job-shop-lib 0.1.2__tar.gz → 0.2.0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/PKG-INFO +30 -41
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/README.md +28 -39
- job_shop_lib-0.2.0/job_shop_lib/generators/transformations.py +164 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/pyproject.toml +2 -2
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/LICENSE +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/__init__.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/base_solver.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/benchmarking/__init__.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/benchmarking/benchmark_instances.json +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/benchmarking/load_benchmark.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/cp_sat/__init__.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/cp_sat/ortools_solver.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/dispatching/__init__.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/dispatching/dispatcher.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/dispatching/dispatching_rule_solver.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/dispatching/dispatching_rules.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/dispatching/factories.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/dispatching/pruning_functions.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/exceptions.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/generators/__init__.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/generators/basic_generator.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/graphs/__init__.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/graphs/build_agent_task_graph.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/graphs/build_disjunctive_graph.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/graphs/constants.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/graphs/job_shop_graph.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/graphs/node.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/job_shop_instance.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/operation.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/schedule.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/scheduled_operation.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/visualization/__init__.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/visualization/agent_task_graph.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/visualization/create_gif.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/visualization/disjunctive_graph.py +0 -0
- {job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/visualization/gantt_chart.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: job-shop-lib
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.2.0
|
4
4
|
Summary: An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP)
|
5
5
|
License: MIT
|
6
6
|
Author: Pabloo22
|
@@ -16,7 +16,7 @@ Requires-Dist: imageio (>=2,<3)
|
|
16
16
|
Requires-Dist: matplotlib (>=3,<4)
|
17
17
|
Requires-Dist: networkx (>=3,<4)
|
18
18
|
Requires-Dist: ortools (>=9,<10)
|
19
|
-
Requires-Dist: pyarrow (>=
|
19
|
+
Requires-Dist: pyarrow (>=15.0.0,<16.0.0)
|
20
20
|
Requires-Dist: pygraphviz (>=1.12,<2.0) ; extra == "pygraphviz"
|
21
21
|
Description-Content-Type: text/markdown
|
22
22
|
|
@@ -33,13 +33,21 @@ Description-Content-Type: text/markdown
|
|
33
33
|
|
34
34
|
</div>
|
35
35
|
|
36
|
+
An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP) with a special focus on graph representations.
|
36
37
|
|
38
|
+
It provides intuitive data structures to represent instances and solutions, as well as solvers and visualization tools.
|
37
39
|
|
38
|
-
|
40
|
+
See the [this](https://colab.research.google.com/drive/1XV_Rvq1F2ns6DFG8uNj66q_rcowwTZ4H?usp=sharing) Google Colab notebook for a quick start guide!
|
41
|
+
|
42
|
+
## Installation
|
39
43
|
|
40
|
-
|
44
|
+
You can install the library from PyPI:
|
45
|
+
|
46
|
+
```bash
|
47
|
+
pip install job-shop-lib
|
48
|
+
```
|
41
49
|
|
42
|
-
## Quick Start
|
50
|
+
## Quick Start :rocket:
|
43
51
|
|
44
52
|
### Create a Job Shop Instance
|
45
53
|
|
@@ -79,40 +87,22 @@ manually. The instances are stored in [benchmark_instances.json](job_shop_lib/be
|
|
79
87
|
|
80
88
|
The contributions to this benchmark dataset are as follows:
|
81
89
|
|
82
|
-
- `abz5-9`:
|
83
|
-
al. (1988).
|
90
|
+
- `abz5-9`: by Adams et al. (1988).
|
84
91
|
|
85
|
-
- `ft06`, `ft10`, `ft20`:
|
86
|
-
Fisher and Thompson, as detailed in their 1963 work.
|
92
|
+
- `ft06`, `ft10`, `ft20`: by Fisher and Thompson (1963).
|
87
93
|
|
88
|
-
- `la01-40`:
|
89
|
-
Lawrence, as referenced in his 1984 report.
