job-shop-lib 1.0.0a2__tar.gz → 1.0.0a3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/PKG-INFO +15 -3
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/README.md +14 -2
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/_job_shop_instance.py +18 -20
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/_operation.py +6 -4
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/_schedule.py +3 -3
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/_scheduled_operation.py +2 -2
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/__init__.py +4 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/_dispatcher.py +24 -32
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/_factories.py +8 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/_ready_operation_filters.py +80 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_is_ready_observer.py +1 -1
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/rules/_dispatching_rule_solver.py +44 -25
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/rules/_dispatching_rules_functions.py +9 -9
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/reinforcement_learning/_single_job_shop_graph_env.py +1 -1
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/visualization/__init__.py +5 -5
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/visualization/_gantt_chart_creator.py +5 -5
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/visualization/_gantt_chart_video_and_gif_creation.py +62 -35
- job_shop_lib-1.0.0a2/job_shop_lib/visualization/_gantt_chart.py → job_shop_lib-1.0.0a3/job_shop_lib/visualization/_plot_gantt_chart.py +78 -14
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/pyproject.toml +1 -1
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/LICENSE +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/_base_solver.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/benchmarking/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/benchmarking/_load_benchmark.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/benchmarking/benchmark_instances.json +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/constraint_programming/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/constraint_programming/_ortools_solver.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/_dispatcher_observer_config.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/_history_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/_unscheduled_operations_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_composite_feature_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_duration_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_earliest_start_time_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_factory.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_feature_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_is_completed_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_is_scheduled_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_position_in_job_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/feature_observers/_remaining_operations_observer.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/rules/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/rules/_dispatching_rule_factory.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/rules/_machine_chooser_factory.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/rules/_utils.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/exceptions.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/generation/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/generation/_general_instance_generator.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/generation/_instance_generator.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/generation/_transformations.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/_build_agent_task_graph.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/_build_disjunctive_graph.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/_constants.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/_job_shop_graph.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/_node.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/graph_updaters/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/graph_updaters/_graph_updater.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/graph_updaters/_residual_graph_updater.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/graphs/graph_updaters/_utils.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/reinforcement_learning/__init__.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/reinforcement_learning/_multi_job_shop_graph_env.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/reinforcement_learning/_reward_observers.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/reinforcement_learning/_types_and_constants.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/reinforcement_learning/_utils.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/visualization/_agent_task_graph.py +0 -0
- {job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/visualization/_disjunctive_graph.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: job-shop-lib
|
3
|
-
Version: 1.0.
|
3
|
+
Version: 1.0.0a3
|
4
4
|
Summary: An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP)
|
5
5
|
License: MIT
|
6
6
|
Author: Pabloo22
|
@@ -29,6 +29,7 @@ Description-Content-Type: text/markdown
|
|
29
29
|
<h1>JobShopLib</h1>
|
30
30
|
|
31
31
|
[](https://github.com/Pabloo22/job_shop_lib/actions/workflows/tests.yaml)
|
32
|
+
[](https://job-shop-lib.readthedocs.io/en/latest/?badge=latest)
|
32
33
|

|
33
34
|
[](https://github.com/psf/black)
|
34
35
|
[](https://opensource.org/licenses/MIT)
|
@@ -39,7 +40,7 @@ JobShopLib is a Python package for creating, solving, and visualizing Job Shop S
|
|
39
40
|
|
40
41
|
It follows a modular design, allowing users to easily extend the library with new solvers, dispatching rules, visualization functions, etc.
|
41
42
|
|
42
|
-
See [
|
43
|
+
See the [documentation](https://job-shop-lib.readthedocs.io/en/latest/) for more details about the latest version (1.0.0a2).
|
43
44
|
|
44
45
|
## Installation :package:
|
45
46
|
|
@@ -47,12 +48,23 @@ See [this](https://colab.research.google.com/drive/1XV_Rvq1F2ns6DFG8uNj66q_rcoww
|
|
47
48
|
|
48
49
|
JobShopLib is distributed on [PyPI](https://pypi.org/project/job-shop-lib/) and it supports Python 3.10+.
|
49
50
|
|
50
|
-
You can install the latest version using `pip`:
|
51
|
+
You can install the latest stable version (version 0.5.1) using `pip`:
|
51
52
|
|
52
53
|
```bash
|
53
54
|
pip install job-shop-lib
|
54
55
|
```
|
55
56
|
|
57
|
+
See [this](https://colab.research.google.com/drive/1XV_Rvq1F2ns6DFG8uNj66q_rcowwTZ4H?usp=sharing) Google Colab notebook for a quick start guide!
