kabukit 0.5.1__tar.gz → 0.5.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. {kabukit-0.5.1 → kabukit-0.5.2}/PKG-INFO +1 -1
  2. {kabukit-0.5.1 → kabukit-0.5.2}/pyproject.toml +2 -1
  3. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/core/prices.py +58 -1
  4. kabukit-0.5.2/src/kabukit/core/statements.py +89 -0
  5. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/jquants/statements.py +17 -10
  6. kabukit-0.5.1/src/kabukit/core/statements.py +0 -41
  7. {kabukit-0.5.1 → kabukit-0.5.2}/LICENSE +0 -0
  8. {kabukit-0.5.1 → kabukit-0.5.2}/README.md +0 -0
  9. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/__init__.py +0 -0
  10. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/analysis/__init__.py +0 -0
  11. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/analysis/indicators.py +0 -0
  12. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/analysis/preprocess.py +0 -0
  13. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/analysis/screener.py +0 -0
  14. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/analysis/visualization.py +0 -0
  15. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/cli/__init__.py +0 -0
  16. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/cli/app.py +0 -0
  17. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/cli/auth.py +0 -0
  18. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/cli/get.py +0 -0
  19. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/core/__init__.py +0 -0
  20. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/core/base.py +0 -0
  21. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/core/client.py +0 -0
  22. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/core/info.py +0 -0
  23. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/core/list.py +0 -0
  24. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/core/reports.py +0 -0
  25. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/edinet/__init__.py +0 -0
  26. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/edinet/client.py +0 -0
  27. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/edinet/concurrent.py +0 -0
  28. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/edinet/doc.py +0 -0
  29. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/jquants/__init__.py +0 -0
  30. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/jquants/client.py +0 -0
  31. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/jquants/concurrent.py +0 -0
  32. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/jquants/info.py +0 -0
  33. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/jquants/prices.py +0 -0
  34. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/jquants/schema.py +0 -0
  35. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/py.typed +0 -0
  36. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/utils/__init__.py +0 -0
  37. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/utils/concurrent.py +0 -0
  38. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/utils/config.py +0 -0
  39. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/utils/date.py +0 -0
  40. {kabukit-0.5.1 → kabukit-0.5.2}/src/kabukit/utils/params.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: kabukit
3
- Version: 0.5.1
3
+ Version: 0.5.2
4
4
  Summary: A Python toolkit for Japanese financial market data, supporting J-Quants and EDINET APIs.
5
5
  Author: daizutabi
6
6
  Author-email: daizutabi <daizutabi@gmail.com>
@@ -4,7 +4,7 @@ build-backend = "uv_build"
4
4
 
5
5
  [project]
6
6
  name = "kabukit"
7
- version = "0.5.1"
7
+ version = "0.5.2"
8
8
  description = "A Python toolkit for Japanese financial market data, supporting J-Quants and EDINET APIs."
9
9
  readme = "README.md"
10
10
  license = { file = "LICENSE" }
@@ -104,5 +104,6 @@ reportExplicitAny = false
104
104
  reportImplicitOverride = false
105
105
  reportImportCycles = false
106
106
  reportIncompatibleVariableOverride = false
107
+ reportPrivateUsage = false
107
108
  reportUnusedCallResult = false
108
109
  reportUnusedImport = false
@@ -60,7 +60,7 @@ class Prices(Base):
60
60
  Self: `AdjustedIssuedShares`および`AdjustedTreasuryShares`列が
61
61
  追加された、新しいPricesオブジェクト。
62
62
  """
63
- shares = statements.number_of_shares().rename({"Date": "ReportDate"})
63
+ shares = statements.shares().rename({"Date": "ReportDate"})
64
64
 
65
65
  adjusted = (
66
66
  self.data.join_asof(
@@ -89,6 +89,46 @@ class Prices(Base):
89
89
 