|
94
|
+
- `la01-40`: by Lawrence (1984)
|
90
95
|
|
91
|
-
- `orb01-10`:
|
92
|
-
Cook, as seen in their 1991 study.
|
96
|
+
- `orb01-10`: by Applegate and Cook (1991).
|
93
97
|
|
94
|
-
- `swb01-20`:
|
95
|
-
Storer et al., as per their 1992 article.
|
98
|
+
- `swb01-20`: by Storer et al. (1992).
|
96
99
|
|
97
|
-
- `yn1-4`: Yamada and Nakano
|
98
|
-
in this group, as found in their 1992 paper.
|
100
|
+
- `yn1-4`: by Yamada and Nakano (1992).
|
99
101
|
|
100
|
-
- `ta01-80`:
|
101
|
-
made by Taillard, as documented in his 1993 paper.
|
102
|
+
- `ta01-80`: by Taillard (1993).
|
102
103
|
|
103
104
|
The metadata from these instances has been updated using data from:
|
104
|
-
|
105
|
-
Thomas Weise. jsspInstancesAndResults. Accessed in January 2024.
|
106
|
-
Available at: https://github.com/thomasWeise/jsspInstancesAndResults
|
107
|
-
|
108
|
-
It includes the following information:
|
109
|
-
- "optimum" (`int` | `None`): The optimal makespan for the instance.
|
110
|
-
- "lower_bound" (`int`): The best lower bound known for the makespan. If
|
111
|
-
optimality is known, it is equal to the optimum.
|
112
|
-
- "upper_bound" (`int`): The best upper bound known for the makespan. If
|
113
|
-
optimality is known, it is equal to the optimum.
|
114
|
-
- "reference" (`str`): The paper or source where the instance was first
|
115
|
-
introduced.
|
105
|
+
https://github.com/thomasWeise/jsspInstancesAndResults
|
116
106
|
|
117
107
|
```python
|
118
108
|
>>> ft06.metadata
|
@@ -124,7 +114,7 @@ It includes the following information:
|
|
124
114
|
|
125
115
|
### Generate a Random Instance
|
126
116
|
|
127
|
-
You can also generate a random instance with the `
|
117
|
+
You can also generate a random instance with the `BasicGenerator` class.
|
128
118
|
|
129
119
|
```python
|
130
120
|
from job_shop_lib.generators import BasicGenerator
|
@@ -138,7 +128,7 @@ random_instance = generator.generate()
|
|
138
128
|
This class can also work as an iterator to generate multiple instances:
|
139
129
|
|
140
130
|
```python
|
141
|
-
generator =
|
131
|
+
generator = BasicGenerator(iteration_limit=100, seed=42)
|
142
132
|
instances = []
|
143
133
|
for instance in generator:
|
144
134
|
instances.append(instance)
|
@@ -182,7 +172,7 @@ We can visualize the solution with a `DispatchingRuleSolver` as a gif:
|
|
182
172
|
|
183
173
|
```python
|
184
174
|
from job_shop_lib.visualization import create_gif, get_plot_function
|
185
|
-
from job_shop_lib.
|
175
|
+
from job_shop_lib.dispatching import DispatchingRuleSolver, DispatchingRule
|
186
176
|
|
187
177
|
plt.style.use("ggplot")
|
188
178
|
|
@@ -227,6 +217,9 @@ plt.show()
|
|
227
217
|

|
228
218
|
|
229
219
|
|
220
|
+
> [!WARNING]
|
221
|
+
> This plot function requires having the optional dependency [PyGraphViz](https://pygraphviz.github.io/) installed.
|
222
|
+
|
230
223
|
The `JobShopGraph` class provides easy access to the nodes, for example, to get all the nodes of a specific type:
|
231
224
|
|
232
225
|
```python
|
@@ -288,13 +281,9 @@ plt.show()
|
|
288
281
|
|
289
282
|
For more details, check the [examples](examples) folder.
