jarvis-ai-assistant 0.1.65__py3-none-any.whl → 0.1.67__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of jarvis-ai-assistant might be problematic. Click here for more details.

jarvis/__init__.py CHANGED
@@ -1,3 +1,3 @@
1
1
  """Jarvis AI Assistant"""
2
2
 
3
- __version__ = "0.1.65"
3
+ __version__ = "0.1.67"
@@ -1,7 +1,5 @@
1
1
  import hashlib
2
2
  import os
3
- import sqlite3
4
- import time
5
3
  import numpy as np
6
4
  import faiss
7
5
  from typing import List, Tuple, Optional
@@ -13,13 +11,14 @@ from jarvis.utils import OutputType, PrettyOutput, find_git_root
13
11
  from jarvis.utils import load_env_from_file
14
12
  import argparse
15
13
  from sentence_transformers import SentenceTransformer
14
+ import pickle
16
15
 
17
16
  class CodeBase:
18
- def __init__(self, root_dir: str, thread_count: int = 10):
17
+ def __init__(self, root_dir: str):
19
18
  load_env_from_file()
20
19
  self.root_dir = root_dir
21
20
  os.chdir(self.root_dir)
22
- self.thread_count = thread_count
21
+ self.thread_count = os.environ.get("JARVIS_THREAD_COUNT") or 10
23
22
  self.cheap_platform = os.environ.get("JARVIS_CHEAP_PLATFORM") or os.environ.get("JARVIS_PLATFORM") or "kimi"
24
23
  self.cheap_model = os.environ.get("JARVIS_CHEAP_MODEL") or os.environ.get("JARVIS_MODEL") or "kimi"
25
24
  self.normal_platform = os.environ.get("JARVIS_PLATFORM") or "kimi"
@@ -59,59 +58,37 @@ class CodeBase:
59
58
 
60
59
  self.vector_dim = self.embedding_model.get_sentence_embedding_dimension()
61
60
 
62
-
63
- self.db_path = os.path.join(self.data_dir, "codebase.db")
64
- if not os.path.exists(self.db_path):
65
- self.create_db()
66
61
  self.git_file_list = self.get_git_file_list()
67
62
  self.platform_registry = PlatformRegistry().get_global_platform_registry()
68
- self.index_path = os.path.join(self.data_dir, "vectors.index")
69
- self.index = None
70
- if os.path.exists(self.index_path):
71
- PrettyOutput.print("正在加载向量数据库", output_type=OutputType.INFO)
72
- self.index = faiss.read_index(self.index_path)
63
+
64
+ # 初始化缓存和索引
65
+ self.cache_path = os.path.join(self.data_dir, "cache.pkl")
66
+ self.vector_cache = {}
67
+ self.file_paths = []
68
+
69
+ # 加载缓存
70
+ if os.path.exists(self.cache_path):
71
+ try:
72
+ with open(self.cache_path, 'rb') as f:
73
+ cache_data = pickle.load(f)
74
+ self.vector_cache = cache_data["vectors"]
75
+ self.file_paths = cache_data["file_paths"]
76
+ PrettyOutput.print(f"加载了 {len(self.vector_cache)} 个向量缓存",
77
+ output_type=OutputType.INFO)
78
+ # 从缓存重建索引
79
+ self.build_index()
80
+ except Exception as e:
81
+ PrettyOutput.print(f"加载缓存失败: {str(e)}",
82
+ output_type=OutputType.WARNING)
83
+ self.vector_cache = {}
84
+ self.file_paths = []
85
+ self.index = None
73
86
 
