jarvis-ai-assistant 0.1.86__tar.gz → 0.1.87__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of jarvis-ai-assistant might be problematic. Click here for more details.

Files changed (47) hide show
  1. {jarvis_ai_assistant-0.1.86/src/jarvis_ai_assistant.egg-info → jarvis_ai_assistant-0.1.87}/PKG-INFO +1 -2
  2. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/README.md +0 -1
  3. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/pyproject.toml +1 -1
  4. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/setup.py +1 -1
  5. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/__init__.py +1 -1
  6. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_codebase/main.py +113 -98
  7. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_coder/main.py +89 -21
  8. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_rag/main.py +190 -147
  9. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/ai8.py +1 -1
  10. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/oyi.py +3 -3
  11. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/registry.py +7 -5
  12. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/utils.py +41 -1
  13. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87/src/jarvis_ai_assistant.egg-info}/PKG-INFO +1 -2
  14. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/LICENSE +0 -0
  15. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/MANIFEST.in +0 -0
  16. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/setup.cfg +0 -0
  17. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/agent.py +0 -0
  18. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_codebase/__init__.py +0 -0
  19. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_coder/__init__.py +0 -0
  20. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_rag/__init__.py +0 -0
  21. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_smart_shell/__init__.py +0 -0
  22. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/jarvis_smart_shell/main.py +0 -0
  23. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/main.py +0 -0
  24. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/__init__.py +0 -0
  25. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/base.py +0 -0
  26. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/kimi.py +0 -0
  27. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/ollama.py +0 -0
  28. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/openai.py +0 -0
  29. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/models/registry.py +0 -0
  30. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/__init__.py +0 -0
  31. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/ask_user.py +0 -0
  32. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/base.py +0 -0
  33. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/chdir.py +0 -0
  34. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/codebase_qa.py +0 -0
  35. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/coder.py +0 -0
  36. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/file_ops.py +0 -0
  37. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/generator.py +0 -0
  38. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/methodology.py +0 -0
  39. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/search.py +0 -0
  40. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/shell.py +0 -0
  41. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/sub_agent.py +0 -0
  42. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis/tools/webpage.py +0 -0
  43. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis_ai_assistant.egg-info/SOURCES.txt +0 -0
  44. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis_ai_assistant.egg-info/dependency_links.txt +0 -0
  45. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis_ai_assistant.egg-info/entry_points.txt +0 -0
  46. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis_ai_assistant.egg-info/requires.txt +0 -0
  47. {jarvis_ai_assistant-0.1.86 → jarvis_ai_assistant-0.1.87}/src/jarvis_ai_assistant.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: jarvis-ai-assistant
3
- Version: 0.1.86
3
+ Version: 0.1.87
4
4
  Summary: Jarvis: An AI assistant that uses tools to interact with the system
5
5
  Home-page: https://github.com/skyfireitdiy/Jarvis
6
6
  Author: skyfire
@@ -134,7 +134,6 @@ Jarvis supports configuration through environment variables that can be set in t
134
134
  | JARVIS_CODEGEN_MODEL | Model name for code generation | Same as JARVIS_MODEL | No |
135
135
  | JARVIS_CHEAP_PLATFORM | AI platform for cheap operations | Same as JARVIS_PLATFORM | No |
136
136
  | JARVIS_CHEAP_MODEL | Model name for cheap operations | Same as JARVIS_MODEL | No |
137
- | JARVIS_EMBEDDING_MODEL | Embedding model for code analysis | BAAI/bge-large-zh-v1.5 | No |
138
137
  | OPENAI_API_KEY | API key for OpenAI platform | - | Required for OpenAI |
139
138
  | OPENAI_API_BASE | Base URL for OpenAI API | https://api.deepseek.com | No |
140
139
  | OPENAI_MODEL_NAME | Model name for OpenAI | deepseek-chat | No |
@@ -70,7 +70,6 @@ Jarvis supports configuration through environment variables that can be set in t
70
70
  | JARVIS_CODEGEN_MODEL | Model name for code generation | Same as JARVIS_MODEL | No |
71
71
  | JARVIS_CHEAP_PLATFORM | AI platform for cheap operations | Same as JARVIS_PLATFORM | No |
72
72
  | JARVIS_CHEAP_MODEL | Model name for cheap operations | Same as JARVIS_MODEL | No |
73
- | JARVIS_EMBEDDING_MODEL | Embedding model for code analysis | BAAI/bge-large-zh-v1.5 | No |
74
73
  | OPENAI_API_KEY | API key for OpenAI platform | - | Required for OpenAI |
75
74
  | OPENAI_API_BASE | Base URL for OpenAI API | https://api.deepseek.com | No |
76
75
  | OPENAI_MODEL_NAME | Model name for OpenAI | deepseek-chat | No |
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "jarvis-ai-assistant"
7
- version = "0.1.86"
7
+ version = "0.1.87"
8
8
  description = "Jarvis: An AI assistant that uses tools to interact with the system"
9
9
  readme = "README.md"
10
10
  authors = [{ name = "Your Name", email = "your.email@example.com" }]
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name="jarvis-ai-assistant",
5
- version="0.1.86",
5
+ version="0.1.87",
6
6
  author="skyfire",
7
7
  author_email="skyfireitdiy@hotmail.com",
8
8
  description="An AI assistant that uses various tools to interact with the system",
@@ -1,3 +1,3 @@
1
1
  """Jarvis AI Assistant"""
2
2
 
