job-shop-lib 0.1.0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- job_shop_lib-0.1.0/LICENSE +21 -0
- job_shop_lib-0.1.0/PKG-INFO +363 -0
- job_shop_lib-0.1.0/README.md +341 -0
- job_shop_lib-0.1.0/job_shop_lib/__init__.py +20 -0
- job_shop_lib-0.1.0/job_shop_lib/base_solver.py +37 -0
- job_shop_lib-0.1.0/job_shop_lib/benchmarking/__init__.py +78 -0
- job_shop_lib-0.1.0/job_shop_lib/benchmarking/benchmark_instances.json +1 -0
- job_shop_lib-0.1.0/job_shop_lib/benchmarking/load_benchmark.py +142 -0
- job_shop_lib-0.1.0/job_shop_lib/cp_sat/__init__.py +5 -0
- job_shop_lib-0.1.0/job_shop_lib/cp_sat/ortools_solver.py +201 -0
- job_shop_lib-0.1.0/job_shop_lib/dispatching/__init__.py +49 -0
- job_shop_lib-0.1.0/job_shop_lib/dispatching/dispatcher.py +269 -0
- job_shop_lib-0.1.0/job_shop_lib/dispatching/dispatching_rule_solver.py +111 -0
- job_shop_lib-0.1.0/job_shop_lib/dispatching/dispatching_rules.py +160 -0
- job_shop_lib-0.1.0/job_shop_lib/dispatching/factories.py +206 -0
- job_shop_lib-0.1.0/job_shop_lib/dispatching/pruning_functions.py +116 -0
- job_shop_lib-0.1.0/job_shop_lib/exceptions.py +26 -0
- job_shop_lib-0.1.0/job_shop_lib/generators/__init__.py +7 -0
- job_shop_lib-0.1.0/job_shop_lib/generators/basic_generator.py +197 -0
- job_shop_lib-0.1.0/job_shop_lib/graphs/__init__.py +52 -0
- job_shop_lib-0.1.0/job_shop_lib/graphs/build_agent_task_graph.py +209 -0
- job_shop_lib-0.1.0/job_shop_lib/graphs/build_disjunctive_graph.py +78 -0
- job_shop_lib-0.1.0/job_shop_lib/graphs/constants.py +21 -0
- job_shop_lib-0.1.0/job_shop_lib/graphs/job_shop_graph.py +159 -0
- job_shop_lib-0.1.0/job_shop_lib/graphs/node.py +147 -0
- job_shop_lib-0.1.0/job_shop_lib/job_shop_instance.py +355 -0
- job_shop_lib-0.1.0/job_shop_lib/operation.py +120 -0
- job_shop_lib-0.1.0/job_shop_lib/schedule.py +180 -0
- job_shop_lib-0.1.0/job_shop_lib/scheduled_operation.py +97 -0
- job_shop_lib-0.1.0/job_shop_lib/visualization/__init__.py +25 -0
- job_shop_lib-0.1.0/job_shop_lib/visualization/agent_task_graph.py +257 -0
- job_shop_lib-0.1.0/job_shop_lib/visualization/create_gif.py +191 -0
- job_shop_lib-0.1.0/job_shop_lib/visualization/disjunctive_graph.py +206 -0
- job_shop_lib-0.1.0/job_shop_lib/visualization/gantt_chart.py +147 -0
- job_shop_lib-0.1.0/pyproject.toml +60 -0
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2024 Pablo Ariño
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,363 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: job-shop-lib
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP)
|
5
|
+
License: MIT
|
6
|
+
Author: Pabloo22
|
7
|
+
Author-email: pablete.arino@gmail.com
|
8
|
+
Requires-Python: >=3.10,<4.0
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: Programming Language :: Python :: 3.10
|
12
|
+
Classifier: Programming Language :: Python :: 3.11
|
13
|
+
Classifier: Programming Language :: Python :: 3.12
|
14
|
+
Provides-Extra: pygraphviz
