jupyter-agent 2025.6.104__tar.gz → 2025.6.105__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/PKG-INFO +34 -4
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/README.md +32 -3
- jupyter_agent-2025.6.105/jupyter_agent/bot_actions.py +270 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_agents/__init__.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/base.py +85 -45
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/master_planner.py +2 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/output_task_result.py +6 -7
- jupyter_agent-2025.6.105/jupyter_agent/bot_agents/request_user_supply.py +186 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_planner_v3.py +12 -13
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_reasoner.py +2 -2
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_structrue_reasoner.py +19 -12
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_structrue_summarier.py +19 -18
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_summarier.py +2 -2
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_verifier.py +1 -1
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_verify_summarier.py +5 -6
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_chat.py +2 -2
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_contexts.py +28 -23
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluation.py +325 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluators/__init__.py +0 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluators/base.py +42 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluators/dummy_flow.py +20 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluators/dummy_global.py +20 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluators/dummy_task.py +20 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluators/flow_global_planning.py +88 -0
- jupyter_agent-2025.6.105/jupyter_agent/bot_evaluators/flow_task_executor.py +152 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_flows/__init__.py +0 -4
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_flows/base.py +84 -19
- jupyter_agent-2025.6.105/jupyter_agent/bot_flows/master_planner.py +21 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_flows/task_executor_v3.py +31 -17
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_magics.py +88 -65
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_outputs.py +37 -43
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/utils.py +20 -31
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent.egg-info/PKG-INFO +34 -4
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent.egg-info/SOURCES.txt +13 -4
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent.egg-info/requires.txt +1 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/pyproject.toml +2 -1
- jupyter_agent-2025.6.105/tests/test_bot_actions.py +102 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/tests/test_bot_contexts.py +12 -12
- jupyter_agent-2025.6.105/tests/test_bot_evaluation.py +156 -0
- jupyter_agent-2025.6.105/tests/test_bot_evaluators_base.py +87 -0
- jupyter_agent-2025.6.105/tests/test_bot_flows_base.py +204 -0
- jupyter_agent-2025.6.104/jupyter_agent/bot_agents/__init__.py +0 -42
- jupyter_agent-2025.6.104/jupyter_agent/bot_agents/task_planner_v1.py +0 -158
- jupyter_agent-2025.6.104/jupyter_agent/bot_agents/task_planner_v2.py +0 -172
- jupyter_agent-2025.6.104/jupyter_agent/bot_evaluation.py +0 -206
- jupyter_agent-2025.6.104/jupyter_agent/bot_flows/master_planner.py +0 -17
- jupyter_agent-2025.6.104/jupyter_agent/bot_flows/task_executor_v1.py +0 -86
- jupyter_agent-2025.6.104/jupyter_agent/bot_flows/task_executor_v2.py +0 -84
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/LICENSE +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/__init__.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_code_executor.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_coder.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/task_debuger.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent.egg-info/dependency_links.txt +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent.egg-info/entry_points.txt +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent.egg-info/top_level.txt +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/setup.cfg +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/setup.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/tests/test_bot_agents_base.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/tests/test_bot_chat.py +0 -0