|
290
283
|
|
291
|
-
## Installation
|
292
|
-
|
293
|
-
In the future, the library will be available on PyPI. For now, you can install it from the source code.
|
294
|
-
|
295
|
-
### For development
|
284
|
+
## Installation for development
|
296
285
|
|
297
|
-
|
286
|
+
### With Poetry
|
298
287
|
|
299
288
|
1. Clone the repository.
|
300
289
|
|
@@ -315,7 +304,7 @@ or equivalently:
|
|
315
304
|
make poetry_install_all
|
316
305
|
```
|
317
306
|
|
318
|
-
|
307
|
+
### With PyPI
|
319
308
|
|
320
309
|
If you don't want to use Poetry, you can install the library directly from the source code:
|
321
310
|
|
@@ -11,13 +11,21 @@
|
|
11
11
|
|
12
12
|
</div>
|
13
13
|
|
14
|
+
An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP) with a special focus on graph representations.
|
14
15
|
|
16
|
+
It provides intuitive data structures to represent instances and solutions, as well as solvers and visualization tools.
|
15
17
|
|
16
|
-
|
18
|
+
See the [this](https://colab.research.google.com/drive/1XV_Rvq1F2ns6DFG8uNj66q_rcowwTZ4H?usp=sharing) Google Colab notebook for a quick start guide!
|
19
|
+
|
20
|
+
## Installation
|
17
21
|
|
18
|
-
|
22
|
+
You can install the library from PyPI:
|
23
|
+
|
24
|
+
```bash
|
25
|
+
pip install job-shop-lib
|
26
|
+
```
|
19
27
|
|
20
|
-
## Quick Start
|
28
|
+
## Quick Start :rocket:
|
21
29
|
|
22
30
|
### Create a Job Shop Instance
|
23
31
|
|
@@ -57,40 +65,22 @@ manually. The instances are stored in [benchmark_instances.json](job_shop_lib/be
|
|
57
65
|
|
58
66
|
The contributions to this benchmark dataset are as follows:
|
59
67
|
|
60
|
-
- `abz5-9`:
|
61
|
-
al. (1988).
|
68
|
+
- `abz5-9`: by Adams et al. (1988).
|
62
69
|
|
63
|
-
- `ft06`, `ft10`, `ft20`:
|
64
|
-
Fisher and Thompson, as detailed in their 1963 work.
|
70
|
+
- `ft06`, `ft10`, `ft20`: by Fisher and Thompson (1963).
|
65
71
|
|
66
|
-
- `la01-40`:
|
67
|
-
Lawrence, as referenced in his 1984 report.
|
72
|
+
- `la01-40`: by Lawrence (1984)
|
68
73
|
|
69
|
-
- `orb01-10`:
|
70
|
-
Cook, as seen in their 1991 study.
|
74
|
+
- `orb01-10`: by Applegate and Cook (1991).
|
71
75
|
|
72
|
-
- `swb01-20`:
|
73
|
-
Storer et al., as per their 1992 article.
|
76
|
+
- `swb01-20`: by Storer et al. (1992).
|
74
77
|
|
75
|
-
- `yn1-4`: Yamada and Nakano
|
76
|
-
in this group, as found in their 1992 paper.
|
78
|
+
- `yn1-4`: by Yamada and Nakano (1992).
|
77
79
|
|
78
|
-
- `ta01-80`:
|
79
|
-
made by Taillard, as documented in his 1993 paper.
|
80
|
+
- `ta01-80`: by Taillard (1993).
|
80
81
|
|
81
82
|
The metadata from these instances has been updated using data from:
|
82
|
-
|
83
|
-
Thomas Weise. jsspInstancesAndResults. Accessed in January 2024.
|
84
|
-
Available at: https://github.com/thomasWeise/jsspInstancesAndResults
|
85
|
-
|
86
|
-
It includes the following information:
|
87
|
-
- "optimum" (`int` | `None`): The optimal makespan for the instance.
|
88
|
-
- "lower_bound" (`int`): The best lower bound known for the makespan. If
|
89
|
-
optimality is known, it is equal to the optimum.
