jerry-thomas 0.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- jerry_thomas-0.0.2/LICENSE +21 -0
- jerry_thomas-0.0.2/PKG-INFO +301 -0
- jerry_thomas-0.0.2/README.md +285 -0
- jerry_thomas-0.0.2/pyproject.toml +84 -0
- jerry_thomas-0.0.2/setup.cfg +4 -0
- jerry_thomas-0.0.2/src/datapipeline/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/analysis/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/analysis/vector_analyzer.py +49 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/app.py +208 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/analyze.py +32 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/domain.py +9 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/filter.py +10 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/link.py +95 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/list_.py +22 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/plugin.py +10 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/run.py +151 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/commands/source.py +17 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/openers.py +11 -0
- jerry_thomas-0.0.2/src/datapipeline/cli/visuals.py +91 -0
- jerry_thomas-0.0.2/src/datapipeline/common/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/common/geo.py +13 -0
- jerry_thomas-0.0.2/src/datapipeline/config/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/config/catalog.py +22 -0
- jerry_thomas-0.0.2/src/datapipeline/config/dataset/dataset.py +19 -0
- jerry_thomas-0.0.2/src/datapipeline/config/dataset/feature.py +24 -0
- jerry_thomas-0.0.2/src/datapipeline/config/dataset/group_by.py +31 -0
- jerry_thomas-0.0.2/src/datapipeline/config/dataset/loader.py +19 -0
- jerry_thomas-0.0.2/src/datapipeline/config/dataset/normalize.py +10 -0
- jerry_thomas-0.0.2/src/datapipeline/config/project.py +24 -0
- jerry_thomas-0.0.2/src/datapipeline/domain/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/domain/feature.py +10 -0
- jerry_thomas-0.0.2/src/datapipeline/domain/record.py +20 -0
- jerry_thomas-0.0.2/src/datapipeline/domain/vector.py +44 -0
- jerry_thomas-0.0.2/src/datapipeline/filters/filters.py +88 -0
- jerry_thomas-0.0.2/src/datapipeline/mappers/noop.py +5 -0
- jerry_thomas-0.0.2/src/datapipeline/mappers/synthetic/time.py +19 -0
- jerry_thomas-0.0.2/src/datapipeline/parsers/identity.py +14 -0
- jerry_thomas-0.0.2/src/datapipeline/pipeline/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/pipeline/pipelines.py +46 -0
- jerry_thomas-0.0.2/src/datapipeline/pipeline/stages.py +64 -0
- jerry_thomas-0.0.2/src/datapipeline/pipeline/utils/keygen.py +20 -0
- jerry_thomas-0.0.2/src/datapipeline/pipeline/utils/memory_sort.py +27 -0
- jerry_thomas-0.0.2/src/datapipeline/pipeline/utils/ordering.py +52 -0
- jerry_thomas-0.0.2/src/datapipeline/pipeline/utils/transform_utils.py +120 -0
- jerry_thomas-0.0.2/src/datapipeline/plugins.py +7 -0
- jerry_thomas-0.0.2/src/datapipeline/services/bootstrap.py +158 -0
- jerry_thomas-0.0.2/src/datapipeline/services/constants.py +12 -0
- jerry_thomas-0.0.2/src/datapipeline/services/entrypoints.py +69 -0
- jerry_thomas-0.0.2/src/datapipeline/services/factories.py +18 -0
- jerry_thomas-0.0.2/src/datapipeline/services/paths.py +28 -0
- jerry_thomas-0.0.2/src/datapipeline/services/project_paths.py +35 -0
- jerry_thomas-0.0.2/src/datapipeline/services/scaffold/__init__.py +2 -0
- jerry_thomas-0.0.2/src/datapipeline/services/scaffold/domain.py +23 -0
- jerry_thomas-0.0.2/src/datapipeline/services/scaffold/filter.py +32 -0
- jerry_thomas-0.0.2/src/datapipeline/services/scaffold/mappers.py +52 -0
- jerry_thomas-0.0.2/src/datapipeline/services/scaffold/plugin.py +23 -0
- jerry_thomas-0.0.2/src/datapipeline/services/scaffold/source.py +165 -0
- jerry_thomas-0.0.2/src/datapipeline/services/scaffold/templates.py +32 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/composed_loader.py +38 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/decoders.py +64 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/factory.py +53 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/models/__init__.py +18 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/models/base.py +12 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/models/generator.py +23 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/models/loader.py +52 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/models/parser.py +11 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/models/source.py +28 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/models/synthetic.py +11 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/synthetic/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/synthetic/time/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/synthetic/time/loader.py +30 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/synthetic/time/parser.py +9 -0
- jerry_thomas-0.0.2/src/datapipeline/sources/transports.py +66 -0
- jerry_thomas-0.0.2/src/datapipeline/streams/canonical.py +28 -0