74
87
  def get_git_file_list(self):
75
- return os.popen("git ls-files").read().splitlines()
76
-
77
- def get_db_connection(self):
78
- """创建并返回一个新的数据库连接"""
79
- return sqlite3.connect(self.db_path)
80
-
81
- def clean_db(self) -> bool:
82
- """清理数据库和向量索引中的过期记录"""
83
- db = self.get_db_connection()
84
- try:
85
- # 获取所有数据库记录
86
- all_records = db.execute("SELECT path FROM codebase").fetchall()
87
- files_to_delete = []
88
-
89
- # 找出需要删除的文件
90
- for row in all_records:
91
- if row[0] not in self.git_file_list:
92
- files_to_delete.append(row[0])
93
-
94
- if not files_to_delete:
95
- return False
96
-
97
- for file_path in files_to_delete:
98
- db.execute("DELETE FROM codebase WHERE path = ?", (file_path,))
99
-
100
- db.commit()
101
-
102
- PrettyOutput.print(f"清理了 {len(files_to_delete)} 个文件的记录",
103
- output_type=OutputType.INFO)
104
- return True
105
- finally:
106
- db.close()
107
-
108
- def create_db(self):
109
- db = self.get_db_connection()
110
- try:
111
- db.execute("CREATE TABLE IF NOT EXISTS codebase (path TEXT, md5 TEXT ,description TEXT)")
112
- db.commit()
113
- finally:
114
- db.close()
88
+ """获取 git 仓库中的文件列表,排除 .jarvis-codebase 目录"""
89
+ files = os.popen("git ls-files").read().splitlines()
90
+ # 过滤掉 .jarvis-codebase 目录下的文件
91
+ return [f for f in files if not f.startswith(".jarvis-codebase/")]
115
92
 
116
93
  def is_text_file(self, file_path: str):
117
94
  with open(file_path, "r", encoding="utf-8") as f:
@@ -144,6 +121,74 @@ class CodeBase:
144
121
  response = model.chat(prompt)
145
122
  return response
146
123
 
124
+ def save_cache(self):
125
+ """保存缓存数据"""
126
+ try:
127
+ cache_data = {
128
+ "vectors": self.vector_cache,
129
+ "file_paths": self.file_paths
130
+ }
131
+ with open(self.cache_path, 'wb') as f:
132
+ pickle.dump(cache_data, f)
133
+ PrettyOutput.print(f"保存了 {len(self.vector_cache)} 个向量缓存",
134
+ output_type=OutputType.INFO)
135
+ except Exception as e:
136
+ PrettyOutput.print(f"保存缓存失败: {str(e)}",
137
+ output_type=OutputType.ERROR)
138
+
139
+ def get_cached_vector(self, file_path: str, description: str) -> Optional[np.ndarray]:
140
+ """从缓存获取文件的向量表示"""
141
+ if file_path not in self.vector_cache:
142
+ return None
143
+
144
+ # 检查文件是否被修改
145
+ try:
146
+ with open(file_path, "rb") as f:
147
+ current_md5 = hashlib.md5(f.read()).hexdigest()
148
+ except Exception as e:
149
+ PrettyOutput.print(f"计算文件MD5失败 {file_path}: {str(e)}",
150
+ output_type=OutputType.ERROR)
151
+ return None
152
+
153
+ cached_data = self.vector_cache[file_path]
154
+ if cached_data["md5"] != current_md5:
155
+ return None
156
+
157
+ # 检查描述是否变化
158
+ if cached_data["description"] != description:
159
+ return None
160
+
161
+ return cached_data["vector"]
162
+
163
+ def cache_vector(self, file_path: str, vector: np.ndarray, description: str):
164
+ """缓存文件的向量表示"""
165
+ try:
166
+ with open(file_path, "rb") as f:
167
+ file_md5 = hashlib.md5(f.read()).hexdigest()
168
+ except Exception as e:
169
+ PrettyOutput.print(f"计算文件MD5失败 {file_path}: {str(e)}",
170
+ output_type=OutputType.ERROR)
171
+ file_md5 = ""
172
+
173
+ self.vector_cache[file_path] = {
174
+ "path": file_path, # 保存文件路径
175
+ "md5": file_md5, # 保存文件MD5
176
+ "description": description, # 保存文件描述
177
+ "vector": vector # 保存向量
178
+ }
179
+
180
+ # 保存缓存到文件
181
+ try:
182
+ with open(self.cache_path, 'wb') as f:
183
+ cache_data = {
184
+ "vectors": self.vector_cache,
185
+ "file_paths": self.file_paths
186
+ }
187
+ pickle.dump(cache_data, f)
188
+ except Exception as e:
189
+ PrettyOutput.print(f"保存向量缓存失败: {str(e)}",
190
+ output_type=OutputType.ERROR)
191
+
147
192
  def get_embedding(self, text: str) -> np.ndarray:
148
193
  """使用 transformers 模型获取文本的向量表示"""
149
194
  # 对长文本进行截断
@@ -152,148 +197,205 @@ class CodeBase:
152
197
 
