kececinumbers 0.3.0__tar.gz → 0.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.3.0
3
+ Version: 0.3.2
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -218,7 +218,17 @@ Keçeci Number Types:
218
218
 
219
219
  6: Quaternions (scalar start input becomes q(s,s,s,s): e.g., 1 or 2.5)
220
220
 
221
- Please select Keçeci Number Type (1-6): 1
221
+ 7: Neutrosophic
222
+
223
+ 8: Neutro-Complex
224
+
225
+ 9: Hyperreal
226
+
227
+ 10: Bicomplex
228
+
229
+ 11: Neutro-Bicomplex
230
+
231
+ Please select Keçeci Number Type (1-11): 1
222
232
 
223
233
  Enter the starting number (e.g., 0 or 2.5, complex:3+4j, rational: 3/4, quaternions: 1) : 0
224
234
 
@@ -311,6 +321,9 @@ If this library was useful to you in your research, please cite us. Following th
311
321
  ### APA
312
322
 
313
323
  ```
324
+
325
+ Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
326
+
314
327
  Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
315
328
 
316
329
  Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarla Geometrik Yorumlamaları. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16343568
@@ -330,6 +343,9 @@ Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A pote
330
343
 
331
344
  ### Chicago
332
345
  ```
346
+
347
+ Keçeci, Mehmet. Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.16702475
348
+
333
349
  Keçeci, Mehmet. kececinumbers [Data set]. WorkflowHub, 2025. https://doi.org/10.48546/workflowhub.datafile.14.1
334
350
 
335
351
  Keçeci, Mehmet. "kececinumbers". Open Science Articles (OSAs), Zenodo, 01 May 2025. https://doi.org/10.5281/zenodo.15377659
@@ -342,3 +358,119 @@ Keçeci, Mehmet. "Keçeci Numbers and the Keçeci Prime Number". Authorea. June
342
358
 
343
359
  Keçeci, Mehmet. Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.15381697
344
360
  ```
361
+
362
+ ---
363
+
364
+ # Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, Keçeci Hipoteza, 凯杰西猜想, Keçeci Xiǎngcāng, ケジェジ予想, Keçeci Yosō, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, حدس كَچَه جِي ,حدس کچه جی ,کچہ جی حدسیہ
365
+ ---
366
+
367
+ ### 🇹🇷 **Türkçe**
368
+ ```text
369
+ ## Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
370
+
371
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
372
+
373
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
374
+ ```
375
+
376
+ ---
377
+
378
+ ### 🇬🇧 **İngilizce (English)**
379
+ ```text
380
+ ## Keçeci Conjecture - Proposed
381
+
382
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
383
+
384
+ It remains unproven, and this module provides a framework for testing the conjecture.
385
+ ```
386
+
387
+ ---
388
+
389
+ ### 🇩🇪 **Almanca (Deutsch)**
390
+ ```text
391
+ ## Keçeci-Vermutung – Vorgeschlagen
392
+
393
+ Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (Keçeci-Primzahl, KPN) konvergieren. Dieses Verhalten kann als eine Erweiterung der Collatz-Vermutung auf mehrere algebraische Systeme betrachtet werden.
394
+
395
+ Die Vermutung ist bisher unbewiesen, und dieses Modul bietet einen Rahmen, um sie zu untersuchen.
396
+ ```
397
+
398
+ ---
399
+
400
+ ### 🇫🇷 **Fransızca (Français)**
401
+ ```text
402
+ ## Conjecture de Keçeci – Proposée
403
+
404
+ On conjecture que, pour chaque type de nombre Keçeci, les suites générées par la fonction `unified_generator` convergent, en un nombre fini d'étapes, vers une structure périodique ou une représentation première récurrente (Nombre Premier Keçeci, KPN). Ce comportement peut être vu comme une généralisation de la conjecture de Collatz à divers systèmes algébriques.
405
+
406
+ Elle n'est pas encore démontrée, et ce module fournit un cadre pour la tester.