- {jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/tests/test_bot_outputs.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: jupyter-agent
|
3
|
-
Version: 2025.6.
|
3
|
+
Version: 2025.6.105
|
4
4
|
Summary: 调用LLM实现Jupyter代码的自动生成、执行、调试等功能
|
5
5
|
Author: viewstar000
|
6
6
|
License: MIT
|
@@ -10,6 +10,7 @@ Classifier: Operating System :: OS Independent
|
|
10
10
|
Requires-Python: >=3.12
|
11
11
|
Description-Content-Type: text/markdown
|
12
12
|
License-File: LICENSE
|
13
|
+
Requires-Dist: bottle
|
13
14
|
Requires-Dist: ipynbname
|
14
15
|
Requires-Dist: ipython
|
15
16
|
Requires-Dist: jinja2
|
@@ -95,15 +96,21 @@ pip install /path/to/jupyter-agent/dist/jupyter_agent-xxxx-py3-none-any.whl
|
|
95
96
|
# 设置当前Notebook的路径,当无法自动获取时需要手工指定,以Vscode中的Notebook为例
|
96
97
|
%config BotMagics.notebook_path = globals()["__vsc_ipynb_file__"]
|
97
98
|
|
98
|
-
#
|
99
|
+
# 设置运行环境是否保存任务数据到Metadata,默认为False,仅在Vscode中安装jupyter-agent-extension后或在评估模式下支持
|
99
100
|
%config BotMagics.support_save_meta = True
|
101
|
+
# 设置运行环境是否设置单元格内容,默认为False,权在Vscode中安装jupyter-agent-extension后或在评估模式下支持
|
102
|
+
%config BotMagics.support_set_cell_content = True
|
100
103
|
|
101
104
|
# 设置日志级别,可选值为DEBUG、INFO、WARN、ERROR、FATAL,默认为INFO
|
102
105
|
%config BotMagics.logging_level = 'DEBUG'
|
103
106
|
|
107
|
+
# 开启自动评估功能,默认为False,调用LLM对当前结果进行打分,目前仅实现了对子任务的整体打分
|
108
|
+
%config BotMagics.enable_evaluating = True
|
109
|
+
# 开启模拟用户补充信息功能,默认为False,调用LLM模拟对Agent的提问进行补充,用于自动评估
|
110
|
+
%config BotMagics.enable_supply_mocking = True
|
111
|
+
|
104
112
|
# 设置是否显示思考过程,默认为True
|
105
113
|
%config BotMagics.display_think = True
|
106
|
-
|
107
114
|
# 设置是否显示发送给出LLM的消息和LLM的回答,默认为False
|
108
115
|
%config BotMagics.display_message = True
|
109
116
|
%config BotMagics.display_response = True
|
@@ -151,6 +158,14 @@ pip install /path/to/jupyter-agent/dist/jupyter_agent-xxxx-py3-none-any.whl
|
|
151
158
|
|
152
159
|
更详细用法可参考[示例Notebook](https://github.com/viewstar000/jupyter-agent/blob/main/examples/data_loader.ipynb)
|
153
160
|
|
161
|
+
### 评估模式
|
162
|
+
|
163
|
+
工具提供了`bot_eval`命令用于在评估模式下执行notebook。在评估模式下,工具会顺序执行所有有单元格,直到例全局目标完成。
|
164
|
+
|
165
|
+
```bash
|
166
|
+
bot_eval [-o output_eval.ipynb] [-e output_eval.jsonl] input.ipynb
|
167
|
+
```
|
168
|
+
|
154
169
|
## 贡献
|
155
170
|
|
156
171
|
欢迎提交 issue 或 pull request 参与贡献。
|
@@ -237,12 +252,19 @@ Advanced Configuration:
|
|
237
252
|
# Set the current notebook path, when it is not automatically obtained, it needs to be manually specified, for example, in Vscode Notebook
|
238
253
|
%config BotMagics.notebook_path = globals()["__vsc_ipynb_file__"]
|
239
254
|
|
240
|
-
# Set whether to save task data to Metadata, only Vscode installed with jupyter-agent-extension supports
|
255
|
+
# Set whether to save task data to Metadata, only Vscode installed with jupyter-agent-extension or evaluation mode supports this.
|
241
256
|
%config BotMagics.support_save_meta = True
|
257
|
+
# Set whether to set cell content, only Vscode installed with jupyter-agent-extension or evaluation mode supports this.
|
258
|
+
%config BotMagics.support_set_cell_content = True
|
242
259
|
|
243
260
|
# Set the log level, available values are DEBUG、INFO、WARN、ERROR、FATAL, default is INFO
|
244
261
|
%config BotMagics.logging_level = 'DEBUG'
|
245
262
|
|
263
|
+
# Enable automatic evaluation, default is False, call LLM to evaluate the overall result of the subtask
|
264
|
+
%config BotMagics.enable_evaluating = True
|
265
|
+
# Enable the simulation of user filling in information, default is False, call LLM to simulate the question of the agent to fill in
|
266
|
+
%config BotMagics.enable_supply_mocking = True
|
267
|
+
|
246
268
|
# Set whether to display thinking process, default is True
|
247
269
|
%config BotMagics.display_think = True
|
248
270
|
|
@@ -290,6 +312,14 @@ After generating code for a subtask, the tool will call the corresponding agent
|
|
290
312
|
|
291
313
|
For more details, please refer to [example notebook](https://github.com/viewstar000/jupyter-agent/blob/main/examples/data_loader.ipynb)
|
292
314
|
|
315
|
+
### Evaluation mode
|
316
|
+
|
317
|
+
Use `bot_eval` command to evaluate the code generated by the agent in evaluation mode. The evaluation mode will execute all cells in order and stop when the global goal is completed.
|
318
|
+
|
319
|
+
```python
|
320
|
+
bot_eval [-o output_eval.ipynb] [-e output_eval.jsonl] input.ipynb
|
321
|
+
```
|
322
|
+
|
293
323
|
## Contributing
|
294
324
|
|
295
325
|
Welcome to submit issues or pull requests to participate in contributions.