3
- __version__ = "0.1.86"
3
+ __version__ = "0.1.87"
@@ -7,7 +7,7 @@ from jarvis.models.registry import PlatformRegistry
7
7
  import concurrent.futures
8
8
  from threading import Lock
9
9
  from concurrent.futures import ThreadPoolExecutor
10
- from jarvis.utils import OutputType, PrettyOutput, find_git_root, get_max_context_length, get_thread_count, load_embedding_model
10
+ from jarvis.utils import OutputType, PrettyOutput, find_git_root, get_max_context_length, get_thread_count, load_embedding_model, load_rerank_model
11
11
  from jarvis.utils import load_env_from_file
12
12
  import argparse
13
13
  from sentence_transformers import SentenceTransformer
@@ -98,7 +98,7 @@ class CodeBase:
98
98
  5. 关键业务逻辑和处理流程
99
99
  6. 特殊功能点和亮点特性
100
100
 
101
- 请用简洁专业的语言描述,突出代码的技术特征和功能特点,以便后续进行相似代码检索。
101
+ 请用简洁专业的语言描述,突出代码的技术特征和功能特点,以便后续进行关联代码检索。
102
102
 
103
103
  文件路径:{file_path}
104
104
  代码内容:
@@ -196,10 +196,15 @@ class CodeBase:
196
196
  if cached_vector is not None:
197
197
  return cached_vector
198
198
 
199
- # 组合文件信息
199
+ # 读取文件内容并组合信息
200
+ with open(file_path, "r", encoding="utf-8") as f:
201
+ content = f.read()[:self.max_context_length] # 限制文件内容长度
202
+
203
+ # 组合文件信息,包含文件内容
200
204
  combined_text = f"""
201
205
  文件路径: {file_path}
202
206
  文件描述: {description}
207
+ 文件内容: {content}
203
208
  """
204
209
  vector = self.get_embedding(combined_text)
205
210
 
@@ -398,116 +403,126 @@ class CodeBase:
398
403
  PrettyOutput.print("没有检测到文件变更,无需重建索引", output_type=OutputType.INFO)
399
404
 
400
405
  def rerank_results(self, query: str, initial_results: List[Tuple[str, float, str]]) -> List[Tuple[str, float, str]]:
401
- """使用大模型对搜索结果重新排序"""
406
+ """使用 BAAI/bge-reranker-v2-m3 对搜索结果重新排序"""
402
407
  if not initial_results:
403
408
  return []
404
-
405
- model = PlatformRegistry.get_global_platform_registry().get_codegen_platform()
406
- # model.set_suppress_output(True)
407
-
408
- # 构建重排序的prompt
409
- prompt = f"""请根据用户的查询,对以下代码文件进行相关性排序。对每个文件给出0-100的相关性分数,分数越高表示越相关。
410
- 只需要输出每个文件的分数,格式为:
411
- <RERANK>
412
- 文件路径: 分数
413
- 文件路径: 分数
414
- </RERANK>
415
-
416
- 用户查询: {query}
417
-
418
- 待评估文件:
419
- """
420
- for path, _, desc in initial_results:
421
- prompt += f"""
422
- 文件: {path}
423
- 描述: {desc}
424
- ---
425
- """
426
-
427
- response = model.chat(prompt)
428
-
429
- # 提取<RERANK>和</RERANK>之间的内容
430
- start_tag = "<RERANK>"
431
- end_tag = "</RERANK>"
432
- if start_tag in response and end_tag in response:
433
- response = response[response.find(start_tag) + len(start_tag):response.find(end_tag)]
434
-
435
- # 解析响应,提取文件路径和分数
436
- scored_results = []
437
- for line in response.split('\n'):
438
- if ':' not in line:
439
- continue
440
- try:
441
- file_path, score_str = line.split(':', 1)
442
- file_path = file_path.strip()
443
- score = float(score_str.strip()) / 100.0 # 转换为0-1范围
444
- # 只保留相关度大于等于0.7的结果
445
- if score >= 0.7:
446
- # 找到对应的原始描述
447
- desc = next((desc for p, _, desc in initial_results if p == file_path), "")
448
- scored_results.append((file_path, score, desc))
449
- except:
450
- continue
451
-
452
- # 按分数降序排序
453
- return sorted(scored_results, key=lambda x: x[1], reverse=True)
454
-
409
+
410
+ try:
411
+ import torch
412
+
413
+ # 加载模型和分词器
414
+ model, tokenizer = load_rerank_model()
415
+
416
+ # 准备数据 - 加入文件内容进行更准确的重排序
417
+ pairs = []
418
+ for path, _, desc in initial_results:
419
+ try:
420
+ with open(path, "r", encoding="utf-8") as f:
421
+ content = f.read()[:512] # 限制内容长度
422
+ # 组合文件路径、描述和内容
423
+ doc_content = f"文件: {path}\n描述: {desc}\n内容: {content}"
424
+ pairs.append([query, doc_content])
425
+ except Exception as e:
426
+ PrettyOutput.print(f"读取文件失败 {path}: {str(e)}",
427
+ output_type=OutputType.ERROR)
428
+ doc_content = f"文件: {path}\n描述: {desc}"
429
+ pairs.append([query, doc_content])
430
+
431
+ # 使用更大的batch size提高处理速度
432
+ batch_size = 16 # 根据GPU显存调整
433
+
434
+ with torch.no_grad():
435
+ for i in range(0, len(pairs), batch_size):
436
+ batch_pairs = pairs[i:i + batch_size]
437
+ encoded = tokenizer(
438
+ batch_pairs,
439
+ padding=True,
440
+ truncation=True,
441
+ max_length=512,
442
+ return_tensors='pt'
443
+ )
444
+
445
+ if torch.cuda.is_available():
446
+ encoded = {k: v.cuda() for k, v in encoded.items()}
447
+
448
+ outputs = model(**encoded)
449
+ # 修改这里:直接使用 outputs.logits 作为分数
450
+ batch_scores = outputs.logits.squeeze(-1).cpu().numpy()
451
+
452
+ # 归一化分数到 0-1 范围
453
+ if batch_scores:
454
+ min_score = min(batch_scores)
455
+ max_score = max(batch_scores)
456
+ if max_score > min_score:
457
+ batch_scores = [(s - min_score) / (max_score - min_score) for s in batch_scores]
458
+
459
+ # 将分数与原始结果组合并排序
460
+ scored_results = []
461
+ for (path, _, desc), score in zip(initial_results, batch_scores):
462
+ if score >= 0.5: # 只保留相关度大于 0.5 的结果
463
+ scored_results.append((path, float(score), desc))
464
+
465
+ # 按分数降序排序
466
+ scored_results.sort(key=lambda x: x[1], reverse=True)
467
+
468
+ return scored_results
469
+
470
+ except Exception as e:
471
+ PrettyOutput.print(f"重排序失败,使用原始排序: {str(e)}", output_type=OutputType.WARNING)
472
+ return initial_results
455
473
 