|
15
|
+
Requires-Dist: imageio (>=2.34.0,<3.0.0)
|
16
|
+
Requires-Dist: matplotlib (>=3.8.3,<4.0.0)
|
17
|
+
Requires-Dist: networkx (>=3.2.1,<4.0.0)
|
18
|
+
Requires-Dist: ortools (>=9.8.3296,<10.0.0)
|
19
|
+
Requires-Dist: pyarrow (>=15.0.0,<16.0.0)
|
20
|
+
Requires-Dist: pygraphviz (>=1.12,<2.0) ; extra == "pygraphviz"
|
21
|
+
Description-Content-Type: text/markdown
|
22
|
+
|
23
|
+
<div align="center">
|
24
|
+
|
25
|
+
<img src="images/logo_with_transparent_background.png" height="150px">
|
26
|
+
|
27
|
+
<h1>Job Shop Library</h1>
|
28
|
+
|
29
|
+
[](https://github.com/Pabloo22/job_shop_lib/actions/workflows/tests.yaml)
|
30
|
+

|
31
|
+
[](https://github.com/psf/black)
|
32
|
+
[](https://opensource.org/licenses/MIT)
|
33
|
+
|
34
|
+
</div>
|
35
|
+
|
36
|
+
|
37
|
+
|
38
|
+
An easy-to-use and modular Python library for the Job Shop Scheduling Problem (JSSP) with a special focus on graph representations.
|
39
|
+
|
40
|
+
It provides intuitive data structures to represent instances and solutions, as well as solvers and visualization tools:
|
41
|
+
|
42
|
+
## Quick Start
|
43
|
+
|
44
|
+
### Create a Job Shop Instance
|
45
|
+
|
46
|
+
You can create a Job Shop Instance by defining the jobs and operations. An operation is defined by the machine(s) it is processed on and the duration (processing time).
|
47
|
+
|
48
|
+
```python
|
49
|
+
from job_shop_lib import JobShopInstance, Operation
|
50
|
+
|
51
|
+
|
52
|
+
job_1 = [Operation(machines=0, duration=1), Operation(1, 1), Operation(2, 7)]
|
53
|
+
job_2 = [Operation(1, 5), Operation(2, 1), Operation(0, 1)]
|
54
|
+
job_3 = [Operation(2, 1), Operation(0, 3), Operation(1, 2)]
|
55
|
+
|
56
|
+
jobs = [job_1, job_2, job_3]
|
57
|
+
|
58
|
+
instance = JobShopInstance(
|
59
|
+
jobs,
|
60
|
+
name="Example",
|
61
|
+
# Any extra parameters are stored inside the
|
62
|
+
# metadata attribute as a dictionary:
|
63
|
+
lower_bound=7,
|
64
|
+
)
|
65
|
+
```
|
66
|
+
|
67
|
+
### Load a Benchmark Instance
|
68
|
+
|
69
|
+
You can load a benchmark instance from the library:
|
70
|
+
|
71
|
+
```python
|
72
|
+
from job_shop_lib.benchmarking import load_benchmark_instance
|
73
|
+
|
74
|
+
ft06 = load_benchmark_instance("ft06")
|
75
|
+
```
|
76
|
+
|
77
|
+
The module `benchmarks` contains functions to load the instances from the file and return them as `JobShopInstance` objects without having to download them
|
78
|
+
manually. The instances are stored in [benchmark_instances.json](job_shop_lib/benchmarks/benchmark_instances.json).
|
79
|
+
|
80
|
+
The contributions to this benchmark dataset are as follows:
|
81
|
+
|
82
|
+
- `abz5-9`: This subset, comprising five instances, was introduced by Adams et
|
83
|
+
al. (1988).
|
84
|
+
|
85
|
+
- `ft06`, `ft10`, `ft20`: These three instances are attributed to the work of
|
86
|
+
Fisher and Thompson, as detailed in their 1963 work.
