jarvis-ai-assistant 0.1.128__py3-none-any.whl → 0.1.129__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of jarvis-ai-assistant might be problematic. Click here for more details.

@@ -1,11 +1,11 @@
1
1
  """
2
- Methodology Management Module
3
- This module provides utilities for loading and searching methodologies.
4
- It includes functions for:
5
- - Creating methodology embeddings
6
- - Loading and processing methodology data
7
- - Building and searching methodology index
8
- - Generating methodology prompts
2
+ 方法论管理模块
3
+ 该模块提供了加载和搜索方法论的实用工具。
4
+ 包含以下功能:
5
+ - 创建方法论嵌入向量
6
+ - 加载和处理方法论数据
7
+ - 构建和搜索方法论索引
8
+ - 生成方法论提示
9
9
  """
10
10
  import os
11
11
  import yaml
@@ -17,17 +17,17 @@ from jarvis.jarvis_utils.embedding import load_embedding_model
17
17
  from jarvis.jarvis_utils.config import dont_use_local_model
18
18
  def _create_methodology_embedding(embedding_model: Any, methodology_text: str) -> np.ndarray:
19
19
  """
20
- Create embedding vector for methodology text.
20
+ 为方法论文本创建嵌入向量。
21
21
 
22
- Args:
23
- embedding_model: The embedding model to use
24
- methodology_text: The text to create embedding for
22
+ 参数:
23
+ embedding_model: 使用的嵌入模型
24
+ methodology_text: 要创建嵌入的文本
25
25
 
26
- Returns:
27
- np.ndarray: The embedding vector
26
+ 返回:
27
+ np.ndarray: 嵌入向量
28
28
  """
29
29
  try:
30
- # Truncate long text
30
+ # 截断长文本
31
31
  max_length = 512
32
32
  text = ' '.join(methodology_text.split()[:max_length])
33
33
 
@@ -36,7 +36,7 @@ def _create_methodology_embedding(embedding_model: Any, methodology_text: str) -
36
36
  convert_to_tensor=True,
37
37
  normalize_embeddings=True)
38
38
  vector = np.array(embedding.cpu().numpy(), dtype=np.float32)
39
- return vector[0] # Return first vector, because we only encoded one text
39
+ return vector[0] # 返回第一个向量,因为我们只编码了一个文本
40
40
  except Exception as e:
41
41
  PrettyOutput.print(f"创建方法论嵌入向量失败: {str(e)}", OutputType.ERROR)
42
42
  return np.zeros(1536, dtype=np.float32)
@@ -44,10 +44,10 @@ def make_methodology_prompt(data: Dict[str, str]) -> str:
44
44
  """
45
45
  从方法论数据生成格式化提示
46
46
 
47
- Args:
47
+ 参数:
48
48
  data: 方法论数据字典
49
49
 
50
- Returns:
50
+ 返回:
51
51
  str: 格式化后的提示字符串
52
52
  """
53
53
  ret = """这是处理以往问题的标准方法论,如果当前任务类似,可以参考使用,如果不相关,请忽略:\n"""
@@ -57,13 +57,13 @@ def make_methodology_prompt(data: Dict[str, str]) -> str:
57
57
 
58
58
  def load_methodology(user_input: str) -> str:
59
59
  """
60
- Load methodology and build vector index for similarity search.
60
+ 加载方法论并构建向量索引以进行相似性搜索。
61
61
 
62
- Args:
63
- user_input: The input text to search methodologies for
62
+ 参数:
63
+ user_input: 要搜索方法论的输入文本
64
64
 