153
198
  # 获取嵌入向量
154
199
  embedding = self.embedding_model.encode(text,
155
- normalize_embeddings=True, # L2归一化
156
- show_progress_bar=False)
157
- return np.array(embedding, dtype=np.float32)
200
+ normalize_embeddings=True, # L2归一化
201
+ show_progress_bar=False)
202
+ vector = np.array(embedding, dtype=np.float32)
203
+ return vector
158
204
 
159
205
  def vectorize_file(self, file_path: str, description: str) -> np.ndarray:
160
206
  """将文件内容和描述向量化"""
161
- try:
207
+ try:
208
+ # 先尝试从缓存获取
209
+ cached_vector = self.get_cached_vector(file_path, description)
210
+ if cached_vector is not None:
211
+ return cached_vector
212
+
162
213
  # 组合文件信息
163
214
  combined_text = f"""
164
215
  文件路径: {file_path}
165
216
  文件描述: {description}
166
217
  """
167
- return self.get_embedding(combined_text)
218
+ vector = self.get_embedding(combined_text)
219
+
220
+ # 保存到缓存
221
+ self.cache_vector(file_path, vector, description)
222
+ return vector
168
223
  except Exception as e:
169
224
  PrettyOutput.print(f"Error vectorizing file {file_path}: {str(e)}",
170
225
  output_type=OutputType.ERROR)
171
226
  return np.zeros(self.vector_dim, dtype=np.float32)
172
227
 
173
- def process_file(self, file):
174
- """处理单个文件的辅助方法"""
175
- db = self.get_db_connection()
228
+ def clean_cache(self) -> bool:
229
+ """清理过期的缓存记录,返回是否有文件被删除"""
230
+ files_to_delete = []
231
+ for file_path in list(self.vector_cache.keys()):
232
+ if file_path not in self.git_file_list:
233
+ del self.vector_cache[file_path]
234
+ files_to_delete.append(file_path)
235
+
236
+ if files_to_delete:
237
+ self.save_cache()
238
+ PrettyOutput.print(f"清理了 {len(files_to_delete)} 个文件的缓存",
239
+ output_type=OutputType.INFO)
240
+ return True
241
+ return False
242
+
243
+ def process_file(self, file_path: str):
244
+ """处理单个文件"""
176
245
  try:
177
- if not self.is_text_file(file):
246
+ # 跳过不存在的文件
247
+ if not os.path.exists(file_path):
178
248
  return None
179
- md5 = hashlib.md5(open(file, "rb").read()).hexdigest()
180
- if db.execute("SELECT path FROM codebase WHERE md5 = ?", (md5,)).fetchone():
249
+
250
+ if not self.is_text_file(file_path):
181
251
  return None
182
- description = self.make_description(file)
183
- return (file, md5, description)
184
- finally:
185
- db.close()
252
+
253
+ md5 = hashlib.md5(open(file_path, "rb").read()).hexdigest()
254
+
255
+ # 检查文件是否已经处理过且内容未变
256
+ if file_path in self.vector_cache:
257
+ if self.vector_cache[file_path].get("md5") == md5:
258
+ return None
259
+
260
+ description = self.make_description(file_path)
261
+ vector = self.vectorize_file(file_path, description)
262
+
263
+ # 保存到缓存,使用实际文件路径作为键
264
+ self.vector_cache[file_path] = {
265
+ "vector": vector,
266
+ "description": description,
267
+ "md5": md5
268
+ }
269
+
270
+ return file_path
271
+
272
+ except Exception as e:
273
+ PrettyOutput.print(f"处理文件失败 {file_path}: {str(e)}",
274
+ output_type=OutputType.ERROR,
275
+ traceback=True)
276
+ return None
186
277
 