90
90
  return self.__class__(data)
91
91
 
92
+ def with_market_cap(self) -> Self:
93
+ """時価総額を計算し、列として追加する。
94
+
95
+ このメソッドは、日々の調整前終値 (`RawClose`) と、調整済みの発行済株式数
96
+ (`AdjustedIssuedShares`) および自己株式数 (`AdjustedTreasuryShares`)
97
+ を基に、日次ベースの時価総額を計算します。
98
+
99
+ 計算式:
100
+ 時価総額 = 調整前終値 * (調整済み発行済株式数 - 調整済み自己株式数)
101
+
102
+ Note:
103
+ このメソッドを呼び出す前に、`with_adjusted_shares()` を
104
+ 実行して、調整済みの株式数列を事前に計算しておく必要があります。
105
+
106
+ Returns:
107
+ Self: `MarketCap` 列が追加された、新しいPricesオブジェクト。
108
+ """
109
+ shares = pl.col("AdjustedIssuedShares") - pl.col("AdjustedTreasuryShares")
110
+ data = self.data.with_columns(
111
+ (pl.col("RawClose") * shares).round(0).alias("MarketCap"),
112
+ )
113
+ return self.__class__(data)
114
+
115
+ def with_equity(self, statements: Statements) -> Self:
116
+ """時系列の純資産を列として追加する。
117
+
118
+ Args:
119
+ statements (Statements): 財務データを提供する`Statements`オブジェクト。
120
+
121
+ Returns:
122
+ Self: `Equity` 列が追加された、新しいPricesオブジェクト。
123
+ """
124
+ data = self.data.join_asof(
125
+ statements.equity(),
126
+ on="Date",
127
+ by="Code",
128
+ check_sortedness=False,
129
+ )
130
+ return self.__class__(data)
131
+
92
132
  def with_forecast_profit(self, statements: Statements) -> Self:
93
133
  """時系列の予想純利益を列として追加する。
94
134
 
@@ -105,3 +145,20 @@ class Prices(Base):
105
145
  check_sortedness=False,
106
146
  )
107
147
  return self.__class__(data)
148
+
149
+ def with_forecast_dividend(self, statements: Statements) -> Self:
150
+ """時系列の予想年間配当総額を列として追加する。
151
+
152
+ Args:
153
+ statements (Statements): 財務データを提供する`Statements`オブジェクト。
154
+
155
+ Returns:
156
+ Self: `ForecastDividend` 列が追加された、新しいPricesオブジェクト。
157
+ """
158
+ data = self.data.join_asof(
159
+ statements.forecast_dividend(),
160
+ on="Date",
161
+ by="Code",
162
+ check_sortedness=False,
163
+ )
164
+ return self.__class__(data)
@@ -0,0 +1,89 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+
5
+ import polars as pl
6
+
7
+ from .base import Base
8
+
9
+ if TYPE_CHECKING:
10
+ from polars import DataFrame
11
+
12
+
13
+ class Statements(Base):
14
+ def shares(self) -> DataFrame:
15
+ """発行済株式数を取得する。"""
16
+ return self.data.filter(
17
+ pl.col("IssuedShares").is_not_null(),
18
+ ).select(
19
+ "Date",
20
+ "Code",
21
+ "IssuedShares",
22
+ "TreasuryShares",
23
+ "AverageOutstandingShares",
24
+ )
25
+
26
+ def equity(self) -> DataFrame:
27
+ """Statementsデータから純資産を抽出する。
28
+
29
+ Returns:
30
+ DataFrame: Date, Code, Equity を含むDataFrame
31
+ """
32
+ return self.data.filter(
33
+ pl.col("Equity").is_not_null(),
34
+ ).select("Date", "Code", "Equity")
35
+
36
+ def forecast_profit(self) -> DataFrame:
37
+ """Statementsデータから予想純利益を抽出する。
38
+
39
+ Returns:
40
+ DataFrame: Date, Code, ForecastProfit を含むDataFrame
41
+ """
42
+ return (
43
+ self.data.with_columns(
44
+ pl.when(pl.col("TypeOfDocument").str.starts_with("FY"))
45
+ .then(pl.col("NextYearForecastProfit"))
46
+ .otherwise(pl.col("ForecastProfit"))
47
+ .alias("ForecastProfit"),
48
+ )
49
+ .filter(pl.col("ForecastProfit").is_not_null())
50
+ .select("Date", "Code", "ForecastProfit")
51
+ )
52
+
53
+ def forecast_dividend(self) -> DataFrame:
54
+ """予想年間配当総額を抽出する。
55
+
56
+ Returns:
57
+ DataFrame: Date, Code, ForecastDividend を含むDataFrame
58
+ """
59
+ # 予想株式数を計算
60
+ forecast_shares = (
61
+ pl.when(pl.col("TypeOfDocument").str.starts_with("FY"))
62
+ .then(
63
+ pl.col("NextYearForecastProfit")
64
+ / pl.col("NextYearForecastEarningsPerShare"),
65
+ )
66
+ .otherwise(pl.col("ForecastProfit") / pl.col("ForecastEarningsPerShare"))
67
+ .alias("ForecastShares")
68
+ )
69
+
70
+ # 年間配当総額を計算
71
+ annual_forecast_dividend = (
72
+ pl.when(pl.col("TypeOfDocument").str.starts_with("FY"))
73
+ .then(
74
+ pl.col("NextYearForecastDividendPerShareAnnual")
75
+ * pl.col("ForecastShares"),
76
+ )
77
+ .otherwise(
78
+ pl.col("ForecastDividendPerShareAnnual") * pl.col("ForecastShares"),
79
+ )
80
+ .round(0)
81
+ .alias("ForecastDividend")
82
+ )
83
+
84
+ return (
85
+ self.data.with_columns(forecast_shares)
86
+ .with_columns(annual_forecast_dividend)
87
+ .filter(pl.col("ForecastDividend").is_not_null())
88
+ .select("Date", "Code", "ForecastDividend")
89
+ )
@@ -12,17 +12,24 @@ if TYPE_CHECKING:
12
12
 