- jerry_thomas-0.0.2/src/datapipeline/streams/raw.py +16 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/README.md +48 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/config/contracts/time_hour_sin.yaml +4 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/config/contracts/time_linear.yaml +4 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/config/contracts/time_ticks.yaml +2 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/config/distilleries/time_ticks.yaml +9 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/config/project.yaml +8 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/config/recipe.yaml +17 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/pyproject.toml +11 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/plugin_skeleton/src/{{PACKAGE_NAME}}/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/dto.py.j2 +24 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/filter.py.j2 +16 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/loader_synthetic.py.j2 +38 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/mapper.py.j2 +20 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/parser.py.j2 +18 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/parser_custom.py.j2 +14 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/record.py.j2 +18 -0
- jerry_thomas-0.0.2/src/datapipeline/templates/stubs/source.yaml.j2 +11 -0
- jerry_thomas-0.0.2/src/datapipeline/transforms/sequence.py +31 -0
- jerry_thomas-0.0.2/src/datapipeline/transforms/transforms.py +15 -0
- jerry_thomas-0.0.2/src/datapipeline/utils/__init__.py +0 -0
- jerry_thomas-0.0.2/src/datapipeline/utils/load.py +36 -0
- jerry_thomas-0.0.2/src/datapipeline/utils/time.py +32 -0
- jerry_thomas-0.0.2/src/jerry_thomas.egg-info/PKG-INFO +301 -0
- jerry_thomas-0.0.2/src/jerry_thomas.egg-info/SOURCES.txt +102 -0
- jerry_thomas-0.0.2/src/jerry_thomas.egg-info/dependency_links.txt +1 -0
- jerry_thomas-0.0.2/src/jerry_thomas.egg-info/entry_points.txt +40 -0
- jerry_thomas-0.0.2/src/jerry_thomas.egg-info/requires.txt +5 -0
- jerry_thomas-0.0.2/src/jerry_thomas.egg-info/top_level.txt +1 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Anders Skottlind
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,301 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: jerry-thomas
|
|
3
|
+
Version: 0.0.2
|
|
4
|
+
Summary: Jerry-Thomas: a stream-first, plugin-friendly data pipeline (mixology-themed CLI)
|
|
5
|
+
Author: Your Name
|
|
6
|
+
License: MIT
|
|
7
|
+
Requires-Python: >=3.9
|
|
8
|
+
Description-Content-Type: text/markdown
|
|
9
|
+
License-File: LICENSE
|
|
10
|
+
Requires-Dist: numpy<3.0,>=1.24
|
|
11
|
+
Requires-Dist: pydantic>=1.8
|
|
12
|
+
Requires-Dist: PyYAML>=5.4
|
|
13
|
+
Requires-Dist: tqdm>=4.0
|
|
14
|
+
Requires-Dist: jinja2>=3.0
|
|
15
|
+
Dynamic: license-file
|
|
16
|
+
|
|
17
|
+
# Jerry Thomas
|
|
18
|
+
|
|
19
|
+
Jerry Thomas turns the datapipeline runtime into a cocktail program. You still install the
|
|
20
|
+
same Python package (`datapipeline`) and tap into the plugin architecture, but every CLI
|
|
21
|
+
dance step nods to a craft bar. Declarative YAML menus describe projects, sources and
|
|
22
|
+
datasets, pipelines move payloads through record/feature/vector stations, and setuptools
|
|
23
|
+
entry points keep the back bar stocked with new ingredients.
|
|
24
|
+
|
|
25
|
+
---
|
|
26
|
+
|
|
27
|
+
## How the bar is set up
|
|
28
|
+
|
|
29
|
+
```text
|
|
30
|
+
raw source → canonical stream → record stage → feature stage → vector stage
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
1. **Raw sources (bottles on the shelf)** bundle a loader + parser recipe. Loaders handle
|
|
34
|
+
the I/O (files, URLs or synthetic runs) and parsers map rows into typed records while
|
|
35
|
+
skimming the dregs (`src/datapipeline/sources/models/loader.py`,
|
|
36
|
+
`src/datapipeline/sources/models/source.py`). The bootstrapper registers each source under
|
|
37
|
+
an alias so you can order it later in the service flow (`src/datapipeline/streams/raw.py`,
|
|
38
|
+
`src/datapipeline/services/bootstrap.py`).
|
|
39
|
+
2. **Canonical streams (house infusions)** optionally apply a mapper on top of a raw
|
|
40
|
+
source to normalize payloads before the dataset drinks them
|
|
41
|
+
(`src/datapipeline/streams/canonical.py`, `src/datapipeline/services/factories.py`).
|
|
42
|
+
3. **Dataset stages (prep stations)** read the configured canonical streams. Record stages
|
|
43
|
+
are your strainers and shakers, feature stages bottle the clarified spirits into keyed
|
|
44
|
+
features (with optional sequence transforms), and vector stages line up the flights ready
|
|
45
|
+
for service (`src/datapipeline/pipeline/pipelines.py`, `src/datapipeline/pipeline/stages.py`,
|
|
46
|
+
`src/datapipeline/config/dataset/feature.py`).
|
|
47
|
+
4. **Vectors (tasting flights)** carry grouped feature values; downstream tasters can
|
|
48
|
+
inspect them for balance and completeness
|
|
49
|
+
(`src/datapipeline/domain/vector.py`, `src/datapipeline/analysis/vector_analyzer.py`).