187
- def gen_vector_db_from_sqlite(self):
188
- self.index = faiss.IndexHNSWFlat(self.vector_dim, 16)
189
- self.index.hnsw.efConstruction = 40
190
- self.index.hnsw.efSearch = 16
191
- db = self.get_db_connection()
192
- try:
193
- all_records = db.execute("SELECT path, description FROM codebase").fetchall()
194
- for row in all_records:
195
- file, description = row
196
- PrettyOutput.print(f"正在向量化文件: {file}", output_type=OutputType.INFO)
197
- vector = self.vectorize_file(file, description)
198
- vector = vector.reshape(1, -1)
199
- self.index.add(vector)
200
- faiss.write_index(self.index, self.index_path)
201
- finally:
202
- db.close()
278
+ def build_index(self):
279
+ """从向量缓存构建 faiss 索引"""
280
+ # 创建底层 HNSW 索引
281
+ hnsw_index = faiss.IndexHNSWFlat(self.vector_dim, 16)
282
+ hnsw_index.hnsw.efConstruction = 40
283
+ hnsw_index.hnsw.efSearch = 16
284
+
285
+ # IndexIDMap 包装 HNSW 索引
286
+ self.index = faiss.IndexIDMap(hnsw_index)
287
+
288
+ vectors = []
289
+ ids = []
290
+ self.file_paths = [] # 重置文件路径列表
291
+
292
+ for i, (file_path, data) in enumerate(self.vector_cache.items()):
293
+ vectors.append(data["vector"].reshape(1, -1))
294
+ ids.append(i)
295
+ self.file_paths.append(file_path)
296
+
297
+ if vectors:
298
+ vectors = np.vstack(vectors)
299
+ self.index.add_with_ids(vectors, np.array(ids))
300
+ else:
301
+ self.index = None
302
+
303
+ def gen_vector_db_from_cache(self):
304
+ """从缓存生成向量数据库"""
305
+ self.build_index()
306
+ self.save_cache()
203
307
 
204
308
  def generate_codebase(self):
205
- updated =self.clean_db()
206
- db_lock = Lock()
207
- processed_files = [] # 用于跟踪已处理的文件
208
-
209
- def process_and_save(file):
210
- result = self.process_file(file)
211
- if result:
212
- file, md5, description = result
213
- db = self.get_db_connection()
214
- try:
215
- with db_lock:
216
- db.execute("DELETE FROM codebase WHERE path = ?", (file,))
217
- db.execute("INSERT INTO codebase (path, md5, description) VALUES (?, ?, ?)",
218
- (file, md5, description))
219
- db.commit()
220
- PrettyOutput.print(f"索引文件: {file}", output_type=OutputType.INFO)
221
- processed_files.append(file)
222
- finally:
223
- db.close()
309
+ """生成代码库索引"""
310
+ files_deleted = self.clean_cache() # 清理过期缓存
311
+ processed_files = []
224
312
 