456
474
  def search_similar(self, query: str, top_k: int = 30) -> List[Tuple[str, float, str]]:
457
- """搜索相似文件"""
458
- model = PlatformRegistry.get_global_platform_registry().get_normal_platform()
459
- model.set_suppress_output(True)
460
-
461
-
462
- prompt = f"""请根据以下查询,生成意思完全相同的另一个表述。这个表述将用于代码搜索,所以要保持专业性和准确性。
475
+ """搜索关联文件"""
476
+ try:
477
+ # 生成多个查询变体以提高召回率
478
+ model = PlatformRegistry.get_global_platform_registry().get_normal_platform()
479
+ model.set_suppress_output(True)
480
+
481
+ prompt = f"""请根据以下查询,生成3个不同的表述,每个表述都要完整表达原始查询的意思。这些表述将用于代码搜索,要保持专业性和准确性。
463
482
  原始查询: {query}
464
483
 
465
- 请直接输出新表述,不要有编号或其他标记。
484
+ 请直接输出3个表述,用换行分隔,不要有编号或其他标记。
466
485
  """
467
-
468
- query = model.chat(prompt)
486
+ query_variants = model.chat(prompt).strip().split('\n')
487
+ query_variants.append(query) # 添加原始查询
469
488
 
470
-
471
-
472
- PrettyOutput.print(f"查询: {query}", output_type=OutputType.INFO)
473
-
474
- # 为每个查询获取相似文件
475
- q_vector = self.get_embedding(query)
476
- q_vector = q_vector.reshape(1, -1)
477
-
478
- distances, indices = self.index.search(q_vector, top_k)
479
-
480
- PrettyOutput.print(f"查询 {query} 的结果: ", output_type=OutputType.INFO)
481
-
482
- initial_results = []
483
-
484
- for i, distance in zip(indices[0], distances[0]):
485
- if i == -1: # faiss返回-1表示无效结果
486
- continue
489
+ # 对每个查询变体进行搜索
490
+ all_results = {}
491
+ for q in query_variants:
492
+ q_vector = self.get_embedding(q)
493
+ q_vector = q_vector.reshape(1, -1)
487
494
 
488
- similarity = 1.0 / (1.0 + float(distance))
489
- # 只保留相似度大于等于0.5的结果
490
- if similarity >= 0.5:
491
- PrettyOutput.print(f" {self.file_paths[i]} : 距离 {distance:.3f}, 相似度 {similarity:.3f}",
492
- output_type=OutputType.INFO)
495
+ distances, indices = self.index.search(q_vector, top_k)
493
496
 
494
- file_path = self.file_paths[i]
495
- data = self.vector_cache[file_path]
496
- initial_results.append((file_path, similarity, data["description"]))
497
-
498
- if not initial_results:
499
- PrettyOutput.print("没有找到相似度大于0.5的文件", output_type=OutputType.WARNING)
497
+ for i, distance in zip(indices[0], distances[0]):
498
+ if i == -1:
499
+ continue
500
+
501
+ similarity = 1.0 / (1.0 + float(distance))
502
+ if similarity >= 0.5:
503
+ file_path = self.file_paths[i]
504
+ # 使用最高的相似度分数
505
+ if file_path not in all_results or similarity > all_results[file_path][1]:
506
+ data = self.vector_cache[file_path]
507
+ all_results[file_path] = (file_path, similarity, data["description"])
508
+
509
+ # 转换为列表并排序
510
+ results = list(all_results.values())
511
+ results.sort(key=lambda x: x[1], reverse=True)
512
+
513
+ return results[:top_k]
514
+
515
+ except Exception as e:
516
+ PrettyOutput.print(f"搜索失败: {str(e)}", output_type=OutputType.ERROR)
500
517
  return []
501
518
 
502
- # 使用大模型重新排序
503
- PrettyOutput.print("使用大模型重新排序...", output_type=OutputType.INFO)
504
- reranked_results = self.rerank_results(query, initial_results)
505
-
506
- return reranked_results
507
-
508
519
  def ask_codebase(self, query: str, top_k: int=20) -> str:
509
520
  """查询代码库"""
510
521
  results = self.search_similar(query, top_k)
522
+ if not results:
523
+ PrettyOutput.print("没有找到关联的文件", output_type=OutputType.WARNING)
524
+ return ""
525
+
511
526
  PrettyOutput.print(f"找到的关联文件: ", output_type=OutputType.SUCCESS)
512
527
  for path, score, _ in results:
513
528
  PrettyOutput.print(f"文件: {path} 关联度: {score:.3f}",
@@ -127,27 +127,55 @@ class JarvisCoder:
127
127
  修改格式说明:
128
128
  1. 每个修改块格式如下:
129
129
  <PATCH>
130
- >>>>>> path/to/file
131
- 要替换的内容
130
+ > path/to/file
131
+ def old_function():
132
+ print("old code")
133
+ return False
132
134
  =======
133
- 新的内容
134
- >>>>>>
135
+ def old_function():
136
+ print("new code")
137
+ return True
135
138
  </PATCH>
136
139
 