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## Bar back cheat sheet
|
|
54
|
+
|
|
55
|
+
| Path | What lives here |
|
|
56
|
+
| ---------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
57
|
+
| `src/datapipeline/cli` | Argparse-powered bar program with commands for running pipelines, inspecting pours, scaffolding plugins and projecting service flow (`cli/app.py`, `cli/openers.py`, `cli/visuals.py`). |
|
|
58
|
+
| `src/datapipeline/services` | Bootstrapping (project loading, YAML interpolation), runtime factories and scaffolding helpers for new bar tools (`services/bootstrap.py`, `services/factories.py`, `services/scaffold/plugin.py`). |
|
|
59
|
+
| `src/datapipeline/pipeline` | Pure functions that build record/feature/vector iterators plus supporting utilities for ordering and transform wiring (`pipeline/pipelines.py`, `pipeline/utils/transform_utils.py`). |
|
|
60
|
+
| `src/datapipeline/domain` | Data structures representing records, feature records and vectors coming off the line (`domain/record.py`, `domain/feature.py`, `domain/vector.py`). |
|
|
61
|
+
| `src/datapipeline/transforms` & `src/datapipeline/filters` | Built-in transforms (lagging timestamps, sliding windows) and filter helpers exposed through entry points (`transforms/transforms.py`, `transforms/sequence.py`, `filters/filters.py`). |
|
|
62
|
+
| `src/datapipeline/sources/synthetic/time` | Example synthetic time-series loader/parser pair plus helper mappers for experimentation while the real spirits arrive (`sources/synthetic/time/loader.py`, `sources/synthetic/time/parser.py`, `mappers/synthetic/time.py`). |
|
|
63
|
+
|
|
64
|
+
---
|
|
65
|
+
|
|
66
|
+
## Opening the bar
|
|
67
|
+
|
|
68
|
+
### 1. Install the tools
|
|
69
|
+
|
|
70
|
+
```bash
|
|
71
|
+
python -m venv .venv
|
|
72
|
+
source .venv/bin/activate # Windows: .venv\Scripts\activate
|
|
73
|
+
python -m pip install --upgrade pip
|
|
74
|
+
pip install jerry-thomas
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
The published wheel exposes the `jerry` CLI (backed by the `datapipeline` package) and
|
|
78
|
+
pulls in core dependencies like Pydantic, PyYAML, tqdm and Jinja2 (see
|
|
79
|
+
`pyproject.toml`). Prefer `pip install -e .` only when you are actively developing this
|
|
80
|
+
repository. Double-check the back bar is reachable:
|
|
81
|
+
|
|
82
|
+
```bash
|
|
83
|
+
python -c "import datapipeline; print('bar ready')"
|
|
84
|
+
```
|
|
85
|
+
|
|
86
|
+
### 2. Draft your bar book
|
|
87
|
+
|
|
88
|
+
Create a `config/project.yaml` so the runtime knows where to find ingredients, infusions
|
|
89
|
+
and the tasting menu. Globals are optional but handy for sharing values—they are
|
|
90
|
+
interpolated into downstream YAML specs during bootstrap
|
|
91
|
+
(`src/datapipeline/config/project.py`, `src/datapipeline/services/bootstrap.py`).
|
|
92
|
+
|
|
93
|
+
```yaml
|
|
94
|
+
version: 1
|
|
95
|
+
paths:
|
|
96
|
+
sources: config/distilleries
|
|
97
|
+
streams: config/contracts
|
|
98
|
+
dataset: config/recipe.yaml
|
|
99
|
+
globals:
|
|
100
|
+
opening_time: "2024-01-01T16:00:00Z"
|
|
101
|
+
last_call: "2024-01-02T02:00:00Z"
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
> Helper functions in `src/datapipeline/services/project_paths.py` resolve relative paths
|
|
105
|
+
> against the project root and ensure the mise en place folders exist.
|
|
106
|
+
|
|
107
|
+
### 3. Stock the bottles (raw sources)
|
|
108
|
+
|
|
109
|
+
Create `config/distilleries/<alias>.yaml` files. Each must expose a `parser` and `loader`
|
|
110
|
+
pointing at entry points plus any constructor arguments
|
|
111
|
+
(`src/datapipeline/services/bootstrap.py`). Here is a synthetic clock source that feels
|
|
112
|
+
like a drip of barrel-aged bitters:
|
|
113
|
+
|
|
114
|
+
```yaml
|
|
115
|
+
# config/distilleries/time_ticks.yaml
|
|
116
|
+
parser:
|
|
117
|
+
entrypoint: "synthetic.time"
|
|
118
|
+
args: {}
|
|
119
|
+
loader:
|
|
120
|
+
entrypoint: "synthetic.time"
|
|
121
|
+
args:
|
|
122
|
+
start: "${opening_time}"
|
|
123
|
+
end: "${last_call}"
|
|
124
|
+
frequency: "1h"
|
|
125
|
+
```
|
|
126
|
+
|
|
127
|
+
That file wires up the built-in `TimeTicksGenerator` + parser pair that yields
|
|
128
|
+
timezone-aware timestamps (`sources/synthetic/time/loader.py`,
|
|
129
|
+
`sources/synthetic/time/parser.py`).
|
|
130
|
+
|
|
131
|
+
### 4. Mix house infusions (canonical streams)
|
|
132
|
+
|
|
133
|
+
Canonical specs live under `config/contracts/` and reference a raw source alias plus an
|
|
134
|
+
optional mapper entry point (`src/datapipeline/services/bootstrap.py`,
|
|
135
|
+
`src/datapipeline/streams/canonical.py`). This example turns each timestamp into a citrus
|
|
136
|
+
spritz feature:
|
|
137
|
+
|
|
138
|
+
```yaml
|
|
139
|
+
# config/contracts/time/encode.yaml
|
|
140
|
+
source: time_ticks
|
|
141
|
+
mapper:
|
|
142
|
+
entrypoint: "synthetic.time.encode"
|
|
143
|
+
args:
|
|
144
|
+
mode: spritz
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
The mapper uses the provided mode to create a new `TimeFeatureRecord` stream ready for the
|
|
148
|
+
feature stage (`mappers/synthetic/time.py`).