225
- # 使用 ThreadPoolExecutor 并等待所有任务完成
313
+ # 使用线程池处理文件
226
314
  with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
227
- futures = [executor.submit(process_and_save, file) for file in self.git_file_list]
228
- # 等待所有任务完成
229
- concurrent.futures.wait(futures)
315
+ futures = [executor.submit(self.process_file, file) for file in self.git_file_list]
316
+ for future in concurrent.futures.as_completed(futures):
317
+ result = future.result()
318
+ if result:
319
+ processed_files.append(result)
320
+ PrettyOutput.print(f"索引文件: {result}", output_type=OutputType.INFO)
230
321
 
231
- if updated or len(processed_files) > 0:
232
- PrettyOutput.print("有新的文件被删除或添加,正在重新生成向量数据库", output_type=OutputType.INFO)
233
- self.gen_vector_db_from_sqlite()
322
+ if files_deleted or processed_files:
323
+ PrettyOutput.print("重新生成向量数据库", output_type=OutputType.INFO)
324
+ self.gen_vector_db_from_cache()
234
325
  else:
235
- PrettyOutput.print("没有新的文件被删除或添加,跳过向量数据库生成", output_type=OutputType.INFO)
326
+ PrettyOutput.print("没有新的文件变更,跳过向量数据库生成", output_type=OutputType.INFO)
236
327
 
237
- PrettyOutput.print(f"成功索引 {len(processed_files)} 个文件", output_type=OutputType.INFO)
328
+ PrettyOutput.print(f"成功为 {len(processed_files)} 个文件生成索引", output_type=OutputType.INFO)
238
329
 
239
330
  def search_similar(self, query: str, top_k: int = 5) -> List[Tuple[str, float, str]]:
240
- """搜索与查询最相似的文件
241
-
242
- Args:
243
- query: 查询文本
244
- top_k: 返回结果数量
245
-
246
- Returns:
247
- List of (file_path, similarity_score, description) tuples
248
- """
249
- # 获取查询文本的向量表示
250
- query_vector = self.get_embedding(query)
251
- query_vector = query_vector.reshape(1, -1)
252
-
253
- # 搜索最相似的向量
254
- distances, indices = self.index.search(query_vector, top_k)
331
+ """搜索相似文件"""
332
+ model = self.platform_registry.create_platform(self.normal_platform)
333
+ model.set_model_name(self.normal_model)
334
+ model.set_suppress_output(True)
255
335
 
256
- # 获取对应的文件信息
257
- db = self.get_db_connection()
258
336
  try:
259
- results = []
260
- for i, distance in zip(indices[0], distances[0]):
261
- if i == -1: # faiss返回-1表示无效结果
262
- continue
263
-
264
- # 将numpy.int64转换为Python int
265
- offset = int(i)
266
- # 获取文件路径和描述
267
- cursor = db.execute("SELECT path, description FROM codebase LIMIT 1 OFFSET ?", (offset,))
268
- row = cursor.fetchone()
269
- if row:
270
- path, description = row
271
- # 将distance转换为相似度分数(0-1之间)
272
- similarity = 1.0 / (1.0 + float(distance)) # 确保使用Python float
273
- results.append((path, similarity, description))
337
+ prompt = f"""请根据以下查询,生成意思完全相同的另一个表述。这个表述将用于代码搜索,所以要保持专业性和准确性。
338
+ 原始查询: {query}
339
+
340
+ 请直接输出新表述,不要有编号或其他标记。
341
+ """
342
+
343
+ query = model.chat(prompt)
274
344
 