407
+ ```
408
+
409
+
410
+ ---
411
+
412
+ ### 🇷🇺 **Rusça (Русский)**
413
+ ```text
414
+ ## Гипотеза Кечеджи — Предложенная
415
+
416
+ Предполагается, что последовательности, генерируемые функцией `unified_generator` для каждого типа чисел Кечеджи, сходятся к периодической структуре или повторяющемуся простому представлению (Простое число Кечеджи, KPN) за конечное число шагов. Это поведение можно рассматривать как обобщение гипотезы Коллатца на многомерные алгебраические системы.
417
+
418
+ Гипотеза пока не доказана, и данный модуль предоставляет среду для её проверки.
419
+ ```
420
+
421
+ ---
422
+
423
+ ### 🇨🇳 **Çince (中文 - Basitleştirilmiş)**
424
+ ```text
425
+ ## 凯杰西猜想(Keçeci Conjecture)— 提出
426
+
427
+ 据推测,对于每一种凯杰西数类型,由 `unified_generator` 函数生成的序列将在有限步内收敛到周期性结构或重复的素数表示(凯杰西素数,KPN)。这种行为可视为科拉茨猜想在多种代数系统中的推广。
428
+
429
+ 该猜想尚未被证明,本模块提供了一个用于测试该猜想的框架。
430
+ ```
431
+
432
+ ---
433
+
434
+ ### 🇯🇵 **Japonca (日本語)**
435
+ ```text
436
+ ## ケジェジ予想(Keçeci Conjecture)― 提案
437
+
438
+ すべてのケジェジ数型に対して、`unified_generator` 関数によって生成される数列は、有限回のステップ後に周期的な構造または繰り返し現れる素数表現(ケジェジ素数、KPN)に収束すると考えられている。この振る舞いは、コラッツ予想を複数の代数系へと拡張したものと見なせる。
439
+
440
+ この予想は未だ証明されておらず、本モジュールはその検証のための枠組みを提供する。
441
+ ```
442
+
443
+ ---
444
+
445
+ ### 🇸🇦 **Arapça (العربية) – Güncellenmiş: "كَچَه جِي"**
446
+ ```text
447
+ ## حدس كَچَه جِي (Keçeci Conjecture) — مقترح
448
+
449
+ يُفترض أن المتتاليات التي يولدها الدالة `unified_generator` لكل نوع من أعداد كَچَه جِي تتقارب، بعد عدد محدود من الخطوات، إلى بنية دورية أو إلى تمثيل أولي متكرر (العدد الأولي لكَچَه جِي، KPN). يمكن اعتبار هذا السلوك تعميمًا لحدس كولاتز على نظم جبرية متعددة.
450
+
451
+ ما زال هذا الحدس غير مثبت، ويقدم هذا الوحدة إطارًا لاختباره.
452
+ ```
453
+
454
+ ---
455
+
456
+ ### 🇮🇷 **Farsça (فارسی) – Güncellenmiş: "کچه جی"**
457
+ ```text
458
+ ## حدس کچه جی (Keçeci Conjecture) — پیشنهادی
459
+
460
+ گمان می‌رود که دنباله‌های تولید شده توسط تابع `unified_generator` برای هر نوع از اعداد کچه جی، پس از تعداد محدودی گام، به یک ساختار تناوبی یا نمایش اول تکراری (عدد اول کچه جی، KPN) همگرا شوند. این رفتار را می‌توان تعمیمی از حدس کولاتز به سیستم‌های جبری چندگانه دانست.
461
+
462
+ این حدس هنوز اثبات نشده است و این ماژول چارچوبی برای آزمودن آن فراهم می‌کند.
463
+ ```
464
+
465
+ ---
466
+
467
+ ### 🇵🇰 **Urduca (اردو) – Güncellenmiş: "کچہ جی"**
468
+ ```text
469
+ ## کچہ جی حدسیہ (Keçeci Conjecture) — تجویز شدہ
470
+
471
+ ہر قسم کے کچہ جی نمبر کے لیے، یہ تجویز کیا جاتا ہے کہ `unified_generator` فنکشن کے ذریعے تیار کردہ ترادف محدود مراحل کے بعد ایک دوری ساخت یا دہرائے گئے مفرد نمائندگی (کچہ جی مفرد نمبر، KPN) کی طرف مائل ہوتا ہے۔ اس رویے کو کولاتز حدسیہ کی متعدد الجبری نظاموں تک توسیع کے طور پر دیکھا جا سکتا ہے۔
472
+
473
+ ابھی تک یہ ثابت نہیں ہوا ہے، اور یہ ماڈیول اس حدسیہ کی جانچ کے لیے ایک فریم ورک فراہم کرتا ہے۔
474
+ ```
475
+
476
+
@@ -185,7 +185,17 @@ Keçeci Number Types:
185
185
 
186
186
  6: Quaternions (scalar start input becomes q(s,s,s,s): e.g., 1 or 2.5)
187
187
 
188
- Please select Keçeci Number Type (1-6): 1
188
+ 7: Neutrosophic
189
+
190
+ 8: Neutro-Complex
191
+
192
+ 9: Hyperreal
193
+
194
+ 10: Bicomplex
195
+
196
+ 11: Neutro-Bicomplex
197
+
198
+ Please select Keçeci Number Type (1-11): 1
189
199
 
190
200
  Enter the starting number (e.g., 0 or 2.5, complex:3+4j, rational: 3/4, quaternions: 1) : 0
191
201
 
@@ -278,6 +288,9 @@ If this library was useful to you in your research, please cite us. Following th
278
288
  ### APA
279
289
 
280
290
  ```
291
+
292
+ Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
293
+
281
294
  Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
282
295
 