|
|
149
|
+
|
|
150
|
+
### 5. Script the tasting menu (dataset)
|
|
151
|
+
|
|
152
|
+
Datasets describe which canonical streams should be read at each station and how flights
|
|
153
|
+
are grouped (`src/datapipeline/config/dataset/dataset.py`). A minimal hourly menu might
|
|
154
|
+
look like:
|
|
155
|
+
|
|
156
|
+
```yaml
|
|
157
|
+
# config/recipe.yaml
|
|
158
|
+
group_by:
|
|
159
|
+
keys:
|
|
160
|
+
- type: time
|
|
161
|
+
field: time
|
|
162
|
+
resolution: 1h
|
|
163
|
+
features:
|
|
164
|
+
- stream: time.encode
|
|
165
|
+
feature_id: hour_spritz
|
|
166
|
+
partition_by: null
|
|
167
|
+
filters: []
|
|
168
|
+
transforms:
|
|
169
|
+
- time_lag: "0h"
|
|
170
|
+
```
|
|
171
|
+
|
|
172
|
+
Use the sample `dataset` template as a starting point if you prefer scaffolding before
|
|
173
|
+
pouring concrete values. Group keys support time bucketing (with automatic flooring to the
|
|
174
|
+
requested resolution) and categorical splits
|
|
175
|
+
(`src/datapipeline/config/dataset/group_by.py`,
|
|
176
|
+
`src/datapipeline/config/dataset/normalize.py`). You can also attach feature or sequence
|
|
177
|
+
transforms—such as the sliding `TimeWindowTransformer`—directly in the YAML by referencing
|
|
178
|
+
their entry point names (`src/datapipeline/transforms/sequence.py`).
|
|
179
|
+
|
|
180
|
+
Once the book is ready, run the bootstrapper (the CLI does this automatically) to
|
|
181
|
+
materialize all registered sources and streams
|
|
182
|
+
(`src/datapipeline/services/bootstrap.py`).
|
|
183
|
+
|
|
184
|
+
---
|
|
185
|
+
|
|
186
|
+
## Running service
|
|
187
|
+
|
|
188
|
+
### Prep any station (with visuals)
|
|
189
|
+
|
|
190
|
+
```bash
|
|
191
|
+
jerry prep pour --project config/project.yaml --limit 20
|
|
192
|
+
jerry prep build --project config/project.yaml --limit 20
|
|
193
|
+
jerry prep stir --project config/project.yaml --limit 20
|
|
194
|
+
```
|
|
195
|
+
|
|
196
|
+
- `prep pour` shows the record-stage ingredients headed for each feature.
|
|
197
|
+
- `prep build` highlights `FeatureRecord` entries after the shake/strain sequence.
|
|
198
|
+
- `prep stir` emits grouped vectors—the tasting flight before it leaves the pass.
|
|
199
|
+
|
|
200
|
+
All variants respect `--limit` and display tqdm-powered progress bars for the underlying
|
|
201
|
+
loaders. The CLI wires up `build_record_pipeline`, `build_feature_pipeline` and
|
|
202
|
+
`build_vector_pipeline`, so what you see mirrors the service line
|
|
203
|
+
(`src/datapipeline/cli/app.py`, `src/datapipeline/cli/commands/run.py`,
|
|
204
|
+
`src/datapipeline/cli/openers.py`, `src/datapipeline/cli/visuals.py`,
|
|
205
|
+
`src/datapipeline/pipeline/pipelines.py`).
|
|
206
|
+
|
|
207
|
+
### Serve the flights (production mode)
|
|
208
|
+
|
|
209
|
+
```bash
|
|
210
|
+
jerry serve --project config/project.yaml --output print
|
|
211
|
+
jerry serve --project config/project.yaml --output stream
|
|
212
|
+
jerry serve --project config/project.yaml --output exports/batch.pt
|
|
213
|
+
```
|
|
214
|
+
|
|
215
|
+
Production mode skips the bar flair and focuses on throughput. `print` writes tasting
|
|
216
|
+
notes to stdout, `stream` emits newline-delimited JSON (with values coerced to strings when
|
|
217
|
+
necessary), and a `.pt` destination stores a pickle-compatible payload for later pours.
|
|
218
|
+
|
|
219
|
+
### Taste the balance (vector quality)
|
|
220
|
+
|
|
221
|
+
```bash
|
|
222
|
+
jerry taste --project config/project.yaml
|
|
223
|
+
```
|
|
224
|
+
|
|
225
|
+
This command reuses the vector pipeline, collects presence counts for every configured
|
|
226
|
+
feature and flags empty or incomplete flights so you can diagnose upstream issues quickly
|
|
227
|
+
(`src/datapipeline/cli/commands/analyze.py`, `src/datapipeline/analysis/vector_analyzer.py`).
|
|
228
|
+
Use `--limit` to spot-check during service.
|
|
229
|
+
|
|
230
|
+
---
|
|
231
|
+
|
|
232
|
+
## Extending the bar program
|
|
233
|
+
|
|
234
|
+
### Scaffold a plugin package
|
|
235
|
+
|
|
236
|
+
```bash
|
|
237
|
+
jerry station init --name my_datapipeline --out .
|
|
238
|
+
```
|
|
239
|
+
|
|
240
|
+
The generator copies a ready-made skeleton (pyproject, README, package directory) and
|
|
241
|
+
swaps placeholders for your package name so you can start adding new spirits immediately
|
|
242
|
+
(`src/datapipeline/cli/app.py`, `src/datapipeline/services/scaffold/plugin.py`). Install the
|
|
243
|
+
resulting project in editable mode to expose your loaders, parsers, mappers and
|
|
244
|
+
transforms.