137
140
  2. 如果是新文件或者替换整个文件内容,格式如下:
138
141
  <PATCH>
139
- >>>>>> path/to/new/file
142
+ > src/new_module.py
140
143
  =======
141
- 新文件的完整内容
142
- >>>>>>
144
+ from typing import List
145
+
146
+ def new_function():
147
+ return "This is a new file"
143
148
  </PATCH>
144
149
 
145
150
  3. 如果要删除文件中的某一段,格式如下:
146
151
  <PATCH>
147
- >>>>>> path/to/file
148
- 要删除的内容
152
+ > path/to/file
153
+ # 这是要删除的注释
154
+ deprecated_code = True
155
+ if deprecated_code:
156
+ print("old feature")
157
+ =======
158
+ </PATCH>
159
+
160
+ 4. 如果要修改导入语句,格式如下:
161
+ <PATCH>
162
+ > src/main.py
163
+ from old_module import old_class
164
+ =======
165
+ from new_module import new_class
166
+ </PATCH>
167
+
168
+ 5. 如果要修改类定义,格式如下:
169
+ <PATCH>
170
+ > src/models.py
171
+ class OldModel:
172
+ def __init__(self):
173
+ self.value = 0
149
174
  =======
150
- >>>>>>
175
+ class OldModel:
176
+ def __init__(self):
177
+ self.value = 1
178
+ self.name = "new"
151
179
  </PATCH>
152
180
 
153
181
  文件列表如下:
@@ -170,7 +198,7 @@ class JarvisCoder:
170
198
  3、要替换的内容,一定要与文件内容完全一致,不要有任何多余或者缺失的内容
171
199
  4、每个patch不超过20行,超出20行,请生成多个patch
172
200
  """
173
-
201
+
174
202
  success, response = self._call_model_with_retry(self.main_model, prompt)
175
203
  if not success:
176
204
  return []
@@ -204,7 +232,7 @@ class JarvisCoder:
204
232
  continue
205
233
 
206
234
  # 获取文件路径
207
- file_path_match = re.search(r'>>>>>> (.*)', lines[0])
235
+ file_path_match = re.search(r'> (.*)', lines[0])
208
236
  if not file_path_match:
209
237
  error_info.append(f"无法解析文件路径: {lines[0]}")
210
238
  return False, "\n".join(error_info)
@@ -220,7 +248,7 @@ class JarvisCoder:
220
248
  return False, "\n".join(error_info)
221
249
 
222
250
  old_content = parts[0]
223
- new_content = parts[1].split(">>>>>>")[0]
251
+ new_content = parts[1].split("</PATCH>")[0]
224
252
 
225
253
  # 处理新文件
226
254
  if not old_content:
@@ -348,19 +376,59 @@ class JarvisCoder:
348
376
  }
349
377
  else:
350
378
  self._revert_changes()
351
- return {
352
- "success": False,
353
- "stdout": "",
354
- "stderr": "修改被用户取消,文件未发生任何变化",
355
- "error": UserWarning("用户取消修改")
356
- }
379
+
380
+ # 让用户输入调整意见
381
+ user_feedback = get_multiline_input("""
382
+ 请提供修改建议,帮助生成更好的补丁:
383
+ 1. 修改的位置是否正确?
384
+ 2. 修改的内容是否合适?
385
+ 3. 是否有遗漏的修改?
386
+ 4. 其他调整建议?
387
+
388
+ 请输入调整意见(直接回车跳过):""")
389
+
390
+ if not user_feedback:
391
+ return {
392
+ "success": False,
393
+ "stdout": "",
394
+ "stderr": "修改被用户取消,文件未发生任何变化",
395
+ "error": UserWarning("用户取消修改")
396
+ }
397
+
398
+ retry_prompt = f"""补丁被用户拒绝,请根据用户意见重新生成补丁:
399
+
400
+ 用户意见:
401
+ {user_feedback}
402
+
403
+ 请重新生成补丁,确保:
404
+ 1. 按照用户意见调整修改内容
405
+ 2. 准确定位要修改的代码位置
406
+ 3. 正确处理代码缩进
407
+ 4. 考虑代码上下文
408
+ """
409
+ patches = self._remake_patch(retry_prompt)
410
+ continue
357
411
  else:
358
- PrettyOutput.print(f"补丁应用失败,请求重新生成: {error_info}", OutputType.WARNING)
359
- retry_prompt = f"""补丁应用失败,请根据以下错误信息重新生成补丁:
412
+ PrettyOutput.print(f"补丁应用失败: {error_info}", OutputType.WARNING)
413
+
414
+ # 让用户输入补充信息
415
+ user_info = get_multiline_input("""
416
+ 补丁应用失败。请提供更多信息来帮助修复问题:
417
+ 1. 是否需要调整代码位置?
418
+ 2. 是否有特殊的格式要求?
419
+ 3. 是否需要考虑其他文件的依赖?
420
+ 4. 其他补充说明?
421
+
422
+ 请输入补充信息(直接回车跳过):""")
423
+
424
+ retry_prompt = f"""补丁应用失败,请根据以下信息重新生成补丁:
360
425
 
361
426
  错误信息:
362
427
  {error_info}
363
428
 
429
+ 用户补充信息:
430
+ {user_info if user_info else "用户未提供补充信息"}
431
+
364
432
  请确保:
365
433
  1. 准确定位要修改的代码位置
366
434
  2. 正确处理代码缩进
@@ -5,7 +5,7 @@ import faiss
5
5
  from typing import List, Tuple, Optional, Dict
6
6
  from sentence_transformers import SentenceTransformer
7
7
  import pickle
8
- from jarvis.utils import OutputType, PrettyOutput, find_git_root, get_max_context_length, load_embedding_model
8
+ from jarvis.utils import OutputType, PrettyOutput, find_git_root, get_max_context_length, load_embedding_model, load_rerank_model
9
9
  from jarvis.utils import load_env_from_file
10
10
  import tiktoken
11
11
  from dataclasses import dataclass
@@ -14,6 +14,8 @@ import fitz # PyMuPDF for PDF files
14
14
  from docx import Document as DocxDocument # python-docx for DOCX files
15
15
  from pathlib import Path
16
16
  from jarvis.models.registry import PlatformRegistry
17
+ import shutil
18
+ from datetime import datetime
17
19
 