|
87
|
+
|
88
|
+
- `la01-40`: A collection of forty instances, this group was contributed by
|
89
|
+
Lawrence, as referenced in his 1984 report.
|
90
|
+
|
91
|
+
- `orb01-10`: Ten instances in this category were provided by Applegate and
|
92
|
+
Cook, as seen in their 1991 study.
|
93
|
+
|
94
|
+
- `swb01-20`: This segment, encompassing twenty instances, was contributed by
|
95
|
+
Storer et al., as per their 1992 article.
|
96
|
+
|
97
|
+
- `yn1-4`: Yamada and Nakano are credited with the addition of four instances
|
98
|
+
in this group, as found in their 1992 paper.
|
99
|
+
|
100
|
+
- `ta01-80`: The largest contribution, consisting of eighty instances, was
|
101
|
+
made by Taillard, as documented in his 1993 paper.
|
102
|
+
|
103
|
+
The metadata from these instances has been updated using data from:
|
104
|
+
|
105
|
+
Thomas Weise. jsspInstancesAndResults. Accessed in January 2024.
|
106
|
+
Available at: https://github.com/thomasWeise/jsspInstancesAndResults
|
107
|
+
|
108
|
+
It includes the following information:
|
109
|
+
- "optimum" (`int` | `None`): The optimal makespan for the instance.
|
110
|
+
- "lower_bound" (`int`): The best lower bound known for the makespan. If
|
111
|
+
optimality is known, it is equal to the optimum.
|
112
|
+
- "upper_bound" (`int`): The best upper bound known for the makespan. If
|
113
|
+
optimality is known, it is equal to the optimum.
|
114
|
+
- "reference" (`str`): The paper or source where the instance was first
|
115
|
+
introduced.
|
116
|
+
|
117
|
+
```python
|
118
|
+
>>> ft06.metadata
|
119
|
+
{'optimum': 55,
|
120
|
+
'upper_bound': 55,
|
121
|
+
'lower_bound': 55,
|
122
|
+
'reference': "J.F. Muth, G.L. Thompson. 'Industrial scheduling.', Englewood Cliffs, NJ, Prentice-Hall, 1963."}
|
123
|
+
```
|
124
|
+
|
125
|
+
### Generate a Random Instance
|
126
|
+
|
127
|
+
You can also generate a random instance with the `InstanceGenerator` class.
|
128
|
+
|
129
|
+
```python
|
130
|
+
from job_shop_lib.generators import BasicGenerator
|
131
|
+
|
132
|
+
generator = BasicGenerator(
|
133
|
+
duration_range=(5, 10), seed=42, num_jobs=5, num_machines=5
|
134
|
+
)
|
135
|
+
random_instance = generator.generate()
|
136
|
+
```
|
137
|
+
|
138
|
+
This class can also work as an iterator to generate multiple instances:
|
139
|
+
|
140
|
+
```python
|
141
|
+
generator = InstanceGenerator(iteration_limit=100, seed=42)
|
142
|
+
instances = []
|
143
|
+
for instance in generator:
|
144
|
+
instances.append(instance)
|
145
|
+
|
146
|
+
# Or simply:
|
147
|
+
instances = list(generator)
|
148
|
+
```
|
149
|
+
|
150
|
+
### Solve an Instance with the OR-Tools' Constraint-Programming SAT Solver
|
151
|
+
|
152
|
+
Every solver is a `Callable` that receives a `JobShopInstance` and returns a `Schedule` object.