275
- return results
276
345
  finally:
277
- db.close()
346
+ model.delete_chat()
347
+
348
+ PrettyOutput.print(f"查询: {query}", output_type=OutputType.INFO)
349
+
350
+ # 为每个查询获取相似文件
351
+ all_results = {} # 文件路径 -> (总分数, 出现次数, 描述)
352
+
353
+ q_vector = self.get_embedding(query)
354
+ q_vector = q_vector.reshape(1, -1)
355
+
356
+ distances, indices = self.index.search(q_vector, top_k)
357
+
358
+ PrettyOutput.print(f"查询 {query} 的结果: ", output_type=OutputType.INFO)
359
+
360
+ ret = []
361
+
362
+ for i, distance in zip(indices[0], distances[0]):
363
+ if i == -1: # faiss返回-1表示无效结果
364
+ continue
365
+
366
+ similarity = 1.0 / (1.0 + float(distance))
367
+ PrettyOutput.print(f" {self.file_paths[i]} : 距离 {distance:.3f}, 相似度 {similarity:.3f}",
368
+ output_type=OutputType.INFO)
369
+
370
+ file_path = self.file_paths[i]
371
+ data = self.vector_cache[file_path]
372
+ ret.append((file_path, similarity, data["description"]))
373
+ return ret
278
374
 
279
375
  def ask_codebase(self, query: str, top_k: int = 5) -> List[Tuple[str, float, str]]:
280
- """Ask a question about the codebase"""
281
- # 使用搜索函数获取相似文件
376
+ """查询代码库"""
282
377
  results = self.search_similar(query, top_k)
283
378
  PrettyOutput.print(f"找到的关联文件: ", output_type=OutputType.INFO)
284
379
  for path, score, _ in results:
285
- PrettyOutput.print(f"文件: {path} 关联度: {score:.3f}", output_type=OutputType.INFO)
380
+ PrettyOutput.print(f"文件: {path} 关联度: {score:.3f}",
381
+ output_type=OutputType.INFO)
286
382
 
287
383
  prompt = f"""你是一个代码专家,请根据以下文件信息回答用户的问题:
288
384
  """
289
385
  for path, _, _ in results:
290
- content = open(path, "r", encoding="utf-8").read()
291
- prompt += f"""
386
+ try:
387
+ content = open(path, "r", encoding="utf-8").read()
388
+ prompt += f"""
292
389
  文件路径: {path}
293
390
  文件内容:
294
391
  {content}
295
392
  ========================================
296
393
  """
394
+ except Exception as e:
395
+ PrettyOutput.print(f"读取文件失败 {path}: {str(e)}",
396
+ output_type=OutputType.ERROR)
397
+ continue
398
+
297
399
  prompt += f"""
298
400
  用户问题: {query}
299
401
 
@@ -301,8 +403,11 @@ class CodeBase:
301
403
  """
302
404
  model = self.platform_registry.create_platform(self.normal_platform)
303
405
  model.set_model_name(self.normal_model)
304
- response = model.chat(prompt)
305
- return response
406
+ try:
407
+ response = model.chat(prompt)
408
+ return response
409
+ finally:
410
+ model.delete_chat()
306
411
 
307
412
 
308
413
  def main():
@@ -1,11 +1,8 @@
1
- from concurrent.futures import ThreadPoolExecutor, as_completed
2
- import hashlib
3
1
  import os
4
2
  import re
5
- import sqlite3
6
3
  import threading
7
4
  import time
8
- from typing import Dict, Any, List, Optional, Tuple
5
+ from typing import Dict, Any, List, Tuple
9
6
 
10
7
  import yaml
11
8
  from jarvis.models.base import BasePlatform
jarvis/tools/__init__.py CHANGED
@@ -1,9 +1,6 @@
1
1
  from .registry import ToolRegistry
2
- from jarvis.tools.codebase_qa import CodebaseQATool
3
2
 