283
296
  Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarla Geometrik Yorumlamaları. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16343568
@@ -297,6 +310,9 @@ Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A pote
297
310
 
298
311
  ### Chicago
299
312
  ```
313
+
314
+ Keçeci, Mehmet. Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.16702475
315
+
300
316
  Keçeci, Mehmet. kececinumbers [Data set]. WorkflowHub, 2025. https://doi.org/10.48546/workflowhub.datafile.14.1
301
317
 
302
318
  Keçeci, Mehmet. "kececinumbers". Open Science Articles (OSAs), Zenodo, 01 May 2025. https://doi.org/10.5281/zenodo.15377659
@@ -309,3 +325,119 @@ Keçeci, Mehmet. "Keçeci Numbers and the Keçeci Prime Number". Authorea. June
309
325
 
310
326
  Keçeci, Mehmet. Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.15381697
311
327
  ```
328
+
329
+ ---
330
+
331
+ # Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, Keçeci Hipoteza, 凯杰西猜想, Keçeci Xiǎngcāng, ケジェジ予想, Keçeci Yosō, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, حدس كَچَه جِي ,حدس کچه جی ,کچہ جی حدسیہ
332
+ ---
333
+
334
+ ### 🇹🇷 **Türkçe**
335
+ ```text
336
+ ## Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
337
+
338
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
339
+
340
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
341
+ ```
342
+
343
+ ---
344
+
345
+ ### 🇬🇧 **İngilizce (English)**
346
+ ```text
347
+ ## Keçeci Conjecture - Proposed
348
+
349
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
350
+
351
+ It remains unproven, and this module provides a framework for testing the conjecture.
352
+ ```
353
+
354
+ ---
355
+
356
+ ### 🇩🇪 **Almanca (Deutsch)**
357
+ ```text
358
+ ## Keçeci-Vermutung – Vorgeschlagen
359
+
360
+ Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (Keçeci-Primzahl, KPN) konvergieren. Dieses Verhalten kann als eine Erweiterung der Collatz-Vermutung auf mehrere algebraische Systeme betrachtet werden.
361
+
362
+ Die Vermutung ist bisher unbewiesen, und dieses Modul bietet einen Rahmen, um sie zu untersuchen.
363
+ ```
364
+
365
+ ---
366
+
367
+ ### 🇫🇷 **Fransızca (Français)**
368
+ ```text
369
+ ## Conjecture de Keçeci – Proposée
370
+
371
+ On conjecture que, pour chaque type de nombre Keçeci, les suites générées par la fonction `unified_generator` convergent, en un nombre fini d'étapes, vers une structure périodique ou une représentation première récurrente (Nombre Premier Keçeci, KPN). Ce comportement peut être vu comme une généralisation de la conjecture de Collatz à divers systèmes algébriques.
372
+
373
+ Elle n'est pas encore démontrée, et ce module fournit un cadre pour la tester.
374
+ ```
375
+
376
+
377
+ ---
378
+
379
+ ### 🇷🇺 **Rusça (Русский)**
380
+ ```text
381
+ ## Гипотеза Кечеджи — Предложенная
382
+
383
+ Предполагается, что последовательности, генерируемые функцией `unified_generator` для каждого типа чисел Кечеджи, сходятся к периодической структуре или повторяющемуся простому представлению (Простое число Кечеджи, KPN) за конечное число шагов. Это поведение можно рассматривать как обобщение гипотезы Коллатца на многомерные алгебраические системы.
384
+
385
+ Гипотеза пока не доказана, и данный модуль предоставляет среду для её проверки.
386
+ ```
387
+
388
+ ---
389
+
390
+ ### 🇨🇳 **Çince (中文 - Basitleştirilmiş)**
391
+ ```text
392
+ ## 凯杰西猜想(Keçeci Conjecture)— 提出
393
+
394
+ 据推测,对于每一种凯杰西数类型,由 `unified_generator` 函数生成的序列将在有限步内收敛到周期性结构或重复的素数表示(凯杰西素数,KPN)。这种行为可视为科拉茨猜想在多种代数系统中的推广。
395
+
396
+ 该猜想尚未被证明,本模块提供了一个用于测试该猜想的框架。
397
+ ```
398
+
399
+ ---
400
+
401
+ ### 🇯🇵 **Japonca (日本語)**
402
+ ```text
403
+ ## ケジェジ予想(Keçeci Conjecture)― 提案
404
+
405
+ すべてのケジェジ数型に対して、`unified_generator` 関数によって生成される数列は、有限回のステップ後に周期的な構造または繰り返し現れる素数表現(ケジェジ素数、KPN)に収束すると考えられている。この振る舞いは、コラッツ予想を複数の代数系へと拡張したものと見なせる。
406
+
407
+ この予想は未だ証明されておらず、本モジュールはその検証のための枠組みを提供する。
408
+ ```
409
+
410
+ ---
411
+
412
+ ### 🇸🇦 **Arapça (العربية) – Güncellenmiş: "كَچَه جِي"**
413
+ ```text
414
+ ## حدس كَچَه جِي (Keçeci Conjecture) — مقترح
415
+
416
+ يُفترض أن المتتاليات التي يولدها الدالة `unified_generator` لكل نوع من أعداد كَچَه جِي تتقارب، بعد عدد محدود من الخطوات، إلى بنية دورية أو إلى تمثيل أولي متكرر (العدد الأولي لكَچَه جِي، KPN). يمكن اعتبار هذا السلوك تعميمًا لحدس كولاتز على نظم جبرية متعددة.
417
+
418
+ ما زال هذا الحدس غير مثبت، ويقدم هذا الوحدة إطارًا لاختباره.
419
+ ```
420
+
421
+ ---
422
+
423
+ ### 🇮🇷 **Farsça (فارسی) – Güncellenmiş: "کچه جی"**
424
+ ```text
425
+ ## حدس کچه جی (Keçeci Conjecture) — پیشنهادی
426
+
427
+ گمان می‌رود که دنباله‌های تولید شده توسط تابع `unified_generator` برای هر نوع از اعداد کچه جی، پس از تعداد محدودی گام، به یک ساختار تناوبی یا نمایش اول تکراری (عدد اول کچه جی، KPN) همگرا شوند. این رفتار را می‌توان تعمیمی از حدس کولاتز به سیستم‌های جبری چندگانه دانست.
428
+
429
+ این حدس هنوز اثبات نشده است و این ماژول چارچوبی برای آزمودن آن فراهم می‌کند.
430
+ ```
431
+
432
+ ---
433
+
434
+ ### 🇵🇰 **Urduca (اردو) – Güncellenmiş: "کچہ جی"**
435
+ ```text
436
+ ## کچہ جی حدسیہ (Keçeci Conjecture) — تجویز شدہ
437
+
438
+ ہر قسم کے کچہ جی نمبر کے لیے، یہ تجویز کیا جاتا ہے کہ `unified_generator` فنکشن کے ذریعے تیار کردہ ترادف محدود مراحل کے بعد ایک دوری ساخت یا دہرائے گئے مفرد نمائندگی (کچہ جی مفرد نمبر، KPN) کی طرف مائل ہوتا ہے۔ اس رویے کو کولاتز حدسیہ کی متعدد الجبری نظاموں تک توسیع کے طور پر دیکھا جا سکتا ہے۔
439
+
440
+ ابھی تک یہ ثابت نہیں ہوا ہے، اور یہ ماڈیول اس حدسیہ کی جانچ کے لیے ایک فریم ورک فراہم کرتا ہے۔
441
+ ```
442
+
443
+
@@ -34,4 +34,4 @@ def eski_fonksiyon():
34
34
 
35
35
 
36
36
  # Paket sürüm numarası
37
- __version__ = "0.3.0"
37
+ __version__ = "0.3.2"
@@ -1,6 +1,6 @@
1
1
  # _version.py
2
2
 