18
20
  @dataclass
19
21
  class Document:
@@ -193,15 +195,30 @@ class RAGTool:
193
195
  self.index = None
194
196
 
195
197
  def _save_cache(self, vectors: np.ndarray):
196
- """保存缓存数据"""
198
+ """优化缓存保存"""
197
199
  try:
200
+ # 添加版本号和时间戳
198
201
  cache_data = {
202
+ "version": "1.0",
203
+ "timestamp": datetime.now().isoformat(),
199
204
  "documents": self.documents,
200
- "vectors": vectors
205
+ "vectors": vectors,
206
+ "metadata": {
207
+ "vector_dim": self.vector_dim,
208
+ "total_docs": len(self.documents),
209
+ "model_name": self.embedding_model.__class__.__name__
210
+ }
201
211
  }
212
+
213
+ # 使用压缩存储
202
214
  with open(self.cache_path, 'wb') as f:
203
- pickle.dump(cache_data, f)
204
- PrettyOutput.print(f"保存了 {len(self.documents)} 个文档片段",
215
+ pickle.dump(cache_data, f, protocol=pickle.HIGHEST_PROTOCOL)
216
+
217
+ # 创建备份
218
+ backup_path = f"{self.cache_path}.backup"
219
+ shutil.copy2(self.cache_path, backup_path)
220
+
221
+ PrettyOutput.print(f"缓存已保存: {len(self.documents)} 个文档片段",
205
222
  output_type=OutputType.INFO)
206
223
  except Exception as e:
207
224
  PrettyOutput.print(f"保存缓存失败: {str(e)}",
@@ -209,100 +226,74 @@ class RAGTool:
209
226
 
210
227
  def _build_index(self, vectors: np.ndarray):
211
228
  """构建FAISS索引"""
212
- # 创建HNSW索引
213
- hnsw_index = faiss.IndexHNSWFlat(self.vector_dim, 16)
214
- hnsw_index.hnsw.efConstruction = 40
215
- hnsw_index.hnsw.efSearch = 16
216
-
217
- # 用IndexIDMap包装HNSW索引
218
- self.index = faiss.IndexIDMap(hnsw_index)
229
+ # 添加IVF索引以提高大规模检索性能
230
+ nlist = max(4, int(vectors.shape[0] / 1000)) # 每1000个向量一个聚类中心
231
+ quantizer = faiss.IndexFlatIP(self.vector_dim)
232
+ self.index = faiss.IndexIVFFlat(quantizer, self.vector_dim, nlist, faiss.METRIC_INNER_PRODUCT)
219
233
 
220
- # 添加向量到索引
221
234
  if vectors.shape[0] > 0:
222
- self.index.add_with_ids(vectors, np.arange(vectors.shape[0]))
235
+ # 训练IVF索引
236
+ self.index.train(vectors)
237
+ self.index.add(vectors)
238
+ # 设置搜索时探测的聚类数
239
+ self.index.nprobe = min(nlist, 10)
223
240
  else:
224
241
  self.index = None
225
242
 
226
243
  def _split_text(self, text: str) -> List[str]:
227
- """将文本分割成段落
244
+ """使用更智能的分块策略"""
245
+ # 添加重叠分块以保持上下文连贯性
246
+ overlap_size = min(200, self.max_paragraph_length // 4)
228
247
 
229
- Args:
230
- text: 要分割的文本
231
-
232
- Returns:
233
- 分割后的段落列表
234
- """
235
- # 首先按空行分割
236
248
  paragraphs = []
237
- current_paragraph = []
238
-
239
- for line in text.split('\n'):
240
- line = line.strip()
241
- if not line: # 空行表示段落结束
242
- if current_paragraph:
243
- paragraph_text = ' '.join(current_paragraph)
244
- if len(paragraph_text) >= self.min_paragraph_length:
245
- paragraphs.append(paragraph_text)
246
- current_paragraph = []
247
- else:
248
- current_paragraph.append(line)
249
+ current_chunk = []
250
+ current_length = 0
249
251
 
250
- # 处理最后一个段落
251
- if current_paragraph:
252
- paragraph_text = ' '.join(current_paragraph)
253
- if len(paragraph_text) >= self.min_paragraph_length:
254
- paragraphs.append(paragraph_text)
252
+ # 首先按句子分割
253
+ sentences = []
254
+ current_sentence = []
255
+ sentence_ends = {'。', '!', '?', '…', '.', '!', '?'}
255
256
 