|
153
|
+
|
154
|
+
```python
|
155
|
+
import matplotlib.pyplot as plt
|
156
|
+
|
157
|
+
from job_shop_lib.cp_sat import ORToolsSolver
|
158
|
+
from job_shop_lib.visualization import plot_gantt_chart
|
159
|
+
|
160
|
+
solver = ORToolsSolver(max_time_in_seconds=10)
|
161
|
+
ft06_schedule = solver(ft06)
|
162
|
+
|
163
|
+
fig, ax = plot_gantt_chart(ft06_schedule)
|
164
|
+
plt.show()
|
165
|
+
```
|
166
|
+

|
167
|
+
|
168
|
+
### Solve an Instance with a Dispatching Rule Solver
|
169
|
+
|
170
|
+
A dispatching rule is a heuristic guideline used to prioritize and sequence jobs on various machines. Supported dispatching rules are:
|
171
|
+
|
172
|
+
```python
|
173
|
+
class DispatchingRule(str, Enum):
|
174
|
+
SHORTEST_PROCESSING_TIME = "shortest_processing_time"
|
175
|
+
FIRST_COME_FIRST_SERVED = "first_come_first_served"
|
176
|
+
MOST_WORK_REMAINING = "most_work_remaining"
|
177
|
+
MOST_OPERATION_REMAINING = "most_operation_remaining"
|
178
|
+
RANDOM = "random"
|
179
|
+
```
|
180
|
+
|
181
|
+
We can visualize the solution with a `DispatchingRuleSolver` as a gif:
|
182
|
+
|
183
|
+
```python
|
184
|
+
from job_shop_lib.visualization import create_gif, get_plot_function
|
185
|
+
from job_shop_lib.solvers import DispatchingRuleSolver, DispatchingRule
|
186
|
+
|
187
|
+
plt.style.use("ggplot")
|
188
|
+
|
189
|
+
mwkr_solver = DispatchingRuleSolver("most_work_remaining")
|
190
|
+
plot_function = get_plot_function(title="Solution with Most Work Remaining Rule")
|
191
|
+
create_gif(
|
192
|
+
gif_path="ft06_optimized.gif",
|
193
|
+
instance=ft06,
|
194
|
+
solver=mwkr_solver,
|
195
|
+
plot_function=plot_function,
|
196
|
+
fps=4,
|
197
|
+
)
|
198
|
+
```
|
199
|
+
|
200
|
+

|
201
|
+
|
202
|
+
The dashed red line represents the current time step, which is computed as the earliest time when the next operation can start.
|
203
|
+
|
204
|
+
> [!TIP]
|
205
|
+
> You can change the style of the gantt chart with `plt.style.use("name-of-the-style")`.
|
206
|
+
> Personally, I consider the `ggplot` style to be the cleanest.
|
207
|
+
|
208
|
+
### Representing Instances as Graphs
|
209
|
+
|
210
|
+
One of the main purposes of this library is to provide an easy way to encode instances as graphs. This can be very useful, not only for visualization purposes but also for developing Graph Neural Network-based algorithms.
|
211
|
+
|
212
|
+
A graph is represented by the `JobShopGraph` class, which internally stores a `networkx.DiGraph` object.
|
213
|
+
|
214
|
+
#### Disjunctive Graph
|
215
|
+
|
216
|
+
The disjunctive graph is created by first adding nodes representing each operation in the jobs, along with two special nodes: a source $S$ and a sink $T$. Each operation node is linked to the next operation in its job sequence by **conjunctive edges**, forming a path from the source to the sink. These edges represent the order in which operations of a single job must be performed.
|
217
|
+
|
218
|
+
Additionally, the graph includes **disjunctive edges** between operations that use the same machine but belong to different jobs. These edges are bidirectional, indicating that either of the connected operations can be performed first. The disjunctive edges thus represent the scheduling choices available: the order in which operations sharing a machine can be processed. Solving the Job Shop Scheduling problem involves choosing a direction for each disjunctive edge such that the overall processing time is minimized.