3
- __version__ = "0.3.0"
3
+ __version__ = "0.3.2"
4
4
  __license__ = "MIT"
5
5
  __description__ = "Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets."
6
6
  __author__ = "Mehmet Keçeci"
@@ -19,6 +19,22 @@ Key Features:
19
19
  - Helper functions for mathematical properties like primality and divisibility.
20
20
  - Advanced plotting capabilities tailored to each number system.
21
21
  - Functions for interactive use or programmatic integration.
22
+ """
23
+ """
24
+ Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, 凯杰西猜想, ケジェジ予想, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, كَچَه جِي ,حدس کچه جی, کچہ جی حدسیہ
25
+
26
+ Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
27
+
28
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
29
+
30
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
31
+
32
+ # Keçeci Conjecture - Proposed
33
+
34
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
35
+
36
+ It remains unproven, and this module provides a framework for testing the conjecture.
37
+
22
38
  """
23
39
 
24
40
  # --- Standard Library Imports ---
@@ -457,142 +473,6 @@ def _is_divisible(value, divisor, kececi_type):
457
473
  return False
458
474
  return False
459
475
 
460
- # ==============================================================================
461
- # --- CORE GENERATOR ---
462
- # ==============================================================================
463
-
464
- def unified_generator(kececi_type, start_input_raw, add_input_base_scalar, iterations):
465
- """
466
- Herhangi bir desteklenen türde Keçeci Sayı dizileri üreten çekirdek motor.
467
- Bu sürüm, tüm tipler için sağlam tür dönüştürme ve özel format ayrıştırma içerir.
468
- """
469
- current_value = None
470
- add_value_typed = None
471
- ask_unit = None
472
- use_integer_division = False
473
-
474
- try:
475
- # --- Adım 1: Keçeci Türüne Göre Başlatma ---
476
- a_float = float(add_input_base_scalar)
477
-
478
- if kececi_type in [TYPE_POSITIVE_REAL, TYPE_NEGATIVE_REAL]:
479
- s_int = int(float(start_input_raw))
480
- current_value = s_int
481
- add_value_typed = int(a_float)
482
- ask_unit = 1
483
- use_integer_division = True
484
-
485
- elif kececi_type == TYPE_FLOAT:
486
- current_value = float(start_input_raw)
487
- add_value_typed = a_float
488
- ask_unit = 1.0
489
-
490
- elif kececi_type == TYPE_RATIONAL:
491
- current_value = Fraction(start_input_raw)
492
- add_value_typed = Fraction(add_input_base_scalar)
493
- ask_unit = Fraction(1)
494
-
495
- elif kececi_type == TYPE_COMPLEX:
496
- current_value = _parse_complex(start_input_raw)
497
- add_value_typed = complex(a_float, a_float)
498
- ask_unit = 1 + 1j
499
-
500
- elif kececi_type == TYPE_NEUTROSOPHIC:
501
- a, b = _parse_neutrosophic(start_input_raw)
502
- current_value = NeutrosophicNumber(a, b)
503
- add_value_typed = NeutrosophicNumber(a_float, 0)
504
- ask_unit = NeutrosophicNumber(1, 1)
505
-
506
- # --- YENİ EKLENEN/DÜZELTİLEN BLOKLAR ---
507
-
508
- elif kececi_type == TYPE_NEUTROSOPHIC_COMPLEX: # HATA DÜZELTİLDİ
509
- s_complex = _parse_complex(start_input_raw)
510
- # Başlangıç indeterminacy değerini 0 olarak varsayalım
511
- current_value = NeutrosophicComplexNumber(s_complex.real, s_complex.imag, 0.0)
512
- # Artış, deterministik reel kısma etki eder
513
- add_value_typed = NeutrosophicComplexNumber(a_float, 0.0, 0.0)
514
- ask_unit = NeutrosophicComplexNumber(1, 1, 1)
515
-
516
- elif kececi_type == TYPE_HYPERREAL: # HATA DÜZELTİLDİ
517
- a, b = _parse_hyperreal(start_input_raw)
518
- # 'a' reel kısmı, 'b' ise sonsuz küçükleri ölçekler
519
- sequence_list = [a + b / n for n in range(1, 11)]
520
- current_value = HyperrealNumber(sequence_list)
521
- # Artış, sadece standart (ilk) reel kısma etki eder
522
- add_sequence = [a_float] + [0.0] * 9
523
- add_value_typed = HyperrealNumber(add_sequence)
524
- ask_unit = HyperrealNumber([1.0] * 10)
525
-
526
- elif kececi_type == TYPE_BICOMPLEX: # Mantık aynı, sadece ayrıştırıcıyı kullanıyor
527
- s_complex = _parse_complex(start_input_raw)
528
- a_complex = complex(a_float)
529
- current_value = BicomplexNumber(s_complex, s_complex / 2)
530
- add_value_typed = BicomplexNumber(a_complex, a_complex / 2)
531
- ask_unit = BicomplexNumber(complex(1, 1), complex(0.5, 0.5))
532
-
533
- elif kececi_type == TYPE_NEUTROSOPHIC_BICOMPLEX: # HATA DÜZELTİLDİ
534
- s_complex = _parse_complex(start_input_raw)
535
- # Başlangıç değeri olarak kompleks sayıyı kullanıp diğer 6 bileşeni 0 yapalım
536
- current_value = NeutrosophicBicomplexNumber(s_complex.real, s_complex.imag, 0, 0, 0, 0, 0, 0)
537
- # Artış, sadece ana reel kısma etki eder
538
- add_value_typed = NeutrosophicBicomplexNumber(a_float, 0, 0, 0, 0, 0, 0, 0)
539
- ask_unit = NeutrosophicBicomplexNumber(*([1.0] * 8))
540
-
541
- # --- DİĞER TİPLER ---
542
-
543
- elif kececi_type == TYPE_QUATERNION:
544
- s_float = float(start_input_raw)
545
- current_value = np.quaternion(s_float, s_float, s_float, s_float)
546
- add_value_typed = np.quaternion(a_float, a_float, a_float, a_float)
547
- ask_unit = np.quaternion(1, 1, 1, 1)
548
-
549
- else:
550
- raise ValueError(f"Geçersiz veya desteklenmeyen Keçeci Sayı Tipi: {kececi_type}")
551
-
552
- except (ValueError, TypeError) as e:
553
- print(f"HATA: Tip {kececi_type} için '{start_input_raw}' girdisiyle başlatma başarısız: {e}")
554
- return []
555
-
556
- # --- Adım 2: İterasyon Döngüsü ---
557
- sequence = [current_value]
558
- last_divisor_used = None
559
- ask_counter = 0
560
-
561
- for _ in range(iterations):
562
- added_value = current_value + add_value_typed
563
- sequence.append(added_value)
564
-
565
- result_value = added_value
566
- divided_successfully = False
567
-
568
- primary_divisor = 3 if last_divisor_used == 2 or last_divisor_used is None else 2
569
- alternative_divisor = 2 if primary_divisor == 3 else 3
570
-
571
- for divisor in [primary_divisor, alternative_divisor]:
572
- if _is_divisible(added_value, divisor, kececi_type):
573
- result_value = added_value // divisor if use_integer_division else added_value / divisor
574
- last_divisor_used = divisor
575
- divided_successfully = True
576
- break
577
-
578
- if not divided_successfully and is_prime(added_value):
579
- modified_value = (added_value + ask_unit) if ask_counter == 0 else (added_value - ask_unit)
580
- ask_counter = 1 - ask_counter
581
- sequence.append(modified_value)
582
-
583
- result_value = modified_value
584
-
585
- for divisor in [primary_divisor, alternative_divisor]:
586
- if _is_divisible(modified_value, divisor, kececi_type):
587
- result_value = modified_value // divisor if use_integer_division else modified_value / divisor
588
- last_divisor_used = divisor
589
- break
590
-
591
- sequence.append(result_value)
592
- current_value = result_value
593
-
594
- return sequence
595
-
596
476
  def _parse_complex(s: str) -> complex:
597
477
  """
598
478
  Bir string'i kompleks sayıya çevirir.
@@ -700,6 +580,58 @@ def _parse_hyperreal(s: str) -> (float, float):
700
580
 