|
58
|
+
|
59
|
+
|
60
|
+
Version 1.0.0 is currently in beta stage and can be installed with:
|
61
|
+
|
62
|
+
```bash
|
63
|
+
pip install job-shop-lib==1.0.0a3
|
64
|
+
```
|
65
|
+
|
66
|
+
Although this version is not stable and may contain breaking changes in subsequent releases, it is recommended to install it to access the new reinforcement learning environments and familiare yourself with new changes (see the [latest pull requests](https://github.com/Pabloo22/job_shop_lib/pulls?q=is%3Apr+is%3Aclosed)). This version is the first one with a [documentation page](https://job-shop-lib.readthedocs.io/en/latest/).
|
67
|
+
|
56
68
|
<!-- end installation -->
|
57
69
|
|
58
70
|
<!-- key features -->
|
@@ -5,6 +5,7 @@
|
|
5
5
|
<h1>JobShopLib</h1>
|
6
6
|
|
7
7
|
[](https://github.com/Pabloo22/job_shop_lib/actions/workflows/tests.yaml)
|
8
|
+
[](https://job-shop-lib.readthedocs.io/en/latest/?badge=latest)
|
8
9
|

|
9
10
|
[](https://github.com/psf/black)
|
10
11
|
[](https://opensource.org/licenses/MIT)
|
@@ -15,7 +16,7 @@ JobShopLib is a Python package for creating, solving, and visualizing Job Shop S
|
|
15
16
|
|
16
17
|
It follows a modular design, allowing users to easily extend the library with new solvers, dispatching rules, visualization functions, etc.
|
17
18
|
|
18
|
-
See [
|
19
|
+
See the [documentation](https://job-shop-lib.readthedocs.io/en/latest/) for more details about the latest version (1.0.0a2).
|
19
20
|
|
20
21
|
## Installation :package:
|
21
22
|
|
@@ -23,12 +24,23 @@ See [this](https://colab.research.google.com/drive/1XV_Rvq1F2ns6DFG8uNj66q_rcoww
|
|
23
24
|
|
24
25
|
JobShopLib is distributed on [PyPI](https://pypi.org/project/job-shop-lib/) and it supports Python 3.10+.
|
25
26
|
|
26
|
-
You can install the latest version using `pip`:
|
27
|
+
You can install the latest stable version (version 0.5.1) using `pip`:
|
27
28
|
|
28
29
|
```bash
|
29
30
|
pip install job-shop-lib
|
30
31
|
```
|
31
32
|
|
33
|
+
See [this](https://colab.research.google.com/drive/1XV_Rvq1F2ns6DFG8uNj66q_rcowwTZ4H?usp=sharing) Google Colab notebook for a quick start guide!
|
34
|
+
|
35
|
+
|
36
|
+
Version 1.0.0 is currently in beta stage and can be installed with:
|
37
|
+
|
38
|
+
```bash
|
39
|
+
pip install job-shop-lib==1.0.0a3
|
40
|
+
```
|
41
|
+
|
42
|
+
Although this version is not stable and may contain breaking changes in subsequent releases, it is recommended to install it to access the new reinforcement learning environments and familiare yourself with new changes (see the [latest pull requests](https://github.com/Pabloo22/job_shop_lib/pulls?q=is%3Apr+is%3Aclosed)). This version is the first one with a [documentation page](https://job-shop-lib.readthedocs.io/en/latest/).
|
43
|
+
|
32
44
|
<!-- end installation -->
|
33
45
|
|
34
46
|
<!-- key features -->
|
@@ -20,15 +20,27 @@ class JobShopInstance:
|
|
20
20
|
computations.
|
21
21
|
|
22
22
|
Attributes:
|
23
|
-
jobs:
|
23
|
+
jobs (list[list[Operation]]):
|
24
24
|
A list of lists of operations. Each list of operations represents
|
25
25
|
a job, and the operations are ordered by their position in the job.
|
26
26
|
The `job_id`, `position_in_job`, and `operation_id` attributes of
|
27
27
|
the operations are set when the instance is created.
|
28
|
-
name:
|
28
|
+
name (str):
|
29
29
|
A string with the name of the instance.
|
30
|
-
metadata:
|
30
|
+
metadata (dict[str, Any]):
|
31
31
|
A dictionary with additional information about the instance.