|
|
245
|
+
|
|
246
|
+
### Create new sources, domains and contracts
|
|
247
|
+
|
|
248
|
+
Use the CLI helpers to scaffold boilerplate code in your plugin workspace:
|
|
249
|
+
|
|
250
|
+
```bash
|
|
251
|
+
jerry distillery add --provider dmi --dataset metobs --transport fs --format csv
|
|
252
|
+
jerry spirit add --domain metobs --time-aware
|
|
253
|
+
jerry contract --time-aware
|
|
254
|
+
```
|
|
255
|
+
|
|
256
|
+
The distillery command writes DTO/parser stubs, updates entry points and drops a matching
|
|
257
|
+
YAML file in `config/distilleries/` pre-filled with composed-loader defaults for the chosen
|
|
258
|
+
transport (`src/datapipeline/cli/app.py`, `src/datapipeline/services/scaffold/source.py`).
|
|
259
|
+
|
|
260
|
+
### Add custom filters or transforms
|
|
261
|
+
|
|
262
|
+
Register new functions/classes under the appropriate entry point group in your plugin’s
|
|
263
|
+
`pyproject.toml`. The runtime resolves them through `load_ep`, applies record-level
|
|
264
|
+
filters first, then record/feature/sequence transforms in the order declared in the
|
|
265
|
+
dataset config (`pyproject.toml`, `src/datapipeline/utils/load.py`,
|
|
266
|
+
`src/datapipeline/pipeline/utils/transform_utils.py`). Built-in helpers cover common
|
|
267
|
+
comparisons (including timezone-aware checks) and time-based transforms (lags, sliding
|
|
268
|
+
windows) if you need quick wins (`src/datapipeline/filters/filters.py`,
|
|
269
|
+
`src/datapipeline/transforms/transforms.py`, `src/datapipeline/transforms/sequence.py`).
|
|
270
|
+
|
|
271
|
+
### Prototype with synthetic time-series data
|
|
272
|
+
|
|
273
|
+
Need sample pours while wiring up transforms? Reuse the bundled synthetic time loader +
|
|
274
|
+
parser and season it with the `encode_time` mapper for engineered temporal features
|
|
275
|
+
(`src/datapipeline/sources/synthetic/time/loader.py`,
|
|
276
|
+
`src/datapipeline/sources/synthetic/time/parser.py`,
|
|
277
|
+
`src/datapipeline/mappers/synthetic/time.py`). Pair it with the `time_window` sequence
|
|
278
|
+
transform to build sliding-window feature flights without external datasets
|
|
279
|
+
(`src/datapipeline/transforms/sequence.py`).
|
|
280
|
+
|
|
281
|
+
---
|
|
282
|
+
|
|
283
|
+
## Data model tasting notes
|
|
284
|
+
|
|
285
|
+
| Type | Description |
|
|
286
|
+
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
287
|
+
| `Record` | Canonical payload containing a `value`; extended by other record types (`src/datapipeline/domain/record.py`). |
|
|
288
|
+
| `TimeFeatureRecord` | A record with a timezone-aware `time` attribute, normalized to UTC to avoid boundary issues (`src/datapipeline/domain/record.py`). |
|
|
289
|
+
| `FeatureRecord` | Links a record (or list of records from sequence transforms) to a `feature_id` and `group_key` (`src/datapipeline/domain/feature.py`). |
|
|
290
|
+
| `Vector` | Final grouped payload: a mapping of feature IDs to scalars or ordered lists plus helper methods for shape/key access (`src/datapipeline/domain/vector.py`). |
|
|
291
|
+
|
|
292
|
+
---
|
|
293
|
+
|
|
294
|
+
## Developer shift checklist
|
|
295
|
+
|
|
296
|
+
These commands mirror the tooling used in CI and are useful while iterating locally:
|
|
297
|
+
|
|
298
|
+
```bash
|
|
299
|
+
pip install -e .[dev]
|
|
300
|
+
pytest
|
|
301
|
+
```
|
|
@@ -0,0 +1,285 @@
|
|
|
1
|
+
# Jerry Thomas
|
|
2
|
+
|
|
3
|
+
Jerry Thomas turns the datapipeline runtime into a cocktail program. You still install the
|
|
4
|
+
same Python package (`datapipeline`) and tap into the plugin architecture, but every CLI
|
|
5
|
+
dance step nods to a craft bar. Declarative YAML menus describe projects, sources and
|
|
6
|
+
datasets, pipelines move payloads through record/feature/vector stations, and setuptools
|
|
7
|
+
entry points keep the back bar stocked with new ingredients.
|
|
8
|
+
|
|
9
|
+
---
|
|
10
|
+
|
|
11
|
+
## How the bar is set up
|
|
12
|
+
|
|
13
|
+
```text
|
|
14
|
+
raw source → canonical stream → record stage → feature stage → vector stage
|
|
15
|
+
```
|
|
16
|
+
|
|
17
|
+
1. **Raw sources (bottles on the shelf)** bundle a loader + parser recipe. Loaders handle
|
|
18
|
+
the I/O (files, URLs or synthetic runs) and parsers map rows into typed records while
|
|
19
|
+
skimming the dregs (`src/datapipeline/sources/models/loader.py`,
|
|
20
|
+
`src/datapipeline/sources/models/source.py`). The bootstrapper registers each source under
|
|
21
|
+
an alias so you can order it later in the service flow (`src/datapipeline/streams/raw.py`,
|
|
22
|
+
`src/datapipeline/services/bootstrap.py`).
|
|
23
|
+
2. **Canonical streams (house infusions)** optionally apply a mapper on top of a raw
|
|
24
|
+
source to normalize payloads before the dataset drinks them
|
|
25
|
+
(`src/datapipeline/streams/canonical.py`, `src/datapipeline/services/factories.py`).