701
581
  return a, b
702
582
 
583
+ def _parse_quaternion(s: str) -> np.quaternion:
584
+ """
585
+ Kullanıcıdan gelen metin girdisini ('a+bi+cj+dk' veya sadece skaler)
586
+ bir kuaterniyon nesnesine çevirir.
587
+
588
+ Örnekler:
589
+ - '2.5' -> quaternion(2.5, 2.5, 2.5, 2.5)
590
+ - '2.5+2.5i+2.5j+2.5k' -> quaternion(2.5, 2.5, 2.5, 2.5)
591
+ - '1-2i+3.5j-k' -> quaternion(1, -2, 3.5, -1)
592
+ """
593
+ s_clean = s.replace(" ", "").lower()
594
+ if not s_clean:
595
+ raise ValueError("Girdi boş olamaz.")
596
+
597
+ # Girdinin sadece bir sayı olup olmadığını kontrol et
598
+ try:
599
+ val = float(s_clean)
600
+ # Programın orijinal mantığına göre skalerden kuaterniyon oluştur
601
+ return np.quaternion(val, val, val, val)
602
+ except ValueError:
603
+ # Girdi tam bir kuaterniyon ifadesi, ayrıştırmaya devam et
604
+ pass
605
+
606
+ # Tüm kuaterniyon bileşenlerini bulmak için daha esnek bir regex
607
+ # Örnek: '-10.5j', '+2i', '5', '-k' gibi parçaları yakalar
608
+ pattern = re.compile(r'([+-]?\d*\.?\d+)([ijk])?')
609
+ matches = pattern.findall(s_clean.replace('i', 'i ').replace('j', 'j ').replace('k', 'k ')) # Ayrıştırmayı kolaylaştır
610
+
611
+ parts = {'w': 0.0, 'x': 0.0, 'y': 0.0, 'z': 0.0}
612
+
613
+ # 'i', 'j', 'k' olmayan katsayıları ('-1k' gibi) düzeltmek için
614
+ s_temp = s_clean
615
+ for val_str, comp in re.findall(r'([+-])([ijk])', s_clean):
616
+ s_temp = s_temp.replace(val_str+comp, f'{val_str}1{comp}')
617
+
618
+ matches = pattern.findall(s_temp)
619
+
620
+ if not matches:
621
+ raise ValueError(f"Geçersiz kuaterniyon formatı: '{s}'")
622
+
623
+ for value_str, component in matches:
624
+ value = float(value_str)
625
+ if component == 'i':
626
+ parts['x'] += value
627
+ elif component == 'j':
628
+ parts['y'] += value
629
+ elif component == 'k':
630
+ parts['z'] += value
631
+ else: # Reel kısım
632
+ parts['w'] += value
633
+
634
+ return np.quaternion(parts['w'], parts['x'], parts['y'], parts['z'])
703
635
 
704
636
  def get_random_type(num_iterations, fixed_start_raw="0", fixed_add_base_scalar=9.0):
705
637
  """
@@ -730,6 +662,146 @@ def get_random_type(num_iterations, fixed_start_raw="0", fixed_add_base_scalar=9
730
662
 