|
32
|
+
|
33
|
+
Args:
|
34
|
+
jobs:
|
35
|
+
A list of lists of operations. Each list of operations
|
36
|
+
represents a job, and the operations are ordered by their
|
37
|
+
position in the job. The `job_id`, `position_in_job`, and
|
38
|
+
`operation_id` attributes of the operations are set when the
|
39
|
+
instance is created.
|
40
|
+
name:
|
41
|
+
A string with the name of the instance.
|
42
|
+
**metadata:
|
43
|
+
Additional information about the instance.
|
32
44
|
"""
|
33
45
|
|
34
46
|
def __init__(
|
@@ -37,24 +49,10 @@ class JobShopInstance:
|
|
37
49
|
name: str = "JobShopInstance",
|
38
50
|
**metadata: Any,
|
39
51
|
):
|
40
|
-
|
41
|
-
|
42
|
-
Args:
|
43
|
-
jobs:
|
44
|
-
A list of lists of operations. Each list of operations
|
45
|
-
represents a job, and the operations are ordered by their
|
46
|
-
position in the job. The `job_id`, `position_in_job`, and
|
47
|
-
`operation_id` attributes of the operations are set when the
|
48
|
-
instance is created.
|
49
|
-
name:
|
50
|
-
A string with the name of the instance.
|
51
|
-
**metadata:
|
52
|
-
Additional information about the instance.
|
53
|
-
"""
|
54
|
-
self.jobs = jobs
|
52
|
+
self.jobs: list[list[Operation]] = jobs
|
55
53
|
self.set_operation_attributes()
|
56
|
-
self.name = name
|
57
|
-
self.metadata = metadata
|
54
|
+
self.name: str = name
|
55
|
+
self.metadata: dict[str, Any] = metadata
|
58
56
|
|
59
57
|
def set_operation_attributes(self):
|
60
58
|
"""Sets the job_id and position of each operation."""
|
@@ -51,8 +51,10 @@ class Operation:
|
|
51
51
|
}
|
52
52
|
|
53
53
|
def __init__(self, machines: int | list[int], duration: int):
|
54
|
-
self.machines
|
55
|
-
|
54
|
+
self.machines: list[int] = (
|
55
|
+
[machines] if isinstance(machines, int) else machines
|
56
|
+
)
|
57
|
+
self.duration: int = duration
|
56
58
|
|
57
59
|
# Defined outside the class by the JobShopInstance class:
|
58
60
|
self.job_id: int = -1
|
@@ -64,8 +66,8 @@ class Operation:
|
|
64
66
|
"""Returns the id of the machine associated with the operation.
|
65
67
|
|
66
68
|
Raises:
|
67
|
-
UninitializedAttributeError:
|
68
|
-
|
69
|
+
UninitializedAttributeError:
|
70
|
+
If the operation has multiple machines in its list.
|
69
71
|
"""
|
70
72
|
if len(self.machines) > 1:
|
71
73
|
raise UninitializedAttributeError(
|
@@ -46,7 +46,7 @@ class Schedule:
|
|
46
46
|
self,
|
47
47
|
instance: JobShopInstance,
|
48
48
|
schedule: list[list[ScheduledOperation]] | None = None,
|
49
|
-
**metadata,
|
49
|
+
**metadata: Any,
|
50
50
|
):
|
51
51
|
"""Initializes the object with the given instance and schedule.
|
52
52
|
|
@@ -65,9 +65,9 @@ class Schedule:
|
|
65
65
|
|
66
66
|
Schedule.check_schedule(schedule)
|
67
67
|
|
68
|
-
self.instance = instance
|
68
|
+
self.instance: JobShopInstance = instance
|
69
69
|
self._schedule = schedule
|
70
|
-
self.metadata = metadata
|
70
|
+
self.metadata: dict[str, Any] = metadata
|
71
71
|
|
72
72
|
def __repr__(self) -> str:
|
73
73
|
return str(self.schedule)
|
@@ -31,8 +31,8 @@ class ScheduledOperation:
|
|
31
31
|
If the given machine_id is not in the list of valid machines
|
32
32
|
for the operation.