|
@@ -72,15 +72,21 @@ pip install /path/to/jupyter-agent/dist/jupyter_agent-xxxx-py3-none-any.whl
|
|
72
72
|
# 设置当前Notebook的路径,当无法自动获取时需要手工指定,以Vscode中的Notebook为例
|
73
73
|
%config BotMagics.notebook_path = globals()["__vsc_ipynb_file__"]
|
74
74
|
|
75
|
-
#
|
75
|
+
# 设置运行环境是否保存任务数据到Metadata,默认为False,仅在Vscode中安装jupyter-agent-extension后或在评估模式下支持
|
76
76
|
%config BotMagics.support_save_meta = True
|
77
|
+
# 设置运行环境是否设置单元格内容,默认为False,权在Vscode中安装jupyter-agent-extension后或在评估模式下支持
|
78
|
+
%config BotMagics.support_set_cell_content = True
|
77
79
|
|
78
80
|
# 设置日志级别,可选值为DEBUG、INFO、WARN、ERROR、FATAL,默认为INFO
|
79
81
|
%config BotMagics.logging_level = 'DEBUG'
|
80
82
|
|
83
|
+
# 开启自动评估功能,默认为False,调用LLM对当前结果进行打分,目前仅实现了对子任务的整体打分
|
84
|
+
%config BotMagics.enable_evaluating = True
|
85
|
+
# 开启模拟用户补充信息功能,默认为False,调用LLM模拟对Agent的提问进行补充,用于自动评估
|
86
|
+
%config BotMagics.enable_supply_mocking = True
|
87
|
+
|
81
88
|
# 设置是否显示思考过程,默认为True
|
82
89
|
%config BotMagics.display_think = True
|
83
|
-
|
84
90
|
# 设置是否显示发送给出LLM的消息和LLM的回答,默认为False
|
85
91
|
%config BotMagics.display_message = True
|
86
92
|
%config BotMagics.display_response = True
|
@@ -128,6 +134,14 @@ pip install /path/to/jupyter-agent/dist/jupyter_agent-xxxx-py3-none-any.whl
|
|
128
134
|
|
129
135
|
更详细用法可参考[示例Notebook](https://github.com/viewstar000/jupyter-agent/blob/main/examples/data_loader.ipynb)
|
130
136
|
|
137
|
+
### 评估模式
|
138
|
+
|
139
|
+
工具提供了`bot_eval`命令用于在评估模式下执行notebook。在评估模式下,工具会顺序执行所有有单元格,直到例全局目标完成。
|
140
|
+
|
141
|
+
```bash
|
142
|
+
bot_eval [-o output_eval.ipynb] [-e output_eval.jsonl] input.ipynb
|
143
|
+
```
|
144
|
+
|
131
145
|
## 贡献
|
132
146
|
|
133
147
|
欢迎提交 issue 或 pull request 参与贡献。
|
@@ -214,12 +228,19 @@ Advanced Configuration:
|
|
214
228
|
# Set the current notebook path, when it is not automatically obtained, it needs to be manually specified, for example, in Vscode Notebook
|
215
229
|
%config BotMagics.notebook_path = globals()["__vsc_ipynb_file__"]
|
216
230
|
|
217
|
-
# Set whether to save task data to Metadata, only Vscode installed with jupyter-agent-extension supports
|
231
|
+
# Set whether to save task data to Metadata, only Vscode installed with jupyter-agent-extension or evaluation mode supports this.
|
218
232
|
%config BotMagics.support_save_meta = True
|
233
|
+
# Set whether to set cell content, only Vscode installed with jupyter-agent-extension or evaluation mode supports this.
|
234
|
+
%config BotMagics.support_set_cell_content = True
|
219
235
|
|
220
236
|
# Set the log level, available values are DEBUG、INFO、WARN、ERROR、FATAL, default is INFO
|
221
237
|
%config BotMagics.logging_level = 'DEBUG'
|
222
238
|
|
239
|
+
# Enable automatic evaluation, default is False, call LLM to evaluate the overall result of the subtask
|
240
|
+
%config BotMagics.enable_evaluating = True
|
241
|
+
# Enable the simulation of user filling in information, default is False, call LLM to simulate the question of the agent to fill in
|
242
|
+
%config BotMagics.enable_supply_mocking = True
|
243
|
+
|
223
244
|
# Set whether to display thinking process, default is True
|
224
245
|
%config BotMagics.display_think = True
|
225
246
|
|
@@ -267,6 +288,14 @@ After generating code for a subtask, the tool will call the corresponding agent
|
|
267
288
|
|
268
289
|
For more details, please refer to [example notebook](https://github.com/viewstar000/jupyter-agent/blob/main/examples/data_loader.ipynb)
|
269
290
|
|
291
|
+
### Evaluation mode
|
292
|
+
|
293
|
+
Use `bot_eval` command to evaluate the code generated by the agent in evaluation mode. The evaluation mode will execute all cells in order and stop when the global goal is completed.
|
294
|
+
|
295
|
+
```python
|
296
|
+
bot_eval [-o output_eval.ipynb] [-e output_eval.jsonl] input.ipynb
|
297
|
+
```
|
298
|
+
|
270
299
|
## Contributing
|
271
300
|
|
272
301
|
Welcome to submit issues or pull requests to participate in contributions.