731
663
  return generated_sequence
732
664
 
665
+ # ==============================================================================
666
+ # --- CORE GENERATOR ---
667
+ # ==============================================================================
668
+
669
+ def unified_generator(kececi_type, start_input_raw, add_input_base_scalar, iterations):
670
+ """
671
+ Herhangi bir desteklenen türde Keçeci Sayı dizileri üreten çekirdek motor.
672
+ Bu sürüm, tüm tipler için sağlam tür dönüştürme ve özel format ayrıştırma içerir.
673
+ """
674
+ current_value = None
675
+ add_value_typed = None
676
+ ask_unit = None
677
+ use_integer_division = False
678
+
679
+ try:
680
+ # --- Adım 1: Keçeci Türüne Göre Başlatma ---
681
+ a_float = float(add_input_base_scalar)
682
+
683
+ if kececi_type in [TYPE_POSITIVE_REAL, TYPE_NEGATIVE_REAL]:
684
+ s_int = int(float(start_input_raw))
685
+ current_value = s_int
686
+ add_value_typed = int(a_float)
687
+ ask_unit = 1
688
+ use_integer_division = True
689
+
690
+ elif kececi_type == TYPE_FLOAT:
691
+ current_value = float(start_input_raw)
692
+ add_value_typed = a_float
693
+ ask_unit = 1.0
694
+
695
+ elif kececi_type == TYPE_RATIONAL:
696
+ current_value = Fraction(start_input_raw)
697
+ add_value_typed = Fraction(add_input_base_scalar)
698
+ ask_unit = Fraction(1)
699
+
700
+ elif kececi_type == TYPE_COMPLEX:
701
+ current_value = _parse_complex(start_input_raw)
702
+ add_value_typed = complex(a_float, a_float)
703
+ ask_unit = 1 + 1j
704
+
705
+ elif kececi_type == TYPE_NEUTROSOPHIC:
706
+ a, b = _parse_neutrosophic(start_input_raw)
707
+ current_value = NeutrosophicNumber(a, b)
708
+ add_value_typed = NeutrosophicNumber(a_float, 0)
709
+ ask_unit = NeutrosophicNumber(1, 1)
710
+
711
+ # --- YENİ EKLENEN/DÜZELTİLEN BLOKLAR ---
712
+
713
+ elif kececi_type == TYPE_NEUTROSOPHIC_COMPLEX: # HATA DÜZELTİLDİ
714
+ s_complex = _parse_complex(start_input_raw)
715
+ # Başlangıç indeterminacy değerini 0 olarak varsayalım
716
+ current_value = NeutrosophicComplexNumber(s_complex.real, s_complex.imag, 0.0)
717
+ # Artış, deterministik reel kısma etki eder
718
+ add_value_typed = NeutrosophicComplexNumber(a_float, 0.0, 0.0)
719
+ ask_unit = NeutrosophicComplexNumber(1, 1, 1)
720
+
721
+ elif kececi_type == TYPE_HYPERREAL: # HATA DÜZELTİLDİ
722
+ a, b = _parse_hyperreal(start_input_raw)
723
+ # 'a' reel kısmı, 'b' ise sonsuz küçükleri ölçekler
724
+ sequence_list = [a + b / n for n in range(1, 11)]
725
+ current_value = HyperrealNumber(sequence_list)
726
+ # Artış, sadece standart (ilk) reel kısma etki eder
727
+ add_sequence = [a_float] + [0.0] * 9
728
+ add_value_typed = HyperrealNumber(add_sequence)
729
+ ask_unit = HyperrealNumber([1.0] * 10)
730
+
731
+ elif kececi_type == TYPE_BICOMPLEX: # Mantık aynı, sadece ayrıştırıcıyı kullanıyor
732
+ s_complex = _parse_complex(start_input_raw)
733
+ a_complex = complex(a_float)
734
+ current_value = BicomplexNumber(s_complex, s_complex / 2)
735
+ add_value_typed = BicomplexNumber(a_complex, a_complex / 2)
736
+ ask_unit = BicomplexNumber(complex(1, 1), complex(0.5, 0.5))
737
+
738
+ elif kececi_type == TYPE_NEUTROSOPHIC_BICOMPLEX: # HATA DÜZELTİLDİ
739
+ s_complex = _parse_complex(start_input_raw)
740
+ # Başlangıç değeri olarak kompleks sayıyı kullanıp diğer 6 bileşeni 0 yapalım
741
+ current_value = NeutrosophicBicomplexNumber(s_complex.real, s_complex.imag, 0, 0, 0, 0, 0, 0)
742
+ # Artış, sadece ana reel kısma etki eder
743
+ add_value_typed = NeutrosophicBicomplexNumber(a_float, 0, 0, 0, 0, 0, 0, 0)
744
+ ask_unit = NeutrosophicBicomplexNumber(*([1.0] * 8))
745
+
746
+ # --- DİĞER TİPLER ---
747
+
748
+ elif kececi_type == TYPE_QUATERNION:
749
+ # Artık girdiyi doğrudan float'a çevirmek yerine,
750
+ # hem skaler hem de tam ifadeyi ayrıştırabilen fonksiyonu kullanıyoruz.
751
+ current_value = _parse_quaternion(start_input_raw)
752
+
753
+ # Artırım değeri (add_value) genellikle basit bir skalerdir,
754
+ # bu yüzden bu kısım aynı kalabilir.
755
+ add_value_typed = np.quaternion(a_float, a_float, a_float, a_float)
756
+ ask_unit = np.quaternion(1, 1, 1, 1)
757
+
758
+ else:
759
+ raise ValueError(f"Geçersiz veya desteklenmeyen Keçeci Sayı Tipi: {kececi_type}")
760
+
761
+ except (ValueError, TypeError) as e:
762
+ print(f"HATA: Tip {kececi_type} için '{start_input_raw}' girdisiyle başlatma başarısız: {e}")
763
+ return []
764
+
765
+ # --- Adım 2: İterasyon Döngüsü ---
766
+ sequence = [current_value]
767
+ last_divisor_used = None
768
+ ask_counter = 0
769
+
770
+ for _ in range(iterations):
771
+ added_value = current_value + add_value_typed
772
+ sequence.append(added_value)
773
+
774
+ result_value = added_value
775
+ divided_successfully = False
776
+
777
+ primary_divisor = 3 if last_divisor_used == 2 or last_divisor_used is None else 2
778
+ alternative_divisor = 2 if primary_divisor == 3 else 3
779
+
780
+ for divisor in [primary_divisor, alternative_divisor]:
781
+ if _is_divisible(added_value, divisor, kececi_type):
782
+ result_value = added_value // divisor if use_integer_division else added_value / divisor
783
+ last_divisor_used = divisor
784
+ divided_successfully = True
785
+ break
786
+
787
+ if not divided_successfully and is_prime(added_value):
788
+ modified_value = (added_value + ask_unit) if ask_counter == 0 else (added_value - ask_unit)
789
+ ask_counter = 1 - ask_counter
790
+ sequence.append(modified_value)
791
+
792
+ result_value = modified_value
793
+
794
+ for divisor in [primary_divisor, alternative_divisor]:
795
+ if _is_divisible(modified_value, divisor, kececi_type):
796
+ result_value = modified_value // divisor if use_integer_division else modified_value / divisor
797
+ last_divisor_used = divisor
798
+ break
799
+
800
+ sequence.append(result_value)
801
+ current_value = result_value
802
+
803
+ return sequence
804
+
733
805
  def print_detailed_report(sequence, params):
734
806
  """
735
807
  Generates and prints a detailed report of the Keçeci sequence results.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: kececinumbers
3
- Version: 0.3.0
3
+ Version: 0.3.2
4
4
  Summary: Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets
5
5
  Home-page: https://github.com/WhiteSymmetry/kececinumbers
6
6
  Author: Mehmet Keçeci
@@ -218,7 +218,17 @@ Keçeci Number Types:
218
218
 