65
- Returns:
66
- str: Relevant methodology prompt or empty string if no methodology found
65
+ 返回:
66
+ str: 相关的方法论提示,如果未找到方法论则返回空字符串
67
67
  """
68
68
  from yaspin import yaspin
69
69
  user_jarvis_methodology = os.path.expanduser("~/.jarvis/methodology")
@@ -1,11 +1,11 @@
1
1
  """
2
- Output Formatting Module
3
- This module provides rich text formatting and display utilities for the Jarvis system.
4
- It includes:
5
- - OutputType enum for categorizing different types of output
6
- - PrettyOutput class for formatting and displaying styled output
7
- - Syntax highlighting support for various programming languages
8
- - Panel-based display for structured output
2
+ 输出格式化模块
3
+ 该模块为Jarvis系统提供了丰富的文本格式化和显示工具。
4
+ 包含:
5
+ - 用于分类不同输出类型的OutputType枚举
6
+ - 用于格式化和显示样式化输出的PrettyOutput
7
+ - 多种编程语言的语法高亮支持
8
+ - 结构化输出的面板显示
9
9
  """
10
10
  from enum import Enum
11
11
  from datetime import datetime
@@ -20,21 +20,21 @@ from pygments.util import ClassNotFound
20
20
  from .globals import console, get_agent_list
21
21
  class OutputType(Enum):
22
22
  """
23
- Enumeration of output types for categorizing and styling different types of messages.
23
+ 输出类型枚举,用于分类和样式化不同类型的消息。
24
24
 
25
- Attributes:
26
- SYSTEM: AI assistant message
27
- CODE: Code related output
28
- RESULT: Tool execution result
29
- ERROR: Error information
30
- INFO: System prompt
31
- PLANNING: Task planning
32
- PROGRESS: Execution progress
33
- SUCCESS: Success information
34
- WARNING: Warning information
35
- DEBUG: Debug information
36
- USER: User input
37
- TOOL: Tool call
25
+ 属性:
26
+ SYSTEM: AI助手消息
27
+ CODE: 代码相关输出
28
+ RESULT: 工具执行结果
29
+ ERROR: 错误信息
30
+ INFO: 系统提示
31
+ PLANNING: 任务规划
32
+ PROGRESS: 执行进度
33
+ SUCCESS: 成功信息
34
+ WARNING: 警告信息
35
+ DEBUG: 调试信息
36
+ USER: 用户输入
37
+ TOOL: 工具调用
38
38
  """
39
39
  SYSTEM = "SYSTEM"
40
40
  CODE = "CODE"
@@ -50,15 +50,15 @@ class OutputType(Enum):
50
50
  TOOL = "TOOL"
51
51
  class PrettyOutput:
52
52
  """
53
- Class for formatting and displaying rich text output using the rich library.
53
+ 使用rich库格式化和显示富文本输出的类。
54
54
 
55
- Provides methods for:
56
- - Formatting different types of output with appropriate styling
57
- - Syntax highlighting for code blocks
58
- - Panel-based display for structured content
59
- - Stream output for progressive display
55
+ 提供以下方法:
56
+ - 使用适当的样式格式化不同类型的输出
57
+ - 代码块的语法高亮
58
+ - 结构化内容的面板显示
59
+ - 渐进显示的流式输出
60
60
  """
61
- # Icons for different output types
61
+ # 不同输出类型的图标
62
62
  _ICONS = {
63
63
  OutputType.SYSTEM: "🤖",
64
64
  OutputType.CODE: "📝",
@@ -73,7 +73,7 @@ class PrettyOutput:
73
73
  OutputType.USER: "👤",
74
74
  OutputType.TOOL: "🔧",
75
75
  }
76
- # Language mapping for syntax highlighting
76
+ # 语法高亮的语言映射
77
77
  _lang_map = {
78
78
  'Python': 'python',
79
79
  'JavaScript': 'javascript',
@@ -109,14 +109,14 @@ class PrettyOutput:
109
109
  @staticmethod
110
110
  def _detect_language(text: str, default_lang: str = 'markdown') -> str:
111
111
  """
112
- Detect the programming language of the given text.
112
+ 检测给定文本的编程语言。
113
113
 
114
- Args:
115
- text: The text to analyze
116
- default_lang: Default language if detection fails
114
+ 参数:
115
+ text: 要分析的文本
116
+ default_lang: 如果检测失败,默认返回的语言
117
117
 
118
- Returns:
119
- str: Detected language name
118
+ 返回:
119
+ str: 检测到的语言名称
120
120
  """
121
121
  try:
122
122
  lexer = guess_lexer(text)
@@ -127,14 +127,14 @@ class PrettyOutput:
127
127
  @staticmethod
128
128
  def _format(output_type: OutputType, timestamp: bool = True) -> Text:
129
129
  """
130
- Format the output header with timestamp and icon.
130
+ 使用时间戳和图标格式化输出头。
131
131
 