|
219
|
+
|
220
|
+
```python
|
221
|
+
from job_shop_lib.visualization import plot_disjunctive_graph
|
222
|
+
|
223
|
+
fig = plot_disjunctive_graph(instance)
|
224
|
+
plt.show()
|
225
|
+
```
|
226
|
+
|
227
|
+

|
228
|
+
|
229
|
+
|
230
|
+
The `JobShopGraph` class provides easy access to the nodes, for example, to get all the nodes of a specific type:
|
231
|
+
|
232
|
+
```python
|
233
|
+
from job_shop_lib.graphs import build_disjunctive_graph
|
234
|
+
|
235
|
+
disjunctive_graph = build_disjunctive_graph(instance)
|
236
|
+
|
237
|
+
>>> disjunctive_graph.nodes_by_type
|
238
|
+
defaultdict(list,
|
239
|
+
{<NodeType.OPERATION: 1>: [Node(node_type=OPERATION, value=O(m=0, d=1, j=0, p=0), id=0),
|
240
|
+
Node(node_type=OPERATION, value=O(m=1, d=1, j=0, p=1), id=1),
|
241
|
+
Node(node_type=OPERATION, value=O(m=2, d=7, j=0, p=2), id=2),
|
242
|
+
Node(node_type=OPERATION, value=O(m=1, d=5, j=1, p=0), id=3),
|
243
|
+
Node(node_type=OPERATION, value=O(m=2, d=1, j=1, p=1), id=4),
|
244
|
+
Node(node_type=OPERATION, value=O(m=0, d=1, j=1, p=2), id=5),
|
245
|
+
Node(node_type=OPERATION, value=O(m=2, d=1, j=2, p=0), id=6),
|
246
|
+
Node(node_type=OPERATION, value=O(m=0, d=3, j=2, p=1), id=7),
|
247
|
+
Node(node_type=OPERATION, value=O(m=1, d=2, j=2, p=2), id=8)],
|
248
|
+
<NodeType.SOURCE: 5>: [Node(node_type=SOURCE, value=None, id=9)],
|
249
|
+
<NodeType.SINK: 6>: [Node(node_type=SINK, value=None, id=10)]})
|
250
|
+
```
|
251
|
+
|
252
|
+
Other attributes include:
|
253
|
+
- `nodes`: A list of all nodes in the graph.
|
254
|
+
- `nodes_by_machine`: A nested list mapping each machine to its associated operation nodes, aiding in machine-specific analysis.
|
255
|
+
- `nodes_by_job`: Similar to `nodes_by_machine`, but maps jobs to their operation nodes, useful for job-specific traversal.
|
256
|
+
|
257
|
+
#### Agent-Task Graph
|
258
|
+
|
259
|
+
Introduced in the paper "ScheduleNet: Learn to solve multi-agent scheduling problems with reinforcement learning" by [Park et al. (2021)](https://arxiv.org/abs/2106.03051), the Agent-Task Graph is a graph that represents the scheduling problem as a multi-agent reinforcement learning problem.
|
260
|
+
|
261
|
+
In contrast to the disjunctive graph, instead of connecting operations
|
262
|
+
that share the same resources directly by disjunctive edges, operation
|
263
|
+
nodes are connected with machine ones.
|
264
|
+
|
265
|
+
All machine nodes are connected between them, and all operation nodes
|
266
|
+
from the same job are connected by non-directed edges too.
|
267
|
+
|
268
|
+
```python
|
269
|
+
from job_shop_lib.graphs import (
|
270
|
+
build_complete_agent_task_graph,
|
271
|
+
build_agent_task_graph_with_jobs,
|
272
|
+
build_agent_task_graph,
|
273
|
+
)
|
274
|
+
from job_shop_lib.visualization import plot_agent_task_graph
|
275
|
+
|
276
|
+
complete_agent_task_graph = build_complete_agent_task_graph(instance)
|
277
|
+
|
278
|
+
fig = plot_agent_task_graph(complete_agent_task_graph)
|
279
|
+
plt.show()
|
280
|
+
```
|
281
|
+
|
282
|
+
<div align="center">
|
283
|
+
<img src="examples/agent_task_graph.png" width="300">
|
284
|
+
</div>
|
285
|
+
<br>
|
286
|
+
|
287
|
+
----
|
288
|
+
|
289
|
+
For more details, check the [examples](examples) folder.