|
33
33
|
"""
|
34
|
-
self.operation = operation
|
35
|
-
self.start_time = start_time
|
34
|
+
self.operation: Operation = operation
|
35
|
+
self.start_time: int = start_time
|
36
36
|
self._machine_id = machine_id
|
37
37
|
self.machine_id = machine_id # Validate machine_id
|
38
38
|
|
@@ -32,6 +32,8 @@ from ._ready_operation_filters import (
|
|
32
32
|
filter_dominated_operations,
|
33
33
|
filter_non_immediate_machines,
|
34
34
|
ReadyOperationsFilter,
|
35
|
+
filter_non_idle_machines,
|
36
|
+
filter_non_immediate_operations,
|
35
37
|
)
|
36
38
|
from ._dispatcher_observer_config import DispatcherObserverConfig
|
37
39
|
from ._factories import (
|
@@ -53,4 +55,6 @@ __all__ = [
|
|
53
55
|
"DispatcherObserverConfig",
|
54
56
|
"UnscheduledOperationsObserver",
|
55
57
|
"ReadyOperationsFilter",
|
58
|
+
"filter_non_idle_machines",
|
59
|
+
"filter_non_immediate_operations",
|
56
60
|
]
|
@@ -156,26 +156,30 @@ class Dispatcher:
|
|
156
156
|
responsible for scheduling the operations on the machines and keeping
|
157
157
|
track of the next available time for each machine and job.
|
158
158
|
|
159
|
-
|
159
|
+
Args:
|
160
160
|
instance:
|
161
|
-
The instance of the job shop problem to be
|
162
|
-
schedule:
|
163
|
-
The schedule of operations on machines.
|
161
|
+
The instance of the job shop problem to be solved.
|
164
162
|
ready_operations_filter:
|
165
|
-
A function that filters out operations that are not ready to
|
166
|
-
scheduled.
|
163
|
+
A function that filters out operations that are not ready to
|
164
|
+
be scheduled. The function should take the dispatcher and a
|
165
|
+
list of operations as input and return a list of operations
|
166
|
+
that are ready to be scheduled. If ``None``, no filtering is
|
167
|
+
done.
|
167
168
|
"""
|
168
169
|
|
169
|
-
__slots__ =
|
170
|
-
"instance",
|
171
|
-
"schedule",
|
172
|
-
"_machine_next_available_time",
|
173
|
-
"_job_next_operation_index",
|
174
|
-
"_job_next_available_time",
|
175
|
-
"ready_operations_filter"
|
176
|
-
|
177
|
-
|
178
|
-
|
170
|
+
__slots__ = {
|
171
|
+
"instance": "The instance of the job shop problem to be scheduled.",
|
172
|
+
"schedule": "The schedule of operations on machines.",
|
173
|
+
"_machine_next_available_time": "",
|
174
|
+
"_job_next_operation_index": "",
|
175
|
+
"_job_next_available_time": "",
|
176
|
+
"ready_operations_filter": (
|
177
|
+
"A function that filters out operations that are not ready to be "
|
178
|
+
"scheduled."
|
179
|
+
),
|
180
|
+
"subscribers": "A list of observers subscribed to the dispatcher.",
|
181
|
+
"_cache": "A dictionary to cache the results of the cached methods.",
|
182
|
+
}
|
179
183
|
|
180
184
|
def __init__(
|
181
185
|
self,
|
@@ -184,18 +188,6 @@ class Dispatcher:
|
|
184
188
|
Callable[[Dispatcher, list[Operation]], list[Operation]] | None
|
185
189
|
) = None,
|
186
190
|
) -> None:
|
187
|
-
"""Initializes the object with the given instance.
|
188
|
-
|
189
|
-
Args:
|
190
|
-
instance:
|
191
|
-
The instance of the job shop problem to be solved.
|
192
|
-
ready_operations_filter:
|
193
|
-
A function that filters out operations that are not ready to
|
194
|
-
be scheduled. The function should take the dispatcher and a
|
195
|
-
list of operations as input and return a list of operations
|
196
|
-
that are ready to be scheduled. If ``None``, no filtering is
|
197
|
-
done.
|
198
|
-
"""
|
199
191
|
|
200
192
|
self.instance = instance
|
201
193
|
self.schedule = Schedule(self.instance)
|
@@ -371,7 +363,7 @@ class Dispatcher:
|
|
371
363
|
The current time is the minimum start time of the available
|
372
364
|
operations.
|
373
365
|
"""
|
374
|
-
available_operations = self.
|
366
|
+
available_operations = self.available_operations()
|
375
367
|
current_time = self.min_start_time(available_operations)
|
376
368
|
return current_time
|
377
369
|
|
@@ -387,7 +379,7 @@ class Dispatcher:
|
|
387
379
|
return int(min_start_time)
|
388
380
|
|
389
381
|
@_dispatcher_cache
|
390
|
-
def
|
382
|
+
def available_operations(self) -> list[Operation]:
|
391
383
|
"""Returns a list of available operations for processing, optionally
|
392
384
|
filtering out operations using the filter function.