219
219
  6: Quaternions (scalar start input becomes q(s,s,s,s): e.g., 1 or 2.5)
220
220
 
221
- Please select Keçeci Number Type (1-6): 1
221
+ 7: Neutrosophic
222
+
223
+ 8: Neutro-Complex
224
+
225
+ 9: Hyperreal
226
+
227
+ 10: Bicomplex
228
+
229
+ 11: Neutro-Bicomplex
230
+
231
+ Please select Keçeci Number Type (1-11): 1
222
232
 
223
233
  Enter the starting number (e.g., 0 or 2.5, complex:3+4j, rational: 3/4, quaternions: 1) : 0
224
234
 
@@ -311,6 +321,9 @@ If this library was useful to you in your research, please cite us. Following th
311
321
  ### APA
312
322
 
313
323
  ```
324
+
325
+ Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
326
+
314
327
  Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
315
328
 
316
329
  Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarla Geometrik Yorumlamaları. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16343568
@@ -330,6 +343,9 @@ Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A pote
330
343
 
331
344
  ### Chicago
332
345
  ```
346
+
347
+ Keçeci, Mehmet. Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.16702475
348
+
333
349
  Keçeci, Mehmet. kececinumbers [Data set]. WorkflowHub, 2025. https://doi.org/10.48546/workflowhub.datafile.14.1
334
350
 
335
351
  Keçeci, Mehmet. "kececinumbers". Open Science Articles (OSAs), Zenodo, 01 May 2025. https://doi.org/10.5281/zenodo.15377659
@@ -342,3 +358,119 @@ Keçeci, Mehmet. "Keçeci Numbers and the Keçeci Prime Number". Authorea. June
342
358
 