|
90
|
-
- "upper_bound" (`int`): The best upper bound known for the makespan. If
|
91
|
-
optimality is known, it is equal to the optimum.
|
92
|
-
- "reference" (`str`): The paper or source where the instance was first
|
93
|
-
introduced.
|
83
|
+
https://github.com/thomasWeise/jsspInstancesAndResults
|
94
84
|
|
95
85
|
```python
|
96
86
|
>>> ft06.metadata
|
@@ -102,7 +92,7 @@ It includes the following information:
|
|
102
92
|
|
103
93
|
### Generate a Random Instance
|
104
94
|
|
105
|
-
You can also generate a random instance with the `
|
95
|
+
You can also generate a random instance with the `BasicGenerator` class.
|
106
96
|
|
107
97
|
```python
|
108
98
|
from job_shop_lib.generators import BasicGenerator
|
@@ -116,7 +106,7 @@ random_instance = generator.generate()
|
|
116
106
|
This class can also work as an iterator to generate multiple instances:
|
117
107
|
|
118
108
|
```python
|
119
|
-
generator =
|
109
|
+
generator = BasicGenerator(iteration_limit=100, seed=42)
|
120
110
|
instances = []
|
121
111
|
for instance in generator:
|
122
112
|
instances.append(instance)
|
@@ -160,7 +150,7 @@ We can visualize the solution with a `DispatchingRuleSolver` as a gif:
|
|
160
150
|
|
161
151
|
```python
|
162
152
|
from job_shop_lib.visualization import create_gif, get_plot_function
|
163
|
-
from job_shop_lib.
|
153
|
+
from job_shop_lib.dispatching import DispatchingRuleSolver, DispatchingRule
|
164
154
|
|
165
155
|
plt.style.use("ggplot")
|
166
156
|
|
@@ -205,6 +195,9 @@ plt.show()
|
|
205
195
|

|
206
196
|
|
207
197
|
|
198
|
+
> [!WARNING]
|
199
|
+
> This plot function requires having the optional dependency [PyGraphViz](https://pygraphviz.github.io/) installed.
|
200
|
+
|
208
201
|
The `JobShopGraph` class provides easy access to the nodes, for example, to get all the nodes of a specific type:
|
209
202
|
|
210
203
|
```python
|
@@ -266,13 +259,9 @@ plt.show()
|
|
266
259
|
|
267
260
|
For more details, check the [examples](examples) folder.
|
268
261
|
|
269
|
-
## Installation
|
270
|
-
|
271
|
-
In the future, the library will be available on PyPI. For now, you can install it from the source code.
|
272
|
-
|
273
|
-
### For development
|
262
|
+
## Installation for development
|
274
263
|
|
275
|
-
|
264
|
+
### With Poetry
|
276
265
|
|
277
266
|
1. Clone the repository.
|
278
267
|
|
@@ -293,7 +282,7 @@ or equivalently:
|
|
293
282
|
make poetry_install_all
|
294
283
|
```
|
295
284
|
|
296
|
-
|
285
|
+
### With PyPI
|
297
286
|
|
298
287
|
If you don't want to use Poetry, you can install the library directly from the source code:
|
299
288
|
|
@@ -0,0 +1,164 @@
|
|
1
|
+
"""Classes for generating transformed JobShopInstance objects."""
|
2
|
+
|
3
|
+
import abc
|
4
|
+
import copy
|
5
|
+
import random
|
6
|
+
|
7
|
+
from job_shop_lib import JobShopInstance, Operation
|
8
|
+
|
9
|
+
|
10
|
+
class Transformation(abc.ABC):
|
11
|
+
"""Base class for transformations applied to JobShopInstance objects."""
|
12
|
+
|
13
|
+
def __init__(self, suffix: str = ""):
|
14
|
+
self.suffix = suffix
|
15
|
+
self.counter = 0
|
16
|
+
|
17
|
+
@abc.abstractmethod
|
18
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
19
|
+
"""Applies the transformation to a given JobShopInstance.