|
393
385
|
|
@@ -443,7 +435,7 @@ class Dispatcher:
|
|
443
435
|
@_dispatcher_cache
|
444
436
|
def available_machines(self) -> list[int]:
|
445
437
|
"""Returns the list of ready machines."""
|
446
|
-
available_operations = self.
|
438
|
+
available_operations = self.available_operations()
|
447
439
|
available_machines = set()
|
448
440
|
for operation in available_operations:
|
449
441
|
available_machines.update(operation.machines)
|
@@ -452,7 +444,7 @@ class Dispatcher:
|
|
452
444
|
@_dispatcher_cache
|
453
445
|
def available_jobs(self) -> list[int]:
|
454
446
|
"""Returns the list of ready jobs."""
|
455
|
-
available_operations = self.
|
447
|
+
available_operations = self.available_operations()
|
456
448
|
available_jobs = set(
|
457
449
|
operation.job_id for operation in available_operations
|
458
450
|
)
|
@@ -13,6 +13,8 @@ from job_shop_lib.dispatching import (
|
|
13
13
|
Dispatcher,
|
14
14
|
filter_dominated_operations,
|
15
15
|
filter_non_immediate_machines,
|
16
|
+
filter_non_idle_machines,
|
17
|
+
filter_non_immediate_operations,
|
16
18
|
ReadyOperationsFilter,
|
17
19
|
)
|
18
20
|
|
@@ -27,6 +29,8 @@ class ReadyOperationsFilterType(str, Enum):
|
|
27
29
|
|
28
30
|
DOMINATED_OPERATIONS = "dominated_operations"
|
29
31
|
NON_IMMEDIATE_MACHINES = "non_immediate_machines"
|
32
|
+
NON_IDLE_MACHINES = "non_idle_machines"
|
33
|
+
NON_IMMEDIATE_OPERATIONS = "non_immediate_operations"
|
30
34
|
|
31
35
|
|
32
36
|
def create_composite_operation_filter(
|
@@ -114,6 +118,10 @@ def ready_operations_filter_factory(
|
|
114
118
|
ReadyOperationsFilterType.NON_IMMEDIATE_MACHINES: (
|
115
119
|
filter_non_immediate_machines
|
116
120
|
),
|
121
|
+
ReadyOperationsFilterType.NON_IDLE_MACHINES: filter_non_idle_machines,
|
122
|
+
ReadyOperationsFilterType.NON_IMMEDIATE_OPERATIONS: (
|
123
|
+
filter_non_immediate_operations
|
124
|
+
),
|
117
125
|
}
|
118
126
|
|
119
127
|
if filter_name not in filtering_strategies:
|
{job_shop_lib-1.0.0a2 → job_shop_lib-1.0.0a3}/job_shop_lib/dispatching/_ready_operation_filters.py
RENAMED
@@ -15,6 +15,86 @@ ReadyOperationsFilter = Callable[
|
|
15
15
|
]
|
16
16
|
|
17
17
|
|
18
|
+
def filter_non_idle_machines(
|
19
|
+
dispatcher: Dispatcher, operations: list[Operation]
|
20
|
+
) -> list[Operation]:
|
21
|
+
"""Filters out all the operations associated with non-idle machines.
|
22
|
+
|
23
|
+
A machine is considered idle if there are no ongoing operations
|
24
|
+
currently scheduled on it. This filter removes operations that are
|
25
|
+
associated with machines that are busy (i.e., have at least one
|
26
|
+
uncompleted operation).
|
27
|
+
|
28
|
+
Utilizes :meth:``Dispatcher.ongoing_operations()`` to determine machine
|
29
|
+
statuses.
|
30
|
+
|
31
|
+
Args:
|
32
|
+
dispatcher: The dispatcher object.
|
33
|
+
operations: The list of operations to filter.
|
34
|
+
|
35
|
+
Returns:
|
36
|
+
The list of operations that are associated with idle machines.