343
359
  Keçeci, Mehmet. Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Open Science Articles (OSAs), Zenodo. 2025. https://doi.org/10.5281/zenodo.15381697
344
360
  ```
361
+
362
+ ---
363
+
364
+ # Keçeci Conjecture: Keçeci Varsayımı, Keçeci-Vermutung, Conjecture de Keçeci, Гипотеза Кечеджи, Keçeci Hipoteza, 凯杰西猜想, Keçeci Xiǎngcāng, ケジェジ予想, Keçeci Yosō, Keçeci Huds, Keçeci Hudsiye, Keçeci Hudsia, حدس كَچَه جِي ,حدس کچه جی ,کچہ جی حدسیہ
365
+ ---
366
+
367
+ ### 🇹🇷 **Türkçe**
368
+ ```text
369
+ ## Keçeci Varsayımı (Keçeci Conjecture) - Önerilen
370
+
371
+ Her Keçeci Sayı türü için, `unified_generator` fonksiyonu tarafından oluşturulan dizilerin, sonlu adımdan sonra periyodik bir yapıya veya tekrar eden bir asal temsiline (Keçeci Asal Sayısı, KPN) yakınsadığı sanılmaktadır. Bu davranış, Collatz Varsayımı'nın çoklu cebirsel sistemlere genişletilmiş bir hali olarak değerlendirilebilir.
372
+
373
+ Henüz kanıtlanmamıştır ve bu modül bu varsayımı test etmek için bir çerçeve sunar.
374
+ ```
375
+
376
+ ---
377
+
378
+ ### 🇬🇧 **İngilizce (English)**
379
+ ```text
380
+ ## Keçeci Conjecture - Proposed
381
+
382
+ For every Keçeci Number type, sequences generated by the `unified_generator` function are conjectured to converge to a periodic structure or a recurring prime representation (Keçeci Prime Number, KPN) in finitely many steps. This behavior can be viewed as a generalization of the Collatz Conjecture to multiple algebraic systems.
383
+
384
+ It remains unproven, and this module provides a framework for testing the conjecture.
385
+ ```
386
+
387
+ ---
388
+
389
+ ### 🇩🇪 **Almanca (Deutsch)**
390
+ ```text
391
+ ## Keçeci-Vermutung – Vorgeschlagen
392
+
393
+ Es wird vermutet, dass die vom `unified_generator` erzeugten Sequenzen für jeden Keçeci-Zahl-Typ nach endlich vielen Schritten gegen eine periodische Struktur oder eine wiederkehrende Primdarstellung (Keçeci-Primzahl, KPN) konvergieren. Dieses Verhalten kann als eine Erweiterung der Collatz-Vermutung auf mehrere algebraische Systeme betrachtet werden.
394
+
395
+ Die Vermutung ist bisher unbewiesen, und dieses Modul bietet einen Rahmen, um sie zu untersuchen.
396
+ ```
397
+
398
+ ---
399
+
400
+ ### 🇫🇷 **Fransızca (Français)**
401
+ ```text
402
+ ## Conjecture de Keçeci – Proposée
403
+
404
+ On conjecture que, pour chaque type de nombre Keçeci, les suites générées par la fonction `unified_generator` convergent, en un nombre fini d'étapes, vers une structure périodique ou une représentation première récurrente (Nombre Premier Keçeci, KPN). Ce comportement peut être vu comme une généralisation de la conjecture de Collatz à divers systèmes algébriques.
405
+
406
+ Elle n'est pas encore démontrée, et ce module fournit un cadre pour la tester.
407
+ ```
408
+
409
+
410
+ ---
411
+
412
+ ### 🇷🇺 **Rusça (Русский)**
413
+ ```text
414
+ ## Гипотеза Кечеджи — Предложенная
415
+
416
+ Предполагается, что последовательности, генерируемые функцией `unified_generator` для каждого типа чисел Кечеджи, сходятся к периодической структуре или повторяющемуся простому представлению (Простое число Кечеджи, KPN) за конечное число шагов. Это поведение можно рассматривать как обобщение гипотезы Коллатца на многомерные алгебраические системы.
417
+
418
+ Гипотеза пока не доказана, и данный модуль предоставляет среду для её проверки.
419
+ ```
420
+
421
+ ---
422
+
423
+ ### 🇨🇳 **Çince (中文 - Basitleştirilmiş)**
424
+ ```text
425
+ ## 凯杰西猜想(Keçeci Conjecture)— 提出
426
+
427
+ 据推测,对于每一种凯杰西数类型,由 `unified_generator` 函数生成的序列将在有限步内收敛到周期性结构或重复的素数表示(凯杰西素数,KPN)。这种行为可视为科拉茨猜想在多种代数系统中的推广。
428
+
429
+ 该猜想尚未被证明,本模块提供了一个用于测试该猜想的框架。
430
+ ```
431
+
432
+ ---
433
+
434
+ ### 🇯🇵 **Japonca (日本語)**
435
+ ```text
436
+ ## ケジェジ予想(Keçeci Conjecture)― 提案
437
+
438
+ すべてのケジェジ数型に対して、`unified_generator` 関数によって生成される数列は、有限回のステップ後に周期的な構造または繰り返し現れる素数表現(ケジェジ素数、KPN)に収束すると考えられている。この振る舞いは、コラッツ予想を複数の代数系へと拡張したものと見なせる。
439
+
440
+ この予想は未だ証明されておらず、本モジュールはその検証のための枠組みを提供する。
441
+ ```
442
+
443
+ ---
444
+
445
+ ### 🇸🇦 **Arapça (العربية) – Güncellenmiş: "كَچَه جِي"**
446
+ ```text
447
+ ## حدس كَچَه جِي (Keçeci Conjecture) — مقترح
448
+
449
+ يُفترض أن المتتاليات التي يولدها الدالة `unified_generator` لكل نوع من أعداد كَچَه جِي تتقارب، بعد عدد محدود من الخطوات، إلى بنية دورية أو إلى تمثيل أولي متكرر (العدد الأولي لكَچَه جِي، KPN). يمكن اعتبار هذا السلوك تعميمًا لحدس كولاتز على نظم جبرية متعددة.
450
+
451
+ ما زال هذا الحدس غير مثبت، ويقدم هذا الوحدة إطارًا لاختباره.
452
+ ```
453
+
454
+ ---
455
+
456
+ ### 🇮🇷 **Farsça (فارسی) – Güncellenmiş: "کچه جی"**
457
+ ```text
458
+ ## حدس کچه جی (Keçeci Conjecture) — پیشنهادی
459
+
460
+ گمان می‌رود که دنباله‌های تولید شده توسط تابع `unified_generator` برای هر نوع از اعداد کچه جی، پس از تعداد محدودی گام، به یک ساختار تناوبی یا نمایش اول تکراری (عدد اول کچه جی، KPN) همگرا شوند. این رفتار را می‌توان تعمیمی از حدس کولاتز به سیستم‌های جبری چندگانه دانست.
461
+
462
+ این حدس هنوز اثبات نشده است و این ماژول چارچوبی برای آزمودن آن فراهم می‌کند.
463
+ ```
464
+
465
+ ---
466
+
467
+ ### 🇵🇰 **Urduca (اردو) – Güncellenmiş: "کچہ جی"**
468
+ ```text
469
+ ## کچہ جی حدسیہ (Keçeci Conjecture) — تجویز شدہ
470
+
471
+ ہر قسم کے کچہ جی نمبر کے لیے، یہ تجویز کیا جاتا ہے کہ `unified_generator` فنکشن کے ذریعے تیار کردہ ترادف محدود مراحل کے بعد ایک دوری ساخت یا دہرائے گئے مفرد نمائندگی (کچہ جی مفرد نمبر، KPN) کی طرف مائل ہوتا ہے۔ اس رویے کو کولاتز حدسیہ کی متعدد الجبری نظاموں تک توسیع کے طور پر دیکھا جا سکتا ہے۔
472
+
473
+ ابھی تک یہ ثابت نہیں ہوا ہے، اور یہ ماڈیول اس حدسیہ کی جانچ کے لیے ایک فریم ورک فراہم کرتا ہے۔
474
+ ```
475
+
476
+
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
3
3
 
4
4
  setup(
5
5
  name="kececinumbers",
6
- version="0.3.0",
6
+ version="0.3.2",
7
7
  description="Keçeci Numbers: An Exploration of a Dynamic Sequence Across Diverse Number Sets",
8
8
  long_description=open("README.md").read(),
9
9
  long_description_content_type="text/markdown",
File without changes
File without changes
File without changes