256
- # 处理过长的段落
257
- final_paragraphs = []
258
- for paragraph in paragraphs:
259
- if len(paragraph) <= self.max_paragraph_length:
260
- final_paragraphs.append(paragraph)
261
- else:
262
- # 按句子分割过长的段落
263
- sentences = []
257
+ for char in text:
258
+ current_sentence.append(char)
259
+ if char in sentence_ends:
260
+ sentence = ''.join(current_sentence)
261
+ if sentence.strip():
262
+ sentences.append(sentence)
264
263
  current_sentence = []
265
-
266
- # 中文句子结束标记
267
- sentence_ends = {'', '!', '?', '…', '.', '!', '?'}
268
-
269
- for char in paragraph:
270
- current_sentence.append(char)
271
- if char in sentence_ends:
272
- sentence = ''.join(current_sentence)
273
- if sentence.strip():
274
- sentences.append(sentence)
275
- current_sentence = []
276
-
277
- # 处理最后一个句子
278
- if current_sentence:
279
- sentence = ''.join(current_sentence)
280
- if sentence.strip():
281
- sentences.append(sentence)
282
-
283
- # 组合句子成适当长度的段落
284
- current_chunk = []
285
- current_length = 0
286
-
287
- for sentence in sentences:
288
- sentence_length = len(sentence)
289
- if current_length + sentence_length > self.max_paragraph_length:
290
- if current_chunk:
291
- final_paragraphs.append(''.join(current_chunk))
292
- current_chunk = [sentence]
293
- current_length = sentence_length
294
- else:
295
- current_chunk.append(sentence)
296
- current_length += sentence_length
297
-
298
- # 处理最后一个chunk
264
+
265
+ if current_sentence:
266
+ sentence = ''.join(current_sentence)
267
+ if sentence.strip():
268
+ sentences.append(sentence)
269
+
270
+ # 基于句子构建重叠块
271
+ for sentence in sentences:
272
+ if current_length + len(sentence) > self.max_paragraph_length:
299
273
  if current_chunk:
300
- final_paragraphs.append(''.join(current_chunk))
274
+ chunk_text = ' '.join(current_chunk)
275
+ if len(chunk_text) >= self.min_paragraph_length:
276
+ paragraphs.append(chunk_text)
277
+
278
+ # 保留部分内容作为重叠
279
+ overlap_text = ' '.join(current_chunk[-2:]) # 保留最后两句
280
+ current_chunk = []
281
+ if overlap_text:
282
+ current_chunk.append(overlap_text)
283
+ current_length = len(overlap_text)
284
+ else:
285
+ current_length = 0
286
+
287
+ current_chunk.append(sentence)
288
+ current_length += len(sentence)
301
289
 
302
- # 过滤掉太短的段落
303
- final_paragraphs = [p for p in final_paragraphs if len(p) >= self.min_paragraph_length]
290
+ # 处理最后一个chunk
291
+ if current_chunk:
292
+ chunk_text = ' '.join(current_chunk)
293
+ if len(chunk_text) >= self.min_paragraph_length:
294
+ paragraphs.append(chunk_text)
304
295
 
305
- return final_paragraphs
296
+ return paragraphs
306
297
 
307
298
  def _get_embedding(self, text: str) -> np.ndarray:
308
299
  """获取文本的向量表示"""
@@ -410,82 +401,131 @@ class RAGTool:
410
401
  output_type=OutputType.SUCCESS)
411
402
 
412
403
  def search(self, query: str, top_k: int = 5) -> List[Tuple[Document, float]]:
413
- """搜索相关文档
414
-
415
- Args:
416
- query: 查询文本
417
- top_k: 返回结果数量
418
-
419
- Returns:
420
- 文档和相似度得分的列表
421
- """
404
+ """优化搜索策略"""
422
405
  if not self.index:
423
406
  PrettyOutput.print("索引未构建,正在构建...", output_type=OutputType.INFO)
424
407
  self.build_index(self.root_dir)
408
+
409
+ # 实现MMR (Maximal Marginal Relevance) 来增加结果多样性
410
+ def mmr(query_vec, doc_vecs, doc_ids, lambda_param=0.5, n_docs=top_k):
411
+ selected = []
412
+ selected_ids = []
413
+
414
+ while len(selected) < n_docs and len(doc_ids) > 0:
415
+ best_score = -1
416
+ best_idx = -1
417
+
418
+ for i, (doc_vec, doc_id) in enumerate(zip(doc_vecs, doc_ids)):
419
+ # 计算与查询的相似度
420
+ query_sim = float(np.dot(query_vec, doc_vec))
421
+
422
+ # 计算与已选文档的最大相似度
423
+ if selected:
424
+ doc_sims = [float(np.dot(doc_vec, selected_doc)) for selected_doc in selected]
425
+ max_doc_sim = max(doc_sims)
426
+ else:
427
+ max_doc_sim = 0
428
+
429
+ # MMR score
430
+ score = lambda_param * query_sim - (1 - lambda_param) * max_doc_sim
431
+
432
+ if score > best_score:
433
+ best_score = score
434
+ best_idx = i
435
+
436
+ if best_idx == -1:
437
+ break
438
+
439
+ selected.append(doc_vecs[best_idx])
440
+ selected_ids.append(doc_ids[best_idx])
441
+ doc_vecs = np.delete(doc_vecs, best_idx, axis=0)
442
+ doc_ids = np.delete(doc_ids, best_idx)
425
443
 
426
- # 获取查询的向量表示
444
+ return selected_ids
445
+
446
+ # 获取查询向量
427
447
  query_vector = self._get_embedding(query)
428
448
  query_vector = query_vector.reshape(1, -1)
429
449
 
430
- # 搜索最相似的向量
431
- distances, indices = self.index.search(query_vector, top_k)
450
+ # 初始搜索更多结果用于MMR
451
+ initial_k = min(top_k * 2, len(self.documents))
452
+ distances, indices = self.index.search(query_vector, initial_k)
453
+
454
+ # 获取有效结果
455
+ valid_indices = indices[0][indices[0] != -1]
456
+ valid_vectors = np.vstack([self._get_embedding(self.documents[idx].content) for idx in valid_indices])
432
457
 
433
- # 返回结果
458
+ # 应用MMR
459
+ final_indices = mmr(query_vector[0], valid_vectors, valid_indices, n_docs=top_k)
460
+
461
+ # 构建结果
434
462
  results = []
435
- current_length = 0
463
+ for idx in final_indices:
464
+ doc = self.documents[idx]
465
+ similarity = 1.0 / (1.0 + float(distances[0][np.where(indices[0] == idx)[0][0]]))
466
+ results.append((doc, similarity))
436
467
 