|
37
|
+
"""
|
38
|
+
current_time = dispatcher.min_start_time(operations)
|
39
|
+
non_idle_machines = _get_non_idle_machines(dispatcher, current_time)
|
40
|
+
|
41
|
+
# Filter operations to keep those that are associated with at least one
|
42
|
+
# idle machine
|
43
|
+
filtered_operations: list[Operation] = []
|
44
|
+
for operation in operations:
|
45
|
+
if all(
|
46
|
+
machine_id in non_idle_machines
|
47
|
+
for machine_id in operation.machines
|
48
|
+
):
|
49
|
+
continue
|
50
|
+
filtered_operations.append(operation)
|
51
|
+
|
52
|
+
return filtered_operations
|
53
|
+
|
54
|
+
|
55
|
+
def _get_non_idle_machines(
|
56
|
+
dispatcher: Dispatcher, current_time: int
|
57
|
+
) -> set[int]:
|
58
|
+
"""Returns the set of machine ids that are currently busy (i.e., have at
|
59
|
+
least one uncompleted operation)."""
|
60
|
+
|
61
|
+
non_idle_machines = set()
|
62
|
+
for machine_schedule in dispatcher.schedule.schedule:
|
63
|
+
for scheduled_operation in reversed(machine_schedule):
|
64
|
+
is_completed = scheduled_operation.end_time <= current_time
|
65
|
+
if is_completed:
|
66
|
+
break
|
67
|
+
non_idle_machines.add(scheduled_operation.machine_id)
|
68
|
+
|
69
|
+
return non_idle_machines
|
70
|
+
|
71
|
+
|
72
|
+
def filter_non_immediate_operations(
|
73
|
+
dispatcher: Dispatcher, operations: list[Operation]
|
74
|
+
) -> list[Operation]:
|
75
|
+
"""Filters out all the operations that can't start immediately.
|
76
|
+
|
77
|
+
An operation can start immediately if its earliest start time is the
|
78
|
+
current time.
|
79
|
+
|
80
|
+
The current time is determined by the minimum start time of the
|
81
|
+
operations.
|
82
|
+
|
83
|
+
Args:
|
84
|
+
dispatcher: The dispatcher object.
|
85
|
+
operations: The list of operations to filter.
|
86
|
+
"""
|
87
|
+
|
88
|
+
min_start_time = dispatcher.min_start_time(operations)
|
89
|
+
immediate_operations: list[Operation] = []
|
90
|
+
for operation in operations:
|
91
|
+
start_time = dispatcher.earliest_start_time(operation)
|
92
|
+
if start_time == min_start_time:
|
93
|
+
immediate_operations.append(operation)
|
94
|
+
|
95
|
+
return immediate_operations
|
96
|
+
|
97
|
+
|
18
98
|
def filter_dominated_operations(
|
19
99
|
dispatcher: Dispatcher, operations: list[Operation]
|
20
100
|
) -> list[Operation]:
|
@@ -29,5 +29,5 @@ class IsReadyObserver(FeatureObserver):
|
|
29
29
|
self.initialize_features()
|
30
30
|
|
31
31
|
def _get_ready_operations(self) -> list[int]:
|
32
|
-
available_operations = self.dispatcher.
|
32
|
+
available_operations = self.dispatcher.available_operations()
|
33
33
|
return [operation.operation_id for operation in available_operations]
|
@@ -1,12 +1,14 @@
|
|
1
1
|
"""Home of the `DispatchingRuleSolver` class."""
|
2
2
|
|
3
|
-
from collections.abc import Callable
|
3
|
+
from collections.abc import Callable, Iterable
|
4
4
|
|
5
5
|
from job_shop_lib import JobShopInstance, Schedule, Operation, BaseSolver
|
6
6
|
from job_shop_lib.dispatching import (
|
7
7
|
ready_operations_filter_factory,
|
8
8
|
Dispatcher,
|
9
9
|
ReadyOperationsFilterType,
|
10
|
+
ReadyOperationsFilter,
|
11
|
+
create_composite_operation_filter,
|
10
12
|
)
|
11
13
|
from job_shop_lib.dispatching.rules import (
|
12
14
|
dispatching_rule_factory,
|
@@ -30,6 +32,35 @@ class DispatchingRuleSolver(BaseSolver):
|
|
30
32
|
pruning_function:
|
31
33
|
The pruning function to use. It is used to initialize the
|
32
34
|
dispatcher object internally when calling the solve method.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
dispatching_rule:
|
38
|
+
The dispatching rule to use. It can be a string with the name
|
39
|
+
of the dispatching rule, a class`DispatchingRuleType` enum member,
|
40
|
+
or a callable that takes a dispatcher and returns the operation to
|
41
|
+
be dispatched next.
|
42
|
+
machine_chooser:
|
43
|
+
The machine chooser to use. It can be a string with the name
|
44
|
+
of the machine chooser, a :class:`MachineChooserType` member, or a
|
45
|
+
callable that takes a dispatcher and an operation and returns
|
46
|
+
the machine id where the operation will be dispatched.