|
290
|
+
|
291
|
+
## Installation
|
292
|
+
|
293
|
+
In the future, the library will be available on PyPI. For now, you can install it from the source code.
|
294
|
+
|
295
|
+
### For development
|
296
|
+
|
297
|
+
#### With Poetry
|
298
|
+
|
299
|
+
1. Clone the repository.
|
300
|
+
|
301
|
+
2. Install [poetry](https://python-poetry.org/docs/) if you don't have it already:
|
302
|
+
```bash
|
303
|
+
pip install poetry==1.7
|
304
|
+
```
|
305
|
+
3. Create the virtual environment:
|
306
|
+
```bash
|
307
|
+
poetry shell
|
308
|
+
```
|
309
|
+
4. Install dependencies:
|
310
|
+
```bash
|
311
|
+
poetry install --with notebooks --with test --with lint --all-extras
|
312
|
+
```
|
313
|
+
or equivalently:
|
314
|
+
```bash
|
315
|
+
make poetry_install_all
|
316
|
+
```
|
317
|
+
|
318
|
+
#### With PyPI
|
319
|
+
|
320
|
+
If you don't want to use Poetry, you can install the library directly from the source code:
|
321
|
+
|
322
|
+
```bash
|
323
|
+
git clone https://github.com/Pabloo22/job_shop_lib.git
|
324
|
+
cd job_shop_lib
|
325
|
+
pip install -e .
|
326
|
+
```
|
327
|
+
|
328
|
+
## License
|
329
|
+
|
330
|
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
331
|
+
|
332
|
+
|
333
|
+
## References
|
334
|
+
|
335
|
+
- J. Adams, E. Balas, and D. Zawack, "The shifting bottleneck procedure
|
336
|
+
for job shop scheduling," Management Science, vol. 34, no. 3,
|
337
|
+
pp. 391–401, 1988.
|
338
|
+
|
339
|
+
- J.F. Muth and G.L. Thompson, Industrial scheduling. Englewood Cliffs,
|
340
|
+
NJ: Prentice-Hall, 1963.
|
341
|
+
|
342
|
+
- S. Lawrence, "Resource constrained project scheduling: An experimental
|
343
|
+
investigation of heuristic scheduling techniques (Supplement),"
|
344
|
+
Carnegie-Mellon University, Graduate School of Industrial
|
345
|
+
Administration, Pittsburgh, Pennsylvania, 1984.
|
346
|
+
|
347
|
+
- D. Applegate and W. Cook, "A computational study of job-shop
|
348
|
+
scheduling," ORSA Journal on Computer, vol. 3, no. 2, pp. 149–156,
|
349
|
+
1991.
|
350
|
+
|
351
|
+
- R.H. Storer, S.D. Wu, and R. Vaccari, "New search spaces for
|
352
|
+
sequencing problems with applications to job-shop scheduling,"
|
353
|
+
Management Science, vol. 38, no. 10, pp. 1495–1509, 1992.
|
354
|
+
|
355
|
+
- T. Yamada and R. Nakano, "A genetic algorithm applicable to
|
356
|
+
large-scale job-shop problems," in Proceedings of the Second
|
357
|
+
International Workshop on Parallel Problem Solving from Nature
|
358
|
+
(PPSN'2), Brussels, Belgium, pp. 281–290, 1992.
|
359
|
+
|
360
|
+
- E. Taillard, "Benchmarks for basic scheduling problems," European
|
361
|
+
Journal of Operational Research, vol. 64, no. 2, pp. 278–285, 1993.
|
362
|
+
|
363
|
+
- Park, Junyoung, Sanjar Bakhtiyar, and Jinkyoo Park. "ScheduleNet: Learn to solve multi-agent scheduling problems with reinforcement learning." arXiv preprint arXiv:2106.03051, 2021.
|