437
- for idx, distance in zip(indices[0], distances[0]):
438
- if idx == -1: # FAISS返回-1表示无效结果
439
- continue
468
+ return results
469
+
470
+ def _rerank_results(self, query: str, initial_results: List[Tuple[Document, float]]) -> List[Tuple[Document, float]]:
471
+ """使用 rerank 模型重新排序搜索结果"""
472
+ try:
473
+ import torch
474
+ model, tokenizer = load_rerank_model()
475
+
476
+ # 准备数据
477
+ pairs = []
478
+ for doc, _ in initial_results:
479
+ # 组合文档信息
480
+ doc_content = f"""
481
+ 文件: {doc.metadata['file_path']}
482
+ 内容: {doc.content}
483
+ """
484
+ pairs.append([query, doc_content])
440
485
 
441
- doc = self.documents[idx]
442
- similarity = 1.0 / (1.0 + float(distance))
486
+ # 对每个文档对进行打分
487
+ scores = []
488
+ batch_size = 8
443
489
 
444
- # 获取同一文件中的所有文档片段
445
- file_docs = [d for d in self.documents if d.metadata['file_path'] == doc.metadata['file_path']]
446
- file_docs.sort(key=lambda x: x.metadata['chunk_index'])
490
+ with torch.no_grad():
491
+ for i in range(0, len(pairs), batch_size):
492
+ batch_pairs = pairs[i:i + batch_size]
493
+ encoded = tokenizer(
494
+ batch_pairs,
495
+ padding=True,
496
+ truncation=True,
497
+ max_length=512,
498
+ return_tensors='pt'
499
+ )
500
+
501
+ if torch.cuda.is_available():
502
+ encoded = {k: v.cuda() for k, v in encoded.items()}
503
+
504
+ outputs = model(**encoded)
505
+ batch_scores = outputs.logits.squeeze(-1).cpu().numpy()
506
+ scores.extend(batch_scores.tolist())
447
507
 
448
- # 找到当前片段的索引
449
- current_idx = file_docs.index(doc)
508
+ # 归一化分数到 0-1 范围
509
+ if scores:
510
+ min_score = min(scores)
511
+ max_score = max(scores)
512
+ if max_score > min_score:
513
+ scores = [(s - min_score) / (max_score - min_score) for s in scores]
450
514
 
451
- # 尝试不同的上下文窗口大小,从最大到最小
452
- added = False
453
- for window_size in range(self.context_window, -1, -1):
454
- start_idx = max(0, current_idx - window_size)
455
- end_idx = min(len(file_docs), current_idx + window_size + 1)
456
-
457
- # 合并内容,包含上下文
458
- content_parts = []
459
- content_parts.extend(file_docs[i].content for i in range(start_idx, current_idx))
460
- content_parts.append(doc.content)
461
- content_parts.extend(file_docs[i].content for i in range(current_idx + 1, end_idx))
462
-
463
- merged_content = "\n".join(content_parts)
464
-
465
- # 创建文档对象
466
- context_doc = Document(
467
- content=merged_content,
468
- metadata={
469
- **doc.metadata,
470
- "similarity": similarity
471
- }
472
- )
473
-
474
- # 计算添加这个结果后的总长度
475
- total_content_length = len(merged_content)
476
-
477
- # 检查是否在长度限制内
478
- if current_length + total_content_length <= self.max_context_length:
479
- results.append((context_doc, similarity))
480
- current_length += total_content_length
481
- added = True
482
- break
515
+ # 将分数与文档组合并排序
516
+ scored_results = []
517
+ for (doc, _), score in zip(initial_results, scores):
518
+ if score >= 0.5: # 只保留关联度大于 0.5 的结果
519
+ scored_results.append((doc, float(score)))
520
+
521
+ # 按分数降序排序
522
+ scored_results.sort(key=lambda x: x[1], reverse=True)
483
523
 
484
- # 如果即使没有上下文也无法添加,就停止添加更多结果
485
- if not added:
486
- break
487
-
488
- return results
524
+ return scored_results
525
+
526
+ except Exception as e:
527
+ PrettyOutput.print(f"重排序失败,使用原始排序: {str(e)}", output_type=OutputType.WARNING)
528
+ return initial_results
489
529
 
490
530
  def is_index_built(self):
491
531
  """检查索引是否已构建"""
@@ -567,9 +607,12 @@ def main():
567
607
  args = parser.parse_args()
568
608
 
569
609
  try:
570
- current_dir = find_git_root()
610
+ current_dir = os.getcwd()
571
611
  rag = RAGTool(current_dir)
572
612
 
613
+ if not args.dir:
614
+ args.dir = current_dir
615
+
573
616
  if args.dir and args.build:
574
617
  PrettyOutput.print(f"正在处理目录: {args.dir}", output_type=OutputType.INFO)
575
618
  rag.build_index(args.dir)
@@ -111,7 +111,7 @@ class AI8Model(BasePlatform):
111
111
  session_data = {
112
112
  **self.conversation,
113
113
  "model": self.model_name,
114
- "contextCount": 1024,
114
+ "contextCount": 65536,
115
115
  "prompt": self.system_message,
116
116
  "plugins": [],
117
117
  "localPlugins": None,
@@ -2,7 +2,7 @@ import mimetypes
2
2
  import os
3
3
  from typing import Dict, List
4
4
  from jarvis.models.base import BasePlatform
5
- from jarvis.utils import PrettyOutput, OutputType
5
+ from jarvis.utils import PrettyOutput, OutputType, get_max_context_length
6
6
  import requests
7
7
  import json
8
8
 