|
47
|
+
ready_operations_filter:
|
48
|
+
The ready operations filter to use. It can be either:
|
49
|
+
|
50
|
+
- a string with the name of the pruning function
|
51
|
+
- a :class`ReadyOperationsFilterType` enum member.
|
52
|
+
- a callable that takes a dispatcher and a list of operations
|
53
|
+
and returns a list of operations that should be considered
|
54
|
+
for dispatching,
|
55
|
+
- a list with names or actual ready operations filters to be used.
|
56
|
+
If a list is provided, a composite filter will be created
|
57
|
+
using the specified filters.
|
58
|
+
|
59
|
+
.. seealso::
|
60
|
+
- :func:`job_shop_lib.dispatching.rules.dispatching_rule_factory`
|
61
|
+
- :func:`job_shop_lib.dispatching.rules.machine_chooser_factory`
|
62
|
+
- :func:`~job_shop_lib.dispatching.ready_operations_filter_factory`
|
63
|
+
- :func:`~job_shop_lib.dispatching.create_composite_operation_filter`
|
33
64
|
"""
|
34
65
|
|
35
66
|
def __init__(
|
@@ -41,32 +72,16 @@ class DispatchingRuleSolver(BaseSolver):
|
|
41
72
|
str | Callable[[Dispatcher, Operation], int]
|
42
73
|
) = MachineChooserType.FIRST,
|
43
74
|
ready_operations_filter: (
|
44
|
-
str
|
45
|
-
|
|
75
|
+
Iterable[ReadyOperationsFilter | str | ReadyOperationsFilterType]
|
76
|
+
| str
|
77
|
+
| ReadyOperationsFilterType
|
78
|
+
| ReadyOperationsFilter
|
46
79
|
| None
|
47
|
-
) =
|
80
|
+
) = (
|
81
|
+
ReadyOperationsFilterType.DOMINATED_OPERATIONS,
|
82
|
+
ReadyOperationsFilterType.NON_IDLE_MACHINES,
|
83
|
+
),
|
48
84
|
):
|
49
|
-
"""Initializes the solver with the given dispatching rule, machine
|
50
|
-
chooser and pruning function.
|
51
|
-
|
52
|
-
Args:
|
53
|
-
dispatching_rule:
|
54
|
-
The dispatching rule to use. It can be a string with the name
|
55
|
-
of the dispatching rule, a DispatchingRule enum member, or a
|
56
|
-
callable that takes a dispatcher and returns the operation to
|
57
|
-
be dispatched next.
|
58
|
-
machine_chooser:
|
59
|
-
The machine chooser to use. It can be a string with the name
|
60
|
-
of the machine chooser, a MachineChooser enum member, or a
|
61
|
-
callable that takes a dispatcher and an operation and returns
|
62
|
-
the machine id where the operation will be dispatched.
|
63
|
-
ready_operations_filter:
|
64
|
-
The ready operations filter to use. It can be a string with
|
65
|
-
the name of the pruning function, a PruningFunction enum
|
66
|
-
member, or a callable that takes a dispatcher and a list of
|
67
|
-
operations and returns a list of operations that should be
|
68
|
-
considered for dispatching.
|
69
|
-
"""
|
70
85
|
if isinstance(dispatching_rule, str):
|
71
86
|
dispatching_rule = dispatching_rule_factory(dispatching_rule)
|
72
87
|
if isinstance(machine_chooser, str):
|
@@ -75,6 +90,10 @@ class DispatchingRuleSolver(BaseSolver):
|
|
75
90
|
ready_operations_filter = ready_operations_filter_factory(
|
76
91
|
ready_operations_filter
|
77
92
|
)
|
93
|
+
if isinstance(ready_operations_filter, Iterable):
|
94
|
+
ready_operations_filter = create_composite_operation_filter(
|
95
|
+
ready_operations_filter
|
96
|
+
)
|
78
97
|
|
79
98
|
self.dispatching_rule = dispatching_rule
|
80
99
|
self.machine_chooser = machine_chooser
|
@@ -21,7 +21,7 @@ from job_shop_lib.dispatching.feature_observers import (
|
|
21
21
|
def shortest_processing_time_rule(dispatcher: Dispatcher) -> Operation:
|
22
22
|
"""Dispatches the operation with the shortest duration."""
|
23
23
|
return min(
|
24
|
-
dispatcher.