|
@@ -0,0 +1,270 @@
|
|
1
|
+
"""
|
2
|
+
Copyright (c) 2025 viewstar000
|
3
|
+
|
4
|
+
This software is released under the MIT License.
|
5
|
+
https://opensource.org/licenses/MIT
|
6
|
+
"""
|
7
|
+
|
8
|
+
import json
|
9
|
+
import time
|
10
|
+
import uuid
|
11
|
+
import threading
|
12
|
+
import queue
|
13
|
+
import traceback
|
14
|
+
import importlib
|
15
|
+
import socket
|
16
|
+
|
17
|
+
from enum import Enum
|
18
|
+
from typing import Optional, Dict, List, Any
|
19
|
+
from pydantic import BaseModel, Field
|
20
|
+
from wsgiref.simple_server import make_server
|
21
|
+
from bottle import default_app, get, post, request, response
|
22
|
+
from .utils import get_env_capbilities
|
23
|
+
|
24
|
+
|
25
|
+
class ActionBase(BaseModel):
|
26
|
+
timestamp: float = 0
|
27
|
+
uuid: str = ""
|
28
|
+
source: str = ""
|
29
|
+
action: str
|
30
|
+
params: Dict[str, Any] = {}
|
31
|
+
|
32
|
+
def __init__(self, **data):
|
33
|
+
super().__init__(**data)
|
34
|
+
self.timestamp = self.timestamp or time.time()
|
35
|
+
self.uuid = self.uuid or str(uuid.uuid4())
|
36
|
+
|
37
|
+
|
38
|
+
class ReplyActionBase(ActionBase):
|
39
|
+
reply_host: str = ""
|
40
|
+
reply_port: int = 0
|
41
|
+
|
42
|
+
|
43
|
+
class SetCellContentParams(BaseModel):
|
44
|
+
index: int = 1 # -1 previous, 0 current, 1 next
|
45
|
+
type: str = "code" # code/markdown
|
46
|
+
source: str = ""
|
47
|
+
tags: List[str] = []
|
48
|
+
metadata: Dict[str, Any] = {}
|
49
|
+
|
50
|
+
|
51
|
+
class ActionSetCellContent(ActionBase):
|
52
|
+
|
53
|
+
action: str = "set_cell_content"
|
54
|
+
params: SetCellContentParams = SetCellContentParams()
|
55
|
+
|
56
|
+
|
57
|
+
class ConfirmChoiceItem(BaseModel):
|
58
|
+
label: str = ""
|
59
|
+
value: str
|
60
|
+
|
61
|
+
|
62
|
+
class RequestUserConfirmParams(BaseModel):
|
63
|
+
prompt: str = ""
|
64
|
+
choices: List[ConfirmChoiceItem] = []
|
65
|
+
default: str = ""
|
66
|
+
|
67
|
+
|
68
|
+
class ActionRequestUserConfirm(ReplyActionBase):
|
69
|
+
|
70
|
+
action: str = "request_user_confirm"
|
71
|
+
params: RequestUserConfirmParams = RequestUserConfirmParams()
|
72
|
+
|
73
|
+
|
74
|
+
class ReceiveUserConfirmParams(BaseModel):
|
75
|
+
result: str = ""
|
76
|
+
|
77
|
+
|
78
|
+
class ActionReceiveUserConfirm(ActionBase):
|
79
|
+
|
80
|
+
action: str = "receive_user_confirm"
|
81
|
+
params: ReceiveUserConfirmParams = ReceiveUserConfirmParams()
|
82
|
+
|
83
|
+
|
84
|
+
class RequestUserSupplyInfo(BaseModel):
|
85
|
+
prompt: str = Field(
|
86
|
+
description="需要用户补充详细信息的Prompt",
|
87
|
+
examples=["请补充与...相关的详细的信息", "请确认...是否...", "请提供..."],
|
88
|
+
)
|
89
|
+
example: Optional[str] = Field(None, description="示例", examples=["..."])
|
90
|
+
|
91
|
+
|
92
|
+
class UserSupplyInfoReply(BaseModel):
|
93
|
+
prompt: str = Field(description="需要用户补充详细信息的Prompt", examples=["..."])
|
94
|
+
reply: str = Field(description="用户补充的详细信息", examples=["..."])