@@ -72,10 +72,10 @@ class OyiModel(BasePlatform):
72
72
  "is_webSearch": True,
73
73
  "message": [],
74
74
  "systemMessage": None,
75
- "requestMsgCount": 1000,
75
+ "requestMsgCount": 65536,
76
76
  "temperature": 0.8,
77
77
  "speechVoice": "Alloy",
78
- "max_tokens": 8192,
78
+ "max_tokens": get_max_context_length(),
79
79
  "chatPluginIds": []
80
80
  })
81
81
  }
@@ -19,7 +19,8 @@ class ToolRegistry:
19
19
  # 加载内置工具和外部工具
20
20
  self._load_builtin_tools()
21
21
  self._load_external_tools()
22
- self.max_context_length = get_max_context_length() * 0.8
22
+ # 确保 max_context_length 是整数
23
+ self.max_context_length = int(get_max_context_length() * 0.8)
23
24
 
24
25
  @staticmethod
25
26
  def get_global_tool_registry():
@@ -181,10 +182,11 @@ class ToolRegistry:
181
182
  PrettyOutput.print("输出较长,正在总结...", OutputType.PROGRESS)
182
183
  model = PlatformRegistry.get_global_platform_registry().get_normal_platform()
183
184
 
184
- # 如果输出超过30k,只取最后30k字符
185
- if len(output) > self.max_context_length:
186
- output_to_summarize = output[-self.max_context_length:]
187
- truncation_notice = f"\n(注意: 由于输出过长,仅总结最后{self.max_context_length}字符)"
185
+ # 如果输出超过最大上下文长度,只取最后部分
186
+ max_len = self.max_context_length
187
+ if len(output) > max_len:
188
+ output_to_summarize = output[-max_len:]
189
+ truncation_notice = f"\n(注意: 由于输出过长,仅总结最后{max_len}字符)"
188
190
  else:
189
191
  output_to_summarize = output
190
192
  truncation_notice = ""
@@ -10,6 +10,8 @@ from prompt_toolkit import PromptSession
10
10
  from prompt_toolkit.styles import Style as PromptStyle
11
11
  from prompt_toolkit.formatted_text import FormattedText
12
12
  from sentence_transformers import SentenceTransformer
13
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
14
+ import torch
13
15
 
14
16
  # 初始化colorama
15
17
  colorama.init()
@@ -211,7 +213,7 @@ def find_git_root(dir="."):
211
213
 
212
214
  def load_embedding_model():
213
215
  os.environ["TOKENIZERS_PARALLELISM"] = "false"
214
- model_name = os.environ.get("JARVIS_EMBEDDING_MODEL", "BAAI/bge-large-zh-v1.5")
216
+ model_name = "BAAI/bge-large-zh-v1.5"
215
217
  PrettyOutput.print(f"正在加载嵌入模型: {model_name}...", OutputType.INFO)
216
218
  try:
217
219
  # 首先尝试离线加载
@@ -234,6 +236,44 @@ def load_embedding_model():
234
236
 
235
237
  return embedding_model
236
238
 
239
+ def load_rerank_model():
240
+ """加载重排序模型"""
241
+ model_name = "BAAI/bge-reranker-v2-m3"
242
+ PrettyOutput.print(f"正在加载重排序模型: {model_name}...", OutputType.INFO)
243
+
244
+ try:
245
+ # 首先尝试离线加载
246
+ tokenizer = AutoTokenizer.from_pretrained(
247
+ model_name,
248
+ local_files_only=True,
249
+ cache_dir=os.path.expanduser("~/.cache/huggingface/hub")
250
+ )
251
+ model = AutoModelForSequenceClassification.from_pretrained(
252
+ model_name,
253
+ local_files_only=True,
254
+ cache_dir=os.path.expanduser("~/.cache/huggingface/hub")
255
+ )
256
+ PrettyOutput.print("使用本地缓存加载模型成功", OutputType.SUCCESS)
257
+ except Exception as local_error:
258
+ PrettyOutput.print(f"本地加载失败,尝试在线下载: {str(local_error)}", OutputType.WARNING)
259
+ # 如果离线加载失败,尝试在线下载
260
+ tokenizer = AutoTokenizer.from_pretrained(
261
+ model_name,
262
+ cache_dir=os.path.expanduser("~/.cache/huggingface/hub")
263
+ )
264
+ model = AutoModelForSequenceClassification.from_pretrained(
265
+ model_name,
266
+ cache_dir=os.path.expanduser("~/.cache/huggingface/hub")
267
+ )
268
+ PrettyOutput.print("模型下载并加载成功", OutputType.SUCCESS)
269
+
270
+ # 如果有 GPU 就使用 GPU
271
+ if torch.cuda.is_available():
272
+ model = model.cuda()
273
+ model.eval()
274
+
275
+ return model, tokenizer
276
+
237
277
  def get_max_context_length():
238
278
  return int(os.getenv('JARVIS_MAX_CONTEXT_LENGTH', '131072')) # 默认128k
239
279
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: jarvis-ai-assistant
3
- Version: 0.1.86
3
+ Version: 0.1.87
4
4
  Summary: Jarvis: An AI assistant that uses tools to interact with the system
5
5
  Home-page: https://github.com/skyfireitdiy/Jarvis
6
6
  Author: skyfire
@@ -134,7 +134,6 @@ Jarvis supports configuration through environment variables that can be set in t
134
134
  | JARVIS_CODEGEN_MODEL | Model name for code generation | Same as JARVIS_MODEL | No |
135
135
  | JARVIS_CHEAP_PLATFORM | AI platform for cheap operations | Same as JARVIS_PLATFORM | No |
136
136
  | JARVIS_CHEAP_MODEL | Model name for cheap operations | Same as JARVIS_MODEL | No |
137
- | JARVIS_EMBEDDING_MODEL | Embedding model for code analysis | BAAI/bge-large-zh-v1.5 | No |
138
137
  | OPENAI_API_KEY | API key for OpenAI platform | - | Required for OpenAI |
139
138
  | OPENAI_API_BASE | Base URL for OpenAI API | https://api.deepseek.com | No |
140
139
  | OPENAI_MODEL_NAME | Model name for OpenAI | deepseek-chat | No |