|
24
|
+
dispatcher.available_operations(),
|
25
25
|
key=lambda operation: operation.duration,
|
26
26
|
)
|
27
27
|
|
@@ -29,7 +29,7 @@ def shortest_processing_time_rule(dispatcher: Dispatcher) -> Operation:
|
|
29
29
|
def first_come_first_served_rule(dispatcher: Dispatcher) -> Operation:
|
30
30
|
"""Dispatches the operation with the lowest position in job."""
|
31
31
|
return min(
|
32
|
-
dispatcher.
|
32
|
+
dispatcher.available_operations(),
|
33
33
|
key=lambda operation: operation.position_in_job,
|
34
34
|
)
|
35
35
|
|
@@ -41,7 +41,7 @@ def most_work_remaining_rule(dispatcher: Dispatcher) -> Operation:
|
|
41
41
|
job_remaining_work[operation.job_id] += operation.duration
|
42
42
|
|
43
43
|
return max(
|
44
|
-
dispatcher.
|
44
|
+
dispatcher.available_operations(),
|
45
45
|
key=lambda operation: job_remaining_work[operation.job_id],
|
46
46
|
)
|
47
47
|
|
@@ -53,14 +53,14 @@ def most_operations_remaining_rule(dispatcher: Dispatcher) -> Operation:
|
|
53
53
|
job_remaining_operations[operation.job_id] += 1
|
54
54
|
|
55
55
|
return max(
|
56
|
-
dispatcher.
|
56
|
+
dispatcher.available_operations(),
|
57
57
|
key=lambda operation: job_remaining_operations[operation.job_id],
|
58
58
|
)
|
59
59
|
|
60
60
|
|
61
61
|
def random_operation_rule(dispatcher: Dispatcher) -> Operation:
|
62
62
|
"""Dispatches a random operation."""
|
63
|
-
return random.choice(dispatcher.
|
63
|
+
return random.choice(dispatcher.available_operations())
|
64
64
|
|
65
65
|
|
66
66
|
def score_based_rule(
|
@@ -80,7 +80,7 @@ def score_based_rule(
|
|
80
80
|
def rule(dispatcher: Dispatcher) -> Operation:
|
81
81
|
scores = score_function(dispatcher)
|
82
82
|
return max(
|
83
|
-
dispatcher.
|
83
|
+
dispatcher.available_operations(),
|
84
84
|
key=lambda operation: scores[operation.job_id],
|
85
85
|
)
|
86
86
|
|
@@ -102,7 +102,7 @@ def score_based_rule_with_tie_breaker(
|
|
102
102
|
"""
|
103
103
|
|
104
104
|
def rule(dispatcher: Dispatcher) -> Operation:
|
105
|
-
candidates = dispatcher.
|
105
|
+
candidates = dispatcher.available_operations()
|
106
106
|
for scoring_function in score_functions:
|
107
107
|
scores = scoring_function(dispatcher)
|
108
108
|
best_score = max(scores)
|
@@ -126,7 +126,7 @@ def shortest_processing_time_score(dispatcher: Dispatcher) -> list[int]:
|
|
126
126
|
"""Scores each job based on the duration of the next operation."""
|
127
127
|
num_jobs = dispatcher.instance.num_jobs
|
128
128
|
scores = [0] * num_jobs
|
129
|
-
for operation in dispatcher.
|
129
|
+
for operation in dispatcher.available_operations():
|
130
130
|
scores[operation.job_id] = -operation.duration
|
131
131
|
return scores
|
132
132
|
|
@@ -135,7 +135,7 @@ def first_come_first_served_score(dispatcher: Dispatcher) -> list[int]:
|
|
135
135
|
"""Scores each job based on the position of the next operation."""
|
136
136
|
num_jobs = dispatcher.instance.num_jobs
|
137
137
|
scores = [0] * num_jobs
|
138
|
-
for operation in dispatcher.
|
138
|
+
for operation in dispatcher.available_operations():
|
139
139
|
scores[operation.job_id] = operation.operation_id
|
140
140
|
return scores
|
141
141
|
|
@@ -260,7 +260,7 @@ class SingleJobShopGraphEnv(gym.Env):
|
|
260
260
|
truncated = False
|
261
261
|
info: dict[str, Any] = {
|
262
262
|
"feature_names": self.composite_observer.column_names,
|
263
|
-
"available_operations": self.dispatcher.
|
263
|
+
"available_operations": self.dispatcher.available_operations(),
|
264
264
|
}
|
265
265
|
return obs, reward, done, truncated, info
|
266
266
|
|