|
95
|
+
|
96
|
+
|
97
|
+
class RequestUserSupplyInfoParams(BaseModel):
|
98
|
+
title: str = ""
|
99
|
+
issues: List[RequestUserSupplyInfo] = []
|
100
|
+
|
101
|
+
|
102
|
+
class ActionRequestUserSupplyInfo(ReplyActionBase):
|
103
|
+
|
104
|
+
action: str = "request_user_supply_info"
|
105
|
+
params: RequestUserSupplyInfoParams = RequestUserSupplyInfoParams()
|
106
|
+
|
107
|
+
|
108
|
+
class ReceiveUserSupplyInfoParams(BaseModel):
|
109
|
+
replies: List[UserSupplyInfoReply] = Field(
|
110
|
+
description="完成补充确认的信息列表",
|
111
|
+
examples=[
|
112
|
+
UserSupplyInfoReply(prompt="请确认...是否...", reply="是"),
|
113
|
+
UserSupplyInfoReply(prompt="请补充...", reply="..."),
|
114
|
+
],
|
115
|
+
)
|
116
|
+
|
117
|
+
|
118
|
+
class ActionReceiveUserSupplyInfo(ActionBase):
|
119
|
+
action: str = "receive_user_supply_info"
|
120
|
+
params: ReceiveUserSupplyInfoParams = ReceiveUserSupplyInfoParams(replies=[])
|
121
|
+
|
122
|
+
|
123
|
+
def request_user_reply(prompts: list[RequestUserSupplyInfo]) -> list[UserSupplyInfoReply]:
|
124
|
+
responses = []
|
125
|
+
for prompt in prompts:
|
126
|
+
response = input(f"{prompt.prompt} (例如: {prompt.example})")
|
127
|
+
responses.append(UserSupplyInfoReply(prompt=prompt.prompt, reply=response))
|
128
|
+
return responses
|
129
|
+
|
130
|
+
|
131
|
+
def get_action_class(action_name: str) -> type[ActionBase]:
|
132
|
+
for obj in globals().values():
|
133
|
+
if isinstance(obj, type) and issubclass(obj, ActionBase):
|
134
|
+
if obj.__name__ == action_name or obj.model_fields["action"].default == action_name:
|
135
|
+
return obj
|
136
|
+
raise ValueError(f"Unknown action: {action_name}")
|
137
|
+
|
138
|
+
|
139
|
+
class ActionReply(BaseModel):
|
140
|
+
reply_timestamp: float
|
141
|
+
retrieved_timestamp: float = 0
|
142
|
+
uuid: str
|
143
|
+
source: str = ""
|
144
|
+
action: str = ""
|
145
|
+
retrieved: bool = False
|
146
|
+
reply: ActionBase
|
147
|
+
|
148
|
+
|
149
|
+
class ActionDispatcher(threading.Thread):
|
150
|
+
def __init__(self, host="127.0.0.1", port=0, app=None):
|
151
|
+
super().__init__(daemon=True)
|
152
|
+
self.action_queue = queue.Queue()
|
153
|
+
self.action_replies: dict[str, ActionReply] = {}
|
154
|
+
self.app = app or default_app()
|
155
|
+
self.host = host
|
156
|
+
self.port = port
|
157
|
+
self.server = None
|
158
|
+
if get_env_capbilities().user_confirm or get_env_capbilities().user_supply_info:
|
159
|
+
self.port = self.port or self.select_port(self.host)
|
160
|
+
self.server = make_server(self.host, self.port, self.app)
|
161
|
+
self.start()
|
162
|
+
|
163
|
+
def select_port(self, host):
|
164
|
+
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
165
|
+
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
166
|
+
sock.bind((host, 0))
|
167
|
+
port = sock.getsockname()[1]
|
168
|
+
sock.close()
|
169
|
+
return port
|
170
|
+
|
171
|
+
def run(self):
|
172
|
+
if self.server is not None:
|
173
|
+
self.server.serve_forever()
|
174
|
+
|
175
|
+
def close(self):
|
176
|
+
if self.server is not None:
|
177
|
+
self.server.shutdown()
|
178
|
+
self.server.server_close()
|
179
|
+
|
180
|
+
def __del__(self):
|
181
|
+
self.close()
|
182
|
+
|
183
|
+
def __enter__(self):
|
184
|
+
return self
|
185
|
+
|
186
|
+
def __exit__(self, exc_type, exc_value, traceback):
|
187
|
+
self.close()
|
188
|
+
|
189
|
+
def send_action(self, action: ActionBase, need_reply: bool = False):
|
190
|
+
|
191
|
+
if need_reply:
|
192
|
+
assert isinstance(action, ReplyActionBase)
|
193
|
+
action.reply_host = self.host
|
194
|
+
action.reply_port = self.port
|
195
|
+
action.timestamp = action.timestamp or time.time()
|
196
|
+
action.uuid = action.uuid and str(uuid.uuid4())
|
197
|
+
self.action_queue.put(action.model_dump())
|
198
|
+
bot_outputs = importlib.import_module(".bot_outputs", __package__)
|
199
|
+
bot_outputs.output_action(action)
|
200
|
+
|
201
|
+
def get_action_reply(self, action: ReplyActionBase, wait: bool = True) -> Optional[ActionBase]:
|
202
|
+
|
203
|
+
while wait and action.uuid not in self.action_replies:
|
204
|
+
time.sleep(1)
|
205
|
+
if action.uuid in self.action_replies:
|
206
|
+
self.action_replies[action.uuid].retrieved = True
|
207
|
+
self.action_replies[action.uuid].retrieved_timestamp = time.time()
|
208
|
+
return self.action_replies.get(action.uuid) and self.action_replies[action.uuid].reply
|
209
|
+
|
210
|
+
|
211
|
+
_default_action_dispatcher = None
|
212
|
+
|
213
|
+
|
214
|
+
def get_action_dispatcher() -> ActionDispatcher:
|
215
|
+
global _default_action_dispatcher
|
216
|
+
|
217
|
+
if not _default_action_dispatcher:
|
218
|
+
_default_action_dispatcher = ActionDispatcher()
|
219
|
+
elif not _default_action_dispatcher.is_alive():
|
220
|
+
_default_action_dispatcher.close()
|
221
|
+
_default_action_dispatcher = ActionDispatcher()
|
222
|
+
return _default_action_dispatcher
|
223
|
+
|
224
|
+
|
225
|
+
def close_action_dispatcher():
|
226
|
+
global _default_action_dispatcher
|
227
|
+
|
228
|
+
if _default_action_dispatcher:
|
229
|
+
_default_action_dispatcher.close()
|
230
|
+
_default_action_dispatcher = None
|
231
|
+
|
232
|
+
|
233
|
+
@get("/echo")
|
234
|
+
def echo():
|
235
|
+
response.content_type = "application/json"
|
236
|
+
return json.dumps({"status": "OK"})
|
237
|
+
|
238
|
+
|
239
|
+
@post("/action_reply")
|
240
|
+
def action_reply():
|
241
|
+
try:
|
242
|
+
uuid = request.GET["uuid"] # type: ignore
|
243
|
+
action = request.GET.get("a") or request.json.get("action") # type: ignore
|
244
|
+
source = request.GET.get("s") or request.json.get("source") # type: ignore
|
245
|
+
reply = get_action_class(action)(**request.json) # type: ignore
|
246
|
+
action_reply = ActionReply(reply_timestamp=time.time(), uuid=uuid, source=source, action=action, reply=reply)
|
247
|
+
get_action_dispatcher().action_replies[action_reply.uuid] = action_reply
|
248
|
+
response.content_type = "application/json"
|
249
|
+
return json.dumps({"status": "OK"})
|
250
|
+
except Exception as e:
|
251
|
+
response.content_type = "application/json"
|
252
|
+
return json.dumps(
|
253
|
+
{"status": "ERROR", "error": f"{type(e).__name__}: {e}", "traceback": traceback.format_exc()}
|
254
|
+
)
|
255
|
+
|
256
|
+
|
257
|
+
@get("/action_fetch")
|
258
|
+
def action_fetch():
|
259
|
+
try:
|
260
|
+
action = get_action_dispatcher().action_queue.get(block=False)
|
261
|
+
response.content_type = "application/json"
|
262
|
+
return json.dumps({"status": "OK", "action": action})
|
263
|
+
except queue.Empty:
|
264
|
+
response.content_type = "application/json"
|
265
|
+
return json.dumps({"status": "EMPTY"})
|
266
|
+
except Exception as e:
|
267
|
+
response.content_type = "application/json"
|
268
|
+
return json.dumps(
|
269
|
+
{"status": "ERROR", "error": f"{type(e).__name__}: {e}", "traceback": traceback.format_exc()}
|
270
|
+
)
|
File without changes
|
@@ -7,11 +7,13 @@ https://opensource.org/licenses/MIT
|
|
7
7
|
|
8
8
|
import json
|
9
9
|
import importlib
|
10
|
+
import traceback
|
10
11
|
|
11
12
|
from typing import Tuple, Any
|
12
13
|
from enum import Enum, unique
|
14
|
+
from pydantic import BaseModel, Field
|
13
15
|
from IPython.display import Markdown
|
14
|
-
from ..bot_outputs import _C, flush_output
|
16
|
+
from ..bot_outputs import _C, _O, _W, _T, flush_output
|
15
17
|
from ..bot_chat import BotChat
|
16
18
|
from ..utils import no_indent
|
17
19
|
|
@@ -161,12 +163,13 @@ class BaseChatAgent(BotChat, BaseAgent):
|
|
161
163
|
DISPLAY_REPLY = True
|
162
164
|
COMBINE_REPLY = AgentCombineReply.MERGE
|
163
165
|
ACCEPT_EMPYT_REPLY = False
|
166
|
+
REPLY_ERROR_RETRIES = 1
|
164
167
|
MODEL_TYPE = AgentModelType.REASONING
|
165
168
|
|
166
|
-
def __init__(self, notebook_context,
|
169
|
+
def __init__(self, notebook_context, **chat_kwargs):
|
167
170
|
"""初始化基础任务代理"""
|
168
171
|
BaseAgent.__init__(self, notebook_context)
|
169
|
-
BotChat.__init__(self,
|
172
|
+
BotChat.__init__(self, **chat_kwargs)
|
170
173
|
|
171
174
|
def prepare_contexts(self, **kwargs):
|
172
175
|
contexts = {
|
@@ -185,8 +188,16 @@ class BaseChatAgent(BotChat, BaseAgent):
|
|
185
188
|
}
|
186
189
|
else:
|
187
190
|
json_example = {}
|
188
|
-
|
189
|
-
|
191
|
+
|
192
|
+
def _default(o):
|
193
|
+
if isinstance(o, BaseModel):
|
194
|
+
return o.model_dump()
|
195
|
+
if isinstance(o, Enum):
|
196
|
+
return o.value
|
197
|
+
return repr(o)
|
198
|
+
|
199
|
+
contexts["OUTPUT_JSON_SCHEMA"] = json.dumps(json_schema, indent=2, ensure_ascii=False, default=_default)
|
200
|
+
contexts["OUTPUT_JSON_EXAMPLE"] = json.dumps(json_example, indent=2, ensure_ascii=False, default=_default)
|
190
201
|
contexts.update(kwargs)
|
191
202
|
return contexts
|
192
203
|
|
@@ -220,30 +231,41 @@ class BaseChatAgent(BotChat, BaseAgent):
|
|
220
231
|
|
221
232
|
def combine_json_replies(self, replies):
|
222
233
|
json_replies = [reply for reply in replies if reply["type"] == "code" and reply["lang"] == "json"]
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
if self.