|
|
26
|
+
3. **Dataset stages (prep stations)** read the configured canonical streams. Record stages
|
|
27
|
+
are your strainers and shakers, feature stages bottle the clarified spirits into keyed
|
|
28
|
+
features (with optional sequence transforms), and vector stages line up the flights ready
|
|
29
|
+
for service (`src/datapipeline/pipeline/pipelines.py`, `src/datapipeline/pipeline/stages.py`,
|
|
30
|
+
`src/datapipeline/config/dataset/feature.py`).
|
|
31
|
+
4. **Vectors (tasting flights)** carry grouped feature values; downstream tasters can
|
|
32
|
+
inspect them for balance and completeness
|
|
33
|
+
(`src/datapipeline/domain/vector.py`, `src/datapipeline/analysis/vector_analyzer.py`).
|
|
34
|
+
|
|
35
|
+
---
|
|
36
|
+
|
|
37
|
+
## Bar back cheat sheet
|
|
38
|
+
|
|
39
|
+
| Path | What lives here |
|
|
40
|
+
| ---------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
41
|
+
| `src/datapipeline/cli` | Argparse-powered bar program with commands for running pipelines, inspecting pours, scaffolding plugins and projecting service flow (`cli/app.py`, `cli/openers.py`, `cli/visuals.py`). |
|
|
42
|
+
| `src/datapipeline/services` | Bootstrapping (project loading, YAML interpolation), runtime factories and scaffolding helpers for new bar tools (`services/bootstrap.py`, `services/factories.py`, `services/scaffold/plugin.py`). |
|
|
43
|
+
| `src/datapipeline/pipeline` | Pure functions that build record/feature/vector iterators plus supporting utilities for ordering and transform wiring (`pipeline/pipelines.py`, `pipeline/utils/transform_utils.py`). |
|
|
44
|
+
| `src/datapipeline/domain` | Data structures representing records, feature records and vectors coming off the line (`domain/record.py`, `domain/feature.py`, `domain/vector.py`). |
|
|
45
|
+
| `src/datapipeline/transforms` & `src/datapipeline/filters` | Built-in transforms (lagging timestamps, sliding windows) and filter helpers exposed through entry points (`transforms/transforms.py`, `transforms/sequence.py`, `filters/filters.py`). |
|
|
46
|
+
| `src/datapipeline/sources/synthetic/time` | Example synthetic time-series loader/parser pair plus helper mappers for experimentation while the real spirits arrive (`sources/synthetic/time/loader.py`, `sources/synthetic/time/parser.py`, `mappers/synthetic/time.py`). |
|
|
47
|
+
|
|
48
|
+
---
|
|
49
|
+
|
|
50
|
+
## Opening the bar
|
|
51
|
+
|
|
52
|
+
### 1. Install the tools
|
|
53
|
+
|
|
54
|
+
```bash
|
|
55
|
+
python -m venv .venv
|
|
56
|
+
source .venv/bin/activate # Windows: .venv\Scripts\activate
|
|
57
|
+
python -m pip install --upgrade pip
|
|
58
|
+
pip install jerry-thomas
|
|
59
|
+
```
|
|
60
|
+
|
|
61
|
+
The published wheel exposes the `jerry` CLI (backed by the `datapipeline` package) and
|
|
62
|
+
pulls in core dependencies like Pydantic, PyYAML, tqdm and Jinja2 (see
|
|
63
|
+
`pyproject.toml`). Prefer `pip install -e .` only when you are actively developing this
|
|
64
|
+
repository. Double-check the back bar is reachable:
|
|
65
|
+
|
|
66
|
+
```bash
|
|
67
|
+
python -c "import datapipeline; print('bar ready')"
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
### 2. Draft your bar book
|
|
71
|
+
|
|
72
|
+
Create a `config/project.yaml` so the runtime knows where to find ingredients, infusions
|
|
73
|
+
and the tasting menu. Globals are optional but handy for sharing values—they are
|
|
74
|
+
interpolated into downstream YAML specs during bootstrap
|
|
75
|
+
(`src/datapipeline/config/project.py`, `src/datapipeline/services/bootstrap.py`).
|
|
76
|
+
|
|
77
|
+
```yaml
|
|
78
|
+
version: 1
|
|
79
|
+
paths:
|
|
80
|
+
sources: config/distilleries
|
|
81
|
+
streams: config/contracts
|
|
82
|
+
dataset: config/recipe.yaml
|
|
83
|
+
globals:
|
|
84
|
+
opening_time: "2024-01-01T16:00:00Z"
|
|
85
|
+
last_call: "2024-01-02T02:00:00Z"
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
> Helper functions in `src/datapipeline/services/project_paths.py` resolve relative paths
|
|
89
|
+
> against the project root and ensure the mise en place folders exist.
|
|
90
|
+
|
|
91
|
+
### 3. Stock the bottles (raw sources)
|
|
92
|
+
|
|
93
|
+
Create `config/distilleries/<alias>.yaml` files. Each must expose a `parser` and `loader`
|
|
94
|
+
pointing at entry points plus any constructor arguments
|
|
95
|
+
(`src/datapipeline/services/bootstrap.py`). Here is a synthetic clock source that feels
|
|
96
|
+
like a drip of barrel-aged bitters:
|
|
97
|
+
|
|
98
|
+
```yaml
|
|
99
|
+
# config/distilleries/time_ticks.yaml
|
|
100
|
+
parser:
|
|
101
|
+
entrypoint: "synthetic.time"
|
|
102
|
+
args: {}
|
|
103
|
+
loader:
|
|
104
|
+
entrypoint: "synthetic.time"
|
|
105
|
+
args:
|
|
106
|
+
start: "${opening_time}"
|
|
107
|
+
end: "${last_call}"
|
|
108
|
+
frequency: "1h"
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
That file wires up the built-in `TimeTicksGenerator` + parser pair that yields
|
|
112
|
+
timezone-aware timestamps (`sources/synthetic/time/loader.py`,
|
|
113
|
+
`sources/synthetic/time/parser.py`).