13
13
 
14
14
  def clean(df: DataFrame) -> DataFrame:
15
+ df = df.select(pl.exclude(r"^.*\(REIT\)$"))
16
+ return df.pipe(_rename).pipe(_cast)
17
+
18
+
19
+ def _rename(df: DataFrame) -> DataFrame:
20
+ return df.rename(
21
+ {
22
+ "LocalCode": "Code",
23
+ "NumberOfIssuedAndOutstandingSharesAtTheEndOfFiscalYearIncludingTreasuryStock": "IssuedShares", # noqa: E501
24
+ "NumberOfTreasuryStockAtTheEndOfFiscalYear": "TreasuryShares",
25
+ "AverageNumberOfShares": "AverageOutstandingShares",
26
+ },
27
+ )
28
+
29
+
30
+ def _cast(df: DataFrame) -> DataFrame:
15
31
  return (
16
- df.select(pl.exclude(r"^.*\(REIT\)$"))
17
- .rename(
18
- {
19
- "LocalCode": "Code",
20
- "NumberOfIssuedAndOutstandingSharesAtTheEndOfFiscalYearIncludingTreasuryStock": "IssuedShares", # noqa: E501
21
- "NumberOfTreasuryStockAtTheEndOfFiscalYear": "TreasuryShares",
22
- "AverageNumberOfShares": "AverageOutstandingShares",
23
- },
24
- )
25
- .with_columns(
32
+ df.with_columns(
26
33
  pl.col("^.*Date$").str.to_date("%Y-%m-%d", strict=False),
27
34
  pl.col("DisclosedTime").str.to_time("%H:%M:%S", strict=False),
28
35
  pl.col("TypeOfCurrentPeriod").cast(pl.Categorical),
@@ -1,41 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from typing import TYPE_CHECKING
4
-
5
- import polars as pl
6
-
7
- from .base import Base
8
-
9
- if TYPE_CHECKING:
10
- from polars import DataFrame
11
-
12
-
13
- class Statements(Base):
14
- def number_of_shares(self) -> DataFrame:
15
- """発行済株式数を取得する。"""
16
- return self.data.filter(
17
- pl.col("IssuedShares").is_not_null(),
18
- ).select(
19
- "Date",
20
- "Code",
21
- "IssuedShares",
22
- "TreasuryShares",
23
- "AverageOutstandingShares",
24
- )
25
-
26
- def forecast_profit(self) -> DataFrame:
27
- """予想純利益を抽出する。
28
-
29
- Returns:
30
- DataFrame: Date, Code, ForecastProfit を含むDataFrame
31
- """
32
- return (
33
- self.data.with_columns(
34
- pl.when(pl.col("TypeOfDocument").str.starts_with("FY"))
35
- .then(pl.col("NextYearForecastProfit"))
36
- .otherwise(pl.col("ForecastProfit"))
37
- .alias("ForecastProfit"),
38
- )
39
- .filter(pl.col("ForecastProfit").is_not_null())
40
- .select("Date", "Code", "ForecastProfit")
41
- )
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes