` 函数生成的序列将在有限步内收敛到周期性结构或重复的素数表示(凯杰西素数,KPN)。这种行为可视为科拉茨猜想在多种代数系统中的推广。
432
+
433
+ 该猜想尚未被证明,本模块提供了一个用于测试该猜想的框架。
434
+ ```
435
+
436
+ ---
437
+
438
+ ### 🇯🇵 **Japonca (日本語)**
439
+ ```text
440
+ ## ケジェジ予想(Keçeci Conjecture)― 提案
441
+
442
+ すべてのケジェジ数型に対して、`unified_generator` 関数によって生成される数列は、有限回のステップ後に周期的な構造または繰り返し現れる素数表現(ケジェジ素数、KPN)に収束すると考えられている。この振る舞いは、コラッツ予想を複数の代数系へと拡張したものと見なせる。
443
+
444
+ この予想は未だ証明されておらず、本モジュールはその検証のための枠組みを提供する。
445
+ ```
446
+
447
+ ---
448
+
449
+ ### 🇸🇦 **Arapça (العربية): "كَچَه جِي"**
450
+ ```text
451
+ ## حدس كَچَه جِي (Keçeci Conjecture) — مقترح
452
+
453
+ يُفترض أن المتتاليات التي يولدها الدالة `unified_generator` لكل نوع من أعداد كَچَه جِي تتقارب، بعد عدد محدود من الخطوات، إلى بنية دورية أو إلى تمثيل أولي متكرر (العدد الأولي لكَچَه جِي، KPN). يمكن اعتبار هذا السلوك تعميمًا لحدس كولاتز على نظم جبرية متعددة.
454
+
455
+ ما زال هذا الحدس غير مثبت، ويقدم هذا الوحدة إطارًا لاختباره.
456
+ ```
457
+
458
+ ---
459
+
460
+ ### 🇮🇷 **Farsça (فارسی): "کچه جی"**
461
+ ```text
462
+ ## حدس کچه جی (Keçeci Conjecture) — پیشنهادی
463
+
464
+ گمان می‌رود که دنباله‌های تولید شده توسط تابع `unified_generator` برای هر نوع از اعداد کچه جی، پس از تعداد محدودی گام، به یک ساختار تناوبی یا نمایش اول تکراری (عدد اول کچه جی، KPN) همگرا شوند. این رفتار را می‌توان تعمیمی از حدس کولاتز به سیستم‌های جبری چندگانه دانست.
465
+
466
+ این حدس هنوز اثبات نشده است و این ماژول چارچوبی برای آزمودن آن فراهم می‌کند.
467
+ ```
468
+
469
+ ---
470
+
471
+ ### 🇵🇰 **Urduca (اردو): "کچہ جی"**
472
+ ```text
473
+ ## کچہ جی حدسیہ (Keçeci Conjecture) — تجویز شدہ
474
+
475
+ ہر قسم کے کچہ جی نمبر کے لیے، یہ تجویز کیا جاتا ہے کہ `unified_generator` فنکشن کے ذریعے تیار کردہ ترادف محدود مراحل کے بعد ایک دوری ساخت یا دہرائے گئے مفرد نمائندگی (کچہ جی مفرد نمبر، KPN) کی طرف مائل ہوتا ہے۔ اس رویے کو کولاتز حدسیہ کی متعدد الجبری نظاموں تک توسیع کے طور پر دیکھا جا سکتا ہے۔
476
+
477
+ ابھی تک یہ ثابت نہیں ہوا ہے، اور یہ ماڈیول اس حدسیہ کی جانچ کے لیے ایک فریم ورک فراہم کرتا ہے۔
478
+ ```
479
+
480
+
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name="kececinumbers",
6
- version="0.3.1",
6
+ version="0.3.3",
7
7
  description="Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets",
8
8
  long_description=open("README.md").read(),
9
9
  long_description_content_type="text/markdown",
File without changes
File without changes
File without changes