|
|
114
|
+
|
|
115
|
+
### 4. Mix house infusions (canonical streams)
|
|
116
|
+
|
|
117
|
+
Canonical specs live under `config/contracts/` and reference a raw source alias plus an
|
|
118
|
+
optional mapper entry point (`src/datapipeline/services/bootstrap.py`,
|
|
119
|
+
`src/datapipeline/streams/canonical.py`). This example turns each timestamp into a citrus
|
|
120
|
+
spritz feature:
|
|
121
|
+
|
|
122
|
+
```yaml
|
|
123
|
+
# config/contracts/time/encode.yaml
|
|
124
|
+
source: time_ticks
|
|
125
|
+
mapper:
|
|
126
|
+
entrypoint: "synthetic.time.encode"
|
|
127
|
+
args:
|
|
128
|
+
mode: spritz
|
|
129
|
+
```
|
|
130
|
+
|
|
131
|
+
The mapper uses the provided mode to create a new `TimeFeatureRecord` stream ready for the
|
|
132
|
+
feature stage (`mappers/synthetic/time.py`).
|
|
133
|
+
|
|
134
|
+
### 5. Script the tasting menu (dataset)
|
|
135
|
+
|
|
136
|
+
Datasets describe which canonical streams should be read at each station and how flights
|
|
137
|
+
are grouped (`src/datapipeline/config/dataset/dataset.py`). A minimal hourly menu might
|
|
138
|
+
look like:
|
|
139
|
+
|
|
140
|
+
```yaml
|
|
141
|
+
# config/recipe.yaml
|
|
142
|
+
group_by:
|
|
143
|
+
keys:
|
|
144
|
+
- type: time
|
|
145
|
+
field: time
|
|
146
|
+
resolution: 1h
|
|
147
|
+
features:
|
|
148
|
+
- stream: time.encode
|
|
149
|
+
feature_id: hour_spritz
|
|
150
|
+
partition_by: null
|
|
151
|
+
filters: []
|
|
152
|
+
transforms:
|
|
153
|
+
- time_lag: "0h"
|
|
154
|
+
```
|
|
155
|
+
|
|
156
|
+
Use the sample `dataset` template as a starting point if you prefer scaffolding before
|
|
157
|
+
pouring concrete values. Group keys support time bucketing (with automatic flooring to the
|
|
158
|
+
requested resolution) and categorical splits
|
|
159
|
+
(`src/datapipeline/config/dataset/group_by.py`,
|
|
160
|
+
`src/datapipeline/config/dataset/normalize.py`). You can also attach feature or sequence
|
|
161
|
+
transforms—such as the sliding `TimeWindowTransformer`—directly in the YAML by referencing
|
|
162
|
+
their entry point names (`src/datapipeline/transforms/sequence.py`).
|
|
163
|
+
|
|
164
|
+
Once the book is ready, run the bootstrapper (the CLI does this automatically) to
|
|
165
|
+
materialize all registered sources and streams
|
|
166
|
+
(`src/datapipeline/services/bootstrap.py`).
|
|
167
|
+
|
|
168
|
+
---
|
|
169
|
+
|
|
170
|
+
## Running service
|
|
171
|
+
|
|
172
|
+
### Prep any station (with visuals)
|
|
173
|
+
|
|
174
|
+
```bash
|
|
175
|
+
jerry prep pour --project config/project.yaml --limit 20
|
|
176
|
+
jerry prep build --project config/project.yaml --limit 20
|
|
177
|
+
jerry prep stir --project config/project.yaml --limit 20
|
|
178
|
+
```
|
|
179
|
+
|
|
180
|
+
- `prep pour` shows the record-stage ingredients headed for each feature.
|
|
181
|
+
- `prep build` highlights `FeatureRecord` entries after the shake/strain sequence.
|
|
182
|
+
- `prep stir` emits grouped vectors—the tasting flight before it leaves the pass.
|
|
183
|
+
|
|
184
|
+
All variants respect `--limit` and display tqdm-powered progress bars for the underlying
|
|
185
|
+
loaders. The CLI wires up `build_record_pipeline`, `build_feature_pipeline` and
|
|
186
|
+
`build_vector_pipeline`, so what you see mirrors the service line
|
|
187
|
+
(`src/datapipeline/cli/app.py`, `src/datapipeline/cli/commands/run.py`,
|
|
188
|
+
`src/datapipeline/cli/openers.py`, `src/datapipeline/cli/visuals.py`,
|
|
189
|
+
`src/datapipeline/pipeline/pipelines.py`).
|
|
190
|
+
|
|
191
|
+
### Serve the flights (production mode)
|
|
192
|
+
|
|
193
|
+
```bash
|
|
194
|
+
jerry serve --project config/project.yaml --output print
|
|
195
|
+
jerry serve --project config/project.yaml --output stream
|
|
196
|
+
jerry serve --project config/project.yaml --output exports/batch.pt
|
|
197
|
+
```
|
|
198
|
+
|
|
199
|
+
Production mode skips the bar flair and focuses on throughput. `print` writes tasting
|
|
200
|
+
notes to stdout, `stream` emits newline-delimited JSON (with values coerced to strings when
|
|
201
|
+
necessary), and a `.pt` destination stores a pickle-compatible payload for later pours.