|
20
|
+
|
21
|
+
Args:
|
22
|
+
instance: The JobShopInstance to transform.
|
23
|
+
|
24
|
+
Returns:
|
25
|
+
A new JobShopInstance with the transformation applied.
|
26
|
+
"""
|
27
|
+
|
28
|
+
def __call__(self, instance: JobShopInstance) -> JobShopInstance:
|
29
|
+
instance = self.apply(instance)
|
30
|
+
suffix = f"{self.suffix}_id={self.counter}"
|
31
|
+
instance.name += suffix
|
32
|
+
self.counter += 1
|
33
|
+
return instance
|
34
|
+
|
35
|
+
|
36
|
+
# pylint: disable=too-few-public-methods
|
37
|
+
class RemoveMachines(Transformation):
|
38
|
+
"""Removes operations associated with randomly selected machines until
|
39
|
+
there are exactly num_machines machines left."""
|
40
|
+
|
41
|
+
def __init__(self, num_machines: int, suffix: str | None = None):
|
42
|
+
if suffix is None:
|
43
|
+
suffix = f"_machines={num_machines}"
|
44
|
+
super().__init__(suffix=suffix)
|
45
|
+
self.num_machines = num_machines
|
46
|
+
|
47
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
48
|
+
if instance.num_machines <= self.num_machines:
|
49
|
+
return instance # No need to remove machines
|
50
|
+
|
51
|
+
# Select machine indices to keep
|
52
|
+
machines_to_keep = set(
|
53
|
+
random.sample(range(instance.num_machines), self.num_machines)
|
54
|
+
)
|
55
|
+
|
56
|
+
# Re-index machines
|
57
|
+
machine_reindex_map = {
|
58
|
+
old_id: new_id
|
59
|
+
for new_id, old_id in enumerate(sorted(machines_to_keep))
|
60
|
+
}
|
61
|
+
|
62
|
+
new_jobs = []
|
63
|
+
for job in instance.jobs:
|
64
|
+
# Keep operations whose machine_id is in machines_to_keep and
|
65
|
+
# re-index them
|
66
|
+
new_jobs.append(
|
67
|
+
[
|
68
|
+
Operation(machine_reindex_map[op.machine_id], op.duration)
|
69
|
+
for op in job
|
70
|
+
if op.machine_id in machines_to_keep
|
71
|
+
]
|
72
|
+
)
|
73
|
+
|
74
|
+
return JobShopInstance(new_jobs, instance.name)
|
75
|
+
|
76
|
+
|
77
|
+
# pylint: disable=too-few-public-methods
|
78
|
+
class AddDurationNoise(Transformation):
|
79
|
+
"""Adds uniform integer noise to operation durations."""
|
80
|
+
|
81
|
+
def __init__(
|
82
|
+
self,
|
83
|
+
min_duration: int = 1,
|
84
|
+
max_duration: int = 100,
|
85
|
+
noise_level: int = 10,
|
86
|
+
suffix: str | None = None,
|
87
|
+
):
|
88
|
+
if suffix is None:
|
89
|
+
suffix = f"_noise={noise_level}"
|
90
|
+
super().__init__(suffix=suffix)
|
91
|
+
self.min_duration = min_duration
|
92
|
+
self.max_duration = max_duration
|
93
|
+
self.noise_level = noise_level
|
94
|
+
|
95
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
96
|
+
new_jobs = []
|
97
|
+
for job in instance.jobs:
|
98
|
+
new_job = []
|
99
|
+
for op in job:
|
100
|
+
noise = random.randint(-self.noise_level, self.noise_level)
|
101
|
+
new_duration = max(
|
102
|
+
self.min_duration,
|
103
|
+
min(self.max_duration, op.duration + noise),
|
104
|
+
)
|
105
|
+
|
106
|
+
new_job.append(Operation(op.machine_id, new_duration))
|
107
|
+
new_jobs.append(new_job)
|
108
|
+
|
109
|
+
return JobShopInstance(new_jobs, instance.name)
|
110
|
+
|
111
|
+
|
112
|
+
class RemoveJobs(Transformation):
|
113
|
+
"""Removes jobs randomly until the number of jobs is within a specified
|
114
|
+
range."""