4
3
  __all__ = [
5
4
  'ToolRegistry',
6
5
  ]
7
6
 
8
- def register_tools():
9
- register_tool(CodebaseQATool())
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: jarvis-ai-assistant
3
- Version: 0.1.65
3
+ Version: 0.1.67
4
4
  Summary: Jarvis: An AI assistant that uses tools to interact with the system
5
5
  Home-page: https://github.com/skyfireitdiy/Jarvis
6
6
  Author: skyfire
@@ -123,7 +123,6 @@ Jarvis supports configuration through environment variables that can be set in t
123
123
  |---------|------|--------|------|
124
124
  | JARVIS_PLATFORM | AI platform to use, supports kimi/openai/ai8 etc | kimi | Yes |
125
125
  | JARVIS_MODEL | Model name to use | - | No |
126
-
127
126
  | JARVIS_CODEGEN_PLATFORM | AI platform for code generation | Same as JARVIS_PLATFORM | No |
128
127
  | JARVIS_CODEGEN_MODEL | Model name for code generation | Same as JARVIS_MODEL | No |
129
128
  | JARVIS_CHEAP_PLATFORM | AI platform for cheap operations | Same as JARVIS_PLATFORM | No |
@@ -155,17 +154,17 @@ jarvis -p openai # Use OpenAI platform
155
154
 
156
155
  ### Code Modification
157
156
  ```bash
158
- jarvis coder --feature "Add new feature" # Modify code to add new feature
157
+ jarvis-coder --feature "Add new feature" # Modify code to add new feature
159
158
  ```
160
159
 
161
160
  ### Codebase Search
162
161
  ```bash
163
- jarvis codebase --search "database connection" # Search codebase
162
+ jarvis-codebase --search "database connection" # Search codebase
164
163
  ```
165
164
 
166
165
  ### Codebase Question
167
166
  ```bash
168
- jarvis codebase --ask "How to use the database?" # Ask about codebase
167
+ jarvis-codebase --ask "How to use the database?" # Ask about codebase
169
168
  ```
170
169
 