|
231
|
-
json_obj =
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
234
|
+
assert self.COMBINE_REPLY in [
|
235
|
+
AgentCombineReply.FIRST,
|
236
|
+
AgentCombineReply.LAST,
|
237
|
+
AgentCombineReply.LIST,
|
238
|
+
AgentCombineReply.MERGE,
|
239
|
+
]
|
240
|
+
try:
|
241
|
+
if self.COMBINE_REPLY == AgentCombineReply.FIRST:
|
242
|
+
json_obj = json.loads(json_replies[0]["content"])
|
243
|
+
if self.OUTPUT_JSON_SCHEMA:
|
244
|
+
json_obj = self.OUTPUT_JSON_SCHEMA(**json_obj)
|
245
|
+
return json_obj
|
246
|
+
elif self.COMBINE_REPLY == AgentCombineReply.LAST:
|
247
|
+
json_obj = json.loads(json_replies[-1]["content"])
|
248
|
+
if self.OUTPUT_JSON_SCHEMA:
|
249
|
+
json_obj = self.OUTPUT_JSON_SCHEMA(**json_obj)
|
250
|
+
return json_obj
|
251
|
+
elif self.COMBINE_REPLY == AgentCombineReply.LIST:
|
252
|
+
json_objs = [json.loads(reply["content"]) for reply in json_replies]
|
253
|
+
if self.OUTPUT_JSON_SCHEMA:
|
254
|
+
json_objs = [self.OUTPUT_JSON_SCHEMA(**json_obj) for json_obj in json_objs]
|
255
|
+
return json_objs
|
256
|
+
elif self.COMBINE_REPLY == AgentCombineReply.MERGE:
|
257
|
+
json_obj = {}
|
258
|
+
for json_reply in json_replies:
|
259
|
+
json_obj.update(json.loads(json_reply["content"]))
|
260
|
+
if self.OUTPUT_JSON_SCHEMA:
|
261
|
+
json_obj = self.OUTPUT_JSON_SCHEMA(**json_obj)
|
262
|
+
return json_obj
|
263
|
+
else:
|
264
|
+
return False
|
265
|
+
except Exception as e:
|
266
|
+
_T(f"提取JSON失败: {type(e).__name__}: {e}")
|
267
|
+
_W(traceback.format_exc())
|
268
|
+
return False
|
247
269
|
|
248
270
|
def combine_text_replies(self, replies):
|
249
271
|
text_replies = [reply for reply in replies if reply["type"] == "text"]
|
@@ -274,10 +296,22 @@ class BaseChatAgent(BotChat, BaseAgent):
|
|
274
296
|
def __call__(self, **kwargs) -> Tuple[bool, Any]:
|
275
297
|
contexts = self.prepare_contexts(**kwargs)
|
276
298
|
messages = self.create_messages(contexts)
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
299
|
+
reply_retries = 0
|
300
|
+
while reply_retries <= self.REPLY_ERROR_RETRIES:
|
301
|
+
replies = self.chat(messages.get(), display_reply=self.DISPLAY_REPLY)
|
302
|
+
reply = self.combine_replies(replies)
|
303
|
+
if reply is False:
|
304
|
+
reply_retries += 1
|
305
|
+
if reply_retries > self.REPLY_ERROR_RETRIES:
|
306
|
+
raise ValueError("Failed to get reply")
|
307
|
+
_W("Failed to get reply, retrying...")