132
- Args:
133
- output_type: Type of output
134
- timestamp: Whether to include timestamp
132
+ 参数:
133
+ output_type: 输出类型
134
+ timestamp: 是否包含时间戳
135
135
 
136
- Returns:
137
- Text: Formatted rich Text object
136
+ 返回:
137
+ Text: 格式化后的rich Text对象
138
138
  """
139
139
  formatted = Text()
140
140
  if timestamp:
@@ -148,14 +148,14 @@ class PrettyOutput:
148
148
  @staticmethod
149
149
  def print(text: str, output_type: OutputType, timestamp: bool = True, lang: Optional[str] = None, traceback: bool = False):
150
150
  """
151
- Print formatted output with styling and syntax highlighting.
151
+ 使用样式和语法高亮打印格式化输出。
152
152
 
153
- Args:
154
- text: The text content to print
155
- output_type: The type of output (affects styling)
156
- timestamp: Whether to show timestamp
157
- lang: Language for syntax highlighting
158
- traceback: Whether to show traceback for errors
153
+ 参数:
154
+ text: 要打印的文本内容
155
+ output_type: 输出类型(影响样式)
156
+ timestamp: 是否显示时间戳
157
+ lang: 语法高亮的语言
158
+ traceback: 是否显示错误的回溯信息
159
159
  """
160
160
  styles = {
161
161
  OutputType.SYSTEM: RichStyle(color="bright_cyan", bgcolor="#1a1a1a", frame=True, meta={"icon": "🤖"}),
@@ -191,11 +191,11 @@ class PrettyOutput:
191
191
  @staticmethod
192
192
  def section(title: str, output_type: OutputType = OutputType.INFO):
193
193
  """
194
- Print a section title in a styled panel.
194
+ 在样式化面板中打印章节标题。
195
195
 
196
- Args:
197
- title: The section title text
198
- output_type: The type of output (affects styling)
196
+ 参数:
197
+ title: 章节标题文本
198
+ output_type: 输出类型(影响样式)
199
199
  """
200
200
  panel = Panel(
201
201
  Text(title, style=output_type.value, justify="center"),
@@ -207,17 +207,17 @@ class PrettyOutput:
207
207
  @staticmethod
208
208
  def print_stream(text: str):
209
209
  """
210
- Print stream output without line break.
210
+ 打印流式输出,不带换行符。
211
211
 
212
- Args:
213
- text: The text to print
212
+ 参数:
213
+ text: 要打印的文本
214
214
  """
215
215
  style = PrettyOutput._get_style(OutputType.SYSTEM)
216
216
  console.print(text, style=style, end="")
217
217
  @staticmethod
218
218
  def print_stream_end():
219
219
  """
220
- End stream output with line break.
220
+ 结束流式输出,带换行符。
221
221
  """
222
222
  end_style = PrettyOutput._get_style(OutputType.SUCCESS)
223
223
  console.print("\n", style=end_style)
@@ -225,12 +225,12 @@ class PrettyOutput:
225
225
  @staticmethod
226
226
  def _get_style(output_type: OutputType) -> RichStyle:
227
227
  """
228
- Get pre-defined RichStyle for output type.
228
+ 获取预定义的RichStyle用于输出类型。
229
229
 
230
- Args:
231
- output_type: The output type to get style for
230
+ 参数:
231
+ output_type: 要获取样式的输出类型
232
232
 
233
- Returns:
234
- RichStyle: The corresponding style
233
+ 返回:
234
+ RichStyle: 对应的样式
235
235
  """
236
- return console.get_style(output_type.value)
236
+ return console.get_style(output_type.value)
@@ -130,7 +130,7 @@ def init_gpu_config() -> Dict:
130
130
 
131
131
 
132
132
  def is_long_context(files: list) -> bool:
133
- """Check if the file list belongs to a long context (total characters exceed 80% of the maximum context length)"""
133
+ """检查文件列表是否属于长上下文(总字符数超过最大上下文长度的80%)"""
134
134
  max_token_count = get_max_token_count()
135
135
  threshold = max_token_count * 0.8
136
136
  total_tokens = 0
@@ -147,4 +147,4 @@ def is_long_context(files: list) -> bool:
147
147
  PrettyOutput.print(f"读取文件 {file_path} 失败: {e}", OutputType.WARNING)
148
148
  continue
149
149
 