|
115
|
+
|
116
|
+
def __init__(
|
117
|
+
self,
|
118
|
+
min_jobs: int,
|
119
|
+
max_jobs: int,
|
120
|
+
target_jobs: int | None = None,
|
121
|
+
suffix: str | None = None,
|
122
|
+
):
|
123
|
+
"""
|
124
|
+
Args:
|
125
|
+
min_jobs: The minimum number of jobs to remain in the instance.
|
126
|
+
max_jobs: The maximum number of jobs to remain in the instance.
|
127
|
+
target_jobs: If specified, the number of jobs to remain in the
|
128
|
+
instance. Overrides min_jobs and max_jobs.
|
129
|
+
"""
|
130
|
+
if suffix is None:
|
131
|
+
suffix = f"_jobs={min_jobs}-{max_jobs}"
|
132
|
+
super().__init__(suffix=suffix)
|
133
|
+
self.min_jobs = min_jobs
|
134
|
+
self.max_jobs = max_jobs
|
135
|
+
self.target_jobs = target_jobs
|
136
|
+
|
137
|
+
def apply(self, instance: JobShopInstance) -> JobShopInstance:
|
138
|
+
if self.target_jobs is None:
|
139
|
+
target_jobs = random.randint(self.min_jobs, self.max_jobs)
|
140
|
+
else:
|
141
|
+
target_jobs = self.target_jobs
|
142
|
+
new_jobs = copy.deepcopy(instance.jobs)
|
143
|
+
|
144
|
+
while len(new_jobs) > target_jobs:
|
145
|
+
new_jobs.pop(random.randint(0, len(new_jobs) - 1))
|
146
|
+
|
147
|
+
return JobShopInstance(new_jobs, instance.name)
|
148
|
+
|
149
|
+
@staticmethod
|
150
|
+
def remove_job(
|
151
|
+
instance: JobShopInstance, job_index: int
|
152
|
+
) -> JobShopInstance:
|
153
|
+
"""Removes a specific job from the instance.
|
154
|
+
|
155
|
+
Args:
|
156
|
+
instance: The JobShopInstance from which to remove the job.
|
157
|
+
job_index: The index of the job to remove.
|
158
|
+
|
159
|
+
Returns:
|
160
|
+
A new JobShopInstance with the specified job removed.
|
161
|
+
"""
|
162
|
+
new_jobs = copy.deepcopy(instance.jobs)
|
163
|
+
new_jobs.pop(job_index)
|
164
|
+
return JobShopInstance(new_jobs, instance.name)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
[tool.poetry]
|
2
2
|
name = "job-shop-lib"
|
3
|
-
version = "0.
|
3
|
+
version = "0.2.0"
|
4
4
|
description = "An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP)"
|
5
5
|
authors = ["Pabloo22 <pablete.arino@gmail.com>"]
|
6
6
|
license = "MIT"
|
@@ -12,7 +12,7 @@ include = ["benchmarks/benchmark_instances.json"]
|
|
12
12
|
python = "^3.10"
|
13
13
|
ortools = "^9"
|
14
14
|
matplotlib = "^3"
|
15
|
-
pyarrow = "^
|
15
|
+
pyarrow = "^15.0.0" # An optional pandas' dependency that will be required in the future
|
16
16
|
networkx = "^3"
|
17
17
|
imageio = "^2"
|
18
18
|
pygraphviz = {version = "^1.12", optional = true}
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/benchmarking/benchmark_instances.json
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{job_shop_lib-0.1.2 → job_shop_lib-0.2.0}/job_shop_lib/dispatching/dispatching_rule_solver.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|