|
308
|
+
elif not self.ACCEPT_EMPYT_REPLY and not reply:
|
309
|
+
reply_retries += 1
|
310
|
+
if reply_retries > self.REPLY_ERROR_RETRIES:
|
311
|
+
raise ValueError("Reply is empty")
|
312
|
+
_W("Reply is empty, retrying...")
|
313
|
+
else:
|
314
|
+
break
|
281
315
|
result = self.on_reply(reply)
|
282
316
|
flush_output()
|
283
317
|
if not isinstance(result, tuple):
|
@@ -300,25 +334,31 @@ class AgentFactory:
|
|
300
334
|
"model": model_name,
|
301
335
|
}
|
302
336
|
|
303
|
-
def
|
304
|
-
|
337
|
+
def get_agent_class(self, agent_class):
|
305
338
|
if isinstance(agent_class, str):
|
306
339
|
bot_agents = importlib.import_module("..bot_agents", __package__)
|
307
340
|
agent_class = getattr(bot_agents, agent_class)
|
341
|
+
assert issubclass(agent_class, BaseAgent), "Unsupported agent class: {}".format(agent_class)
|
342
|
+
return agent_class
|
308
343
|
|
344
|
+
def get_chat_kwargs(self, agent_class):
|
309
345
|
if issubclass(agent_class, BaseChatAgent):
|
310
346
|
agent_model = agent_class.MODEL_TYPE if hasattr(agent_class, "MODEL_TYPE") else AgentModelType.DEFAULT
|
311
|
-
|
312
|
-
|
313
|
-
base_url=self.models.get(agent_model, {}).get("api_url")
|
347
|
+
chat_kwargs = {
|
348
|
+
"base_url": self.models.get(agent_model, {}).get("api_url")
|
314
349
|
or self.models[AgentModelType.DEFAULT]["api_url"],
|
315
|
-
api_key
|
350
|
+
"api_key": self.models.get(agent_model, {}).get("api_key")
|
316
351
|
or self.models[AgentModelType.DEFAULT]["api_key"],
|
317
|
-
model_name
|
352
|
+
"model_name": self.models.get(agent_model, {}).get("model")
|
318
353
|
or self.models[AgentModelType.DEFAULT]["model"],
|
319
|
-
|
320
|
-
)
|
321
|
-
|
322
|
-
return agent_class(notebook_context=self.notebook_context)
|
354
|
+
}
|
355
|
+
chat_kwargs.update(self.chat_kwargs)
|
356
|
+
return chat_kwargs
|
323
357
|
else:
|
324
|
-
|
358
|
+
return {}
|
359
|
+
|
360
|
+
def __call__(self, agent_class):
|
361
|
+
|
362
|
+
agent_class = self.get_agent_class(agent_class)
|
363
|
+
chat_kwargs = self.get_chat_kwargs(agent_class)
|
364
|
+
return agent_class(self.notebook_context, **chat_kwargs)
|
{jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/master_planner.py
RENAMED
@@ -8,6 +8,7 @@ https://opensource.org/licenses/MIT
|
|
8
8
|
from IPython.display import Markdown
|
9
9
|
from .base import BaseChatAgent, AgentModelType
|
10
10
|
from ..bot_outputs import _C, ReplyType
|
11
|
+
from ..bot_evaluators.dummy_task import DummyTaskEvaluator
|
11
12
|
|
12
13
|
MASTER_PLANNER_PROMPT = """\
|
13
14
|
**角色定义**:
|
@@ -40,6 +41,7 @@ class MasterPlannerAgent(BaseChatAgent):
|
|
40
41
|
PROMPT = MASTER_PLANNER_PROMPT
|
41
42
|
DISPLAY_REPLY = False
|
42
43
|
MODEL_TYPE = AgentModelType.PLANNER
|
44
|
+
EVALUATORS = {None: DummyTaskEvaluator}
|
43
45
|
|
44
46
|
def on_reply(self, reply):
|
45
47
|
_C(Markdown(reply), reply_type=ReplyType.TASK_RESULT)
|
{jupyter_agent-2025.6.104 → jupyter_agent-2025.6.105}/jupyter_agent/bot_agents/output_task_result.py
RENAMED
@@ -17,13 +17,12 @@ class OutputTaskResult(BaseAgent):
|
|
17
17
|
def __call__(self):
|
18
18
|
"""执行代码逻辑"""
|
19
19
|
if self.task.result:
|
20
|
-
|
21
|
-
_C(Markdown(self.task.result), reply_type=ReplyType.TASK_RESULT)
|
20
|
+
_M("### 任务结果\n\n" + self.task.result)
|
22
21
|
if self.task.important_infos:
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
22
|
+
_B(
|
23
|
+
json.dumps(self.task.important_infos, indent=4, ensure_ascii=False),
|
24
|
+
title="重要信息",
|
25
|
+
format="code",
|
26
|
+
code_language="json",
|
28
27
|
)
|
29
28
|
return False, None
|