150
- return total_tokens > threshold
150
+ return total_tokens > threshold
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: jarvis-ai-assistant
3
- Version: 0.1.128
3
+ Version: 0.1.129
4
4
  Summary: Jarvis: An AI assistant that uses tools to interact with the system
5
5
  Home-page: https://github.com/skyfireitdiy/Jarvis
6
6
  Author: skyfire
@@ -1,11 +1,14 @@
1
- jarvis/__init__.py,sha256=L8k8m9rzO09xkbiWM9WsgDo2WhYnz77jf-96COi8UyQ,51
2
- jarvis/jarvis_agent/__init__.py,sha256=oyWOOGP8vYEG9ycRWRVNOL_Zfya9fC5Yvs6kk15rdD4,22942
1
+ jarvis/__init__.py,sha256=za4oKG0K-1ZuhjUPmJNltAW9-yWKxirJqtMEK3RpcwQ,51
2
+ jarvis/jarvis_agent/__init__.py,sha256=4W0HYKKaDlAXrOIsvwNVsGOTHfbyQTgEpkXIJwRQM_4,22684
3
+ jarvis/jarvis_agent/main.py,sha256=PfuoMkLH-QsqOXUMpJYi9GB7ewx-Ub84b1GTxqV7UBo,2515
3
4
  jarvis/jarvis_agent/output_handler.py,sha256=kJeFTjjSu0K_2p0wyhq2veSZuhRXoaFC_8wVaoBKX0w,401
4
5
  jarvis/jarvis_code_agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- jarvis/jarvis_code_agent/code_agent.py,sha256=IiIunonLsrHIunH96-1Q-B0WMXErVoi-aMzMglO8bF0,11026
6
+ jarvis/jarvis_code_agent/builtin_input_handler.py,sha256=HBza949NZyzZrbVlG31ITk5h0DD6MY_yjCieatvigd0,1366
7
+ jarvis/jarvis_code_agent/code_agent.py,sha256=A1mmswsCj3JT0l6iwZmIGzPUADODrVuUQJPOKiSeEYQ,8077
8
+ jarvis/jarvis_code_agent/file_input_handler.py,sha256=yooXbtWGziNzQKxM6xDyAmnJe4fKcD6kYakxKEJBAdw,3338
6
9
  jarvis/jarvis_code_agent/file_select.py,sha256=2nSy1FW-kK-wvtz0YbbgSbd4ZwXMlA7sBP0nC80FzLI,8160
7
- jarvis/jarvis_code_agent/patch.py,sha256=prYc3DkIOJMn-qkv4plusCiyZog7cN9W7E9o8Rgersw,10998
8
- jarvis/jarvis_code_agent/shell_input_handler.py,sha256=UqR8oPVTmsPc1RAaOET4jPgbTGpz1otLkxhcIqT0r1c,790
10
+ jarvis/jarvis_code_agent/patch.py,sha256=qwfpUgWcTzSrun7EWDkfbG1oiU5o_HdNUluSf20Nu1E,10898
11
+ jarvis/jarvis_code_agent/shell_input_handler.py,sha256=LTXKHNbqTKf5S2kXU255iBx_e-EsDTRaZ0aokFWkUU4,1075
9
12
  jarvis/jarvis_codebase/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
13
  jarvis/jarvis_codebase/main.py,sha256=KSNf2RoPDn_jnfjUA5Sry7sh7iJ9Q267Z8k4dsQANRM,41325
11
14
  jarvis/jarvis_dev/main.py,sha256=tDdv28nbcYlsy9wz1RbMNEModOdicNg4JfnBOYl4JnU,21414
@@ -17,7 +20,7 @@ jarvis/jarvis_lsp/go.py,sha256=fgYBhZaiU2OQPAFQh4fBFOO--HKxkXcr8PEYyF_YlcE,4930
17
20
  jarvis/jarvis_lsp/python.py,sha256=NYatk1rlah-bPnTKOn_BXwkYp0IsCUFYRGdLTVVYsCM,3708
18
21
  jarvis/jarvis_lsp/registry.py,sha256=slD6p3FAMjL8pQx2id-RxX1pwMjP4FgyMsM3ZbckQJI,9884
19
22
  jarvis/jarvis_lsp/rust.py,sha256=nV1EKtq5y57E47DbQlD2DsfvwFVE2JoUTs-9paxeyDo,5161
20
- jarvis/jarvis_multi_agent/__init__.py,sha256=aTLtKa4vbjT-eZzF1eab79vmghyA48wi6m9WVRltCw4,5991
23
+ jarvis/jarvis_multi_agent/__init__.py,sha256=LpXq9baBg4Rp0m4dfL172UcNyijSx3yjyupz2CNhjKE,5687
21
24
  jarvis/jarvis_platform/__init__.py,sha256=mrOt67nselz_H1gX9wdAO4y2DY5WPXzABqJbr5Des8k,63
22
25
  jarvis/jarvis_platform/ai8.py,sha256=xjgoiF7QHx_5FHj-npTFVvZFYg8RBzkqTGAOQ-MJiL0,11972
23
26
  jarvis/jarvis_platform/base.py,sha256=2chHt0pMx4rr0OFTeDpZcVqFUxF_q4YslUt30E5Augk,3277
@@ -52,23 +55,24 @@ jarvis/jarvis_tools/lsp_get_document_symbols.py,sha256=c7_9jP1toe_kepaTmZf1R1jn-
52
55
  jarvis/jarvis_tools/lsp_prepare_rename.py,sha256=HIeJjup8luIH25XuLqTVdejWDT5vOn-IWSo-TKDFjZ4,4821
53
56
  jarvis/jarvis_tools/methodology.py,sha256=jLYFji3hP7Gff7WFRuR-_VmPHI8Rqq0EGDIgackhqtc,5787
54
57
  jarvis/jarvis_tools/rag.py,sha256=WuTlyGV5rgZTRxts9eJPC3QABrsoNYKratdO8UzUFDw,5132
58
+ jarvis/jarvis_tools/read_code.py,sha256=rHizUi2nh-bXp3BNtzuXLWSWDfevxNTjrML2Xu1Y8EA,5382
55
59
  jarvis/jarvis_tools/read_webpage.py,sha256=TkVNgirvcjns8-MHaDXOmliOKWCYcq3WzcbVXBi0IxY,4173
56
- jarvis/jarvis_tools/registry.py,sha256=q5-U_Pt7ACKG1jVFq14VU2fPEbJcBkWWrRrX1-5rR8s,14005
60
+ jarvis/jarvis_tools/registry.py,sha256=pYyjdyjYgvHfdglhp0I7YXfVIV8_jTSncoSgIG6HFUw,13719
57
61
  jarvis/jarvis_tools/search_web.py,sha256=yzu2EP63It2but0LFUR0x1hlCkyTyr1AwY4APvxmniE,12903
58
62
  jarvis/jarvis_tools/select_code_files.py,sha256=xCqHTjIGju9Pb1Yh2C1Y7l6uT_3pfVB6ARU0VQmeRNI,1879
59
- jarvis/jarvis_tools/tool_generator.py,sha256=LlNFIc-qWjDQULR2Vw95qf-KbuO8FtRNINcGjr4q7pQ,6992
60
- jarvis/jarvis_utils/__init__.py,sha256=YQ4ZUGGIrjQj2nrYAHJxmCPbakcH5g01RWf1zmhBE4Y,953
61
- jarvis/jarvis_utils/config.py,sha256=KxjJhqOuBYwK28gHAKyJ3joEascwsl9SIFJxO14c2Dg,4472
62
- jarvis/jarvis_utils/embedding.py,sha256=sZofBOwLCsa4MLv4jSpTZ0bI05FZoYQpWrZXKwIsqM8,6200
63
- jarvis/jarvis_utils/git_utils.py,sha256=1w3Tgas5JTfB5IM4aGioMJIL9dSpDt9PTSi_2w78oT4,4565
64
- jarvis/jarvis_utils/globals.py,sha256=tVR3Z1h1scfSGgyYpVvUXILVjCBiG97fZuy4Ac6DLOY,2348
65
- jarvis/jarvis