|
|
202
|
+
|
|
203
|
+
### Taste the balance (vector quality)
|
|
204
|
+
|
|
205
|
+
```bash
|
|
206
|
+
jerry taste --project config/project.yaml
|
|
207
|
+
```
|
|
208
|
+
|
|
209
|
+
This command reuses the vector pipeline, collects presence counts for every configured
|
|
210
|
+
feature and flags empty or incomplete flights so you can diagnose upstream issues quickly
|
|
211
|
+
(`src/datapipeline/cli/commands/analyze.py`, `src/datapipeline/analysis/vector_analyzer.py`).
|
|
212
|
+
Use `--limit` to spot-check during service.
|
|
213
|
+
|
|
214
|
+
---
|
|
215
|
+
|
|
216
|
+
## Extending the bar program
|
|
217
|
+
|
|
218
|
+
### Scaffold a plugin package
|
|
219
|
+
|
|
220
|
+
```bash
|
|
221
|
+
jerry station init --name my_datapipeline --out .
|
|
222
|
+
```
|
|
223
|
+
|
|
224
|
+
The generator copies a ready-made skeleton (pyproject, README, package directory) and
|
|
225
|
+
swaps placeholders for your package name so you can start adding new spirits immediately
|
|
226
|
+
(`src/datapipeline/cli/app.py`, `src/datapipeline/services/scaffold/plugin.py`). Install the
|
|
227
|
+
resulting project in editable mode to expose your loaders, parsers, mappers and
|
|
228
|
+
transforms.
|
|
229
|
+
|
|
230
|
+
### Create new sources, domains and contracts
|
|
231
|
+
|
|
232
|
+
Use the CLI helpers to scaffold boilerplate code in your plugin workspace:
|
|
233
|
+
|
|
234
|
+
```bash
|
|
235
|
+
jerry distillery add --provider dmi --dataset metobs --transport fs --format csv
|
|
236
|
+
jerry spirit add --domain metobs --time-aware
|
|
237
|
+
jerry contract --time-aware
|
|
238
|
+
```
|
|
239
|
+
|
|
240
|
+
The distillery command writes DTO/parser stubs, updates entry points and drops a matching
|
|
241
|
+
YAML file in `config/distilleries/` pre-filled with composed-loader defaults for the chosen
|
|
242
|
+
transport (`src/datapipeline/cli/app.py`, `src/datapipeline/services/scaffold/source.py`).
|
|
243
|
+
|
|
244
|
+
### Add custom filters or transforms
|
|
245
|
+
|
|
246
|
+
Register new functions/classes under the appropriate entry point group in your plugin’s
|
|
247
|
+
`pyproject.toml`. The runtime resolves them through `load_ep`, applies record-level
|
|
248
|
+
filters first, then record/feature/sequence transforms in the order declared in the
|
|
249
|
+
dataset config (`pyproject.toml`, `src/datapipeline/utils/load.py`,
|
|
250
|
+
`src/datapipeline/pipeline/utils/transform_utils.py`). Built-in helpers cover common
|
|
251
|
+
comparisons (including timezone-aware checks) and time-based transforms (lags, sliding
|
|
252
|
+
windows) if you need quick wins (`src/datapipeline/filters/filters.py`,
|
|
253
|
+
`src/datapipeline/transforms/transforms.py`, `src/datapipeline/transforms/sequence.py`).
|
|
254
|
+
|
|
255
|
+
### Prototype with synthetic time-series data
|
|
256
|
+
|
|
257
|
+
Need sample pours while wiring up transforms? Reuse the bundled synthetic time loader +
|
|
258
|
+
parser and season it with the `encode_time` mapper for engineered temporal features
|
|
259
|
+
(`src/datapipeline/sources/synthetic/time/loader.py`,
|
|
260
|
+
`src/datapipeline/sources/synthetic/time/parser.py`,
|
|
261
|
+
`src/datapipeline/mappers/synthetic/time.py`). Pair it with the `time_window` sequence
|
|
262
|
+
transform to build sliding-window feature flights without external datasets
|
|
263
|
+
(`src/datapipeline/transforms/sequence.py`).
|
|
264
|
+
|
|
265
|
+
---
|
|
266
|
+
|
|
267
|
+
## Data model tasting notes
|
|
268
|
+
|
|
269
|
+
| Type | Description |
|
|
270
|
+
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
271
|
+
| `Record` | Canonical payload containing a `value`; extended by other record types (`src/datapipeline/domain/record.py`). |
|
|
272
|
+
| `TimeFeatureRecord` | A record with a timezone-aware `time` attribute, normalized to UTC to avoid boundary issues (`src/datapipeline/domain/record.py`). |
|
|
273
|
+
| `FeatureRecord` | Links a record (or list of records from sequence transforms) to a `feature_id` and `group_key` (`src/datapipeline/domain/feature.py`). |
|
|
274
|
+
| `Vector` | Final grouped payload: a mapping of feature IDs to scalars or ordered lists plus helper methods for shape/key access (`src/datapipeline/domain/vector.py`). |
|
|
275
|
+
|
|
276
|
+
---
|
|
277
|
+
|
|
278
|
+
## Developer shift checklist
|
|
279
|
+
|
|
280
|
+
These commands mirror the tooling used in CI and are useful while iterating locally:
|
|
281
|
+
|
|
282
|
+
```bash
|
|
283
|
+
pip install -e .[dev]
|
|
284
|
+
pytest
|
|
285
|
+
```
|