171
170
  ### Keep Chat History
@@ -1,10 +1,10 @@
1
- jarvis/__init__.py,sha256=OTJ6C0zyEuN5bTB5DR5pAinY8NCO0_DhAnkfroHE0qo,50
1
+ jarvis/__init__.py,sha256=YEUpLs5Xl5YrTW6S6tl7I42rz6TcpyCTJZRczXXMmi0,50
2
2
  jarvis/agent.py,sha256=kl6pwNrluzb-9eZKgwmsk5Jh4CpWi4F8B3RvEQNvc5U,14921
3
3
  jarvis/main.py,sha256=7EcSlxa5JFFXBujzKDWdNtwX6axLhFFdJMc2GxTjfdk,6295
4
4
  jarvis/utils.py,sha256=bjC0PAR58RvcXHgabIFmNmYL1L_GhhiEwMFytWurcN4,7499
5
5
  jarvis/jarvis_codebase/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- jarvis/jarvis_codebase/main.py,sha256=bncfOXKFthcr21cV9tONXzcchSWaaYXmo0o11R5hPzc,14799
7
- jarvis/jarvis_coder/main.py,sha256=mK68MJyOerVnY7Fr9ibQ1swQLVIWyBAFmmVj08SHKyk,21825
6
+ jarvis/jarvis_codebase/main.py,sha256=LdJGg4dUaK8naNkGoqF9i53OaYndKGs3jXfZQd4w-3M,18699
7
+ jarvis/jarvis_coder/main.py,sha256=L_i1Zp3UJbc891WrpxKgoD4EzoqvLRnqznmLQP2ZN2U,21721
8
8
  jarvis/models/__init__.py,sha256=mrOt67nselz_H1gX9wdAO4y2DY5WPXzABqJbr5Des8k,63
9
9
  jarvis/models/ai8.py,sha256=vgy-r_3HHxGMAalZrA65VWHC1PuwBTYgtprSgHkCbrk,12557
10
10
  jarvis/models/base.py,sha256=ShV1H8Unee4RMaiFO4idROQA0Hc6wu4dyeRPX5fcszk,1433
@@ -12,7 +12,7 @@ jarvis/models/kimi.py,sha256=1iTB0Z_WOmCML3Ufsge6jmeKOYvccr7I5lS3JUXymU4,17611
12
12
  jarvis/models/openai.py,sha256=ayaBWAN5VexMcKVrjEPDNB-Q9wx0sCV9Z4BCrvwYJ9w,4315
13
13
  jarvis/models/oyi.py,sha256=X2c5SWDIuQDCCFBcEKbzIWEz3I34eOAi0d1XAFgxlpw,15001
14
14
  jarvis/models/registry.py,sha256=hJyaROiOF_TkbtIXsjOD8-ArOvAvtxviawyqBFfLV6s,7617
15
- jarvis/tools/__init__.py,sha256=xmROdzJTZz6JDLLuAbwVLjUD4xfUUYb6D1Ssu_desaE,183
15
+ jarvis/tools/__init__.py,sha256=7Rqyj5hBAv5cWDVr5T9ZTZASO7ssBHeQNm2_4ZARdkA,72
16
16
  jarvis/tools/base.py,sha256=EGRGbdfbLXDLwtyoWdvp9rlxNX7bzc20t0Vc2VkwIEY,652
17
17
  jarvis/tools/codebase_qa.py,sha256=AEpusYxyWtALVVwPk1DMUH9cVI73mE1e3WFHJXDpXto,2333
18
18
  jarvis/tools/coder.py,sha256=ZJfPInKms4Hj3-eQlBwamVsvZ-2nlZ-4jsqJ-tJc6mg,2040
@@ -24,9 +24,9 @@ jarvis/tools/search.py,sha256=1EqOVvLhg2Csh-i03-XeCrusbyfmH69FZ8khwZt8Tow,6131
24
24
  jarvis/tools/shell.py,sha256=UPKshPyOaUwTngresUw-ot1jHjQIb4wCY5nkJqa38lU,2520
25
25
  jarvis/tools/sub_agent.py,sha256=rEtAmSVY2ZjFOZEKr5m5wpACOQIiM9Zr_3dT92FhXYU,2621
26
26
  jarvis/tools/webpage.py,sha256=d3w3Jcjcu1ESciezTkz3n3Zf-rp_l91PrVoDEZnckOo,2391
27
- jarvis_ai_assistant-0.1.65.dist-info/LICENSE,sha256=AGgVgQmTqFvaztRtCAXsAMryUymB18gZif7_l2e1XOg,1063
28
- jarvis_ai_assistant-0.1.65.dist-info/METADATA,sha256=h4jt2RuxMCTuoMTZcxA3ZdFYmQKNayDqe82I0NAitsU,12374
29
- jarvis_ai_assistant-0.1.65.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
30
- jarvis_ai_assistant-0.1.65.dist-info/entry_points.txt,sha256=QNUeqmUJd7nHufel2FO7cRttS1uKFfnbIyObv8eVyOY,140
31
- jarvis_ai_assistant-0.1.65.dist-info/top_level.txt,sha256=1BOxyWfzOP_ZXj8rVTDnNCJ92bBGB0rwq8N1PCpoMIs,7
32
- jarvis_ai_assistant-0.1.65.dist-info/RECORD,,
27
+ jarvis_ai_assistant-0.1.67.dist-info/LICENSE,sha256=AGgVgQmTqFvaztRtCAXsAMryUymB18gZif7_l2e1XOg,1063
28
+ jarvis_ai_assistant-0.1.67.dist-info/METADATA,sha256=Vpf669oYa2bpkQDzfAsgSP0bv0geylGiyuPq6ezarJY,12373
29
+ jarvis_ai_assistant-0.1.67.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
30
+ jarvis_ai_assistant-0.1.67.dist-info/entry_points.txt,sha256=QNUeqmUJd7nHufel2FO7cRttS1uKFfnbIyObv8eVyOY,140
31
+ jarvis_ai_assistant-0.1.67.dist-info/top_level.txt,sha256=1BOxyWfzOP_ZXj8rVTDnNCJ92bBGB0rwq8N1PCpoMIs,7
32
+ jarvis_ai_assistant-0.1.67.dist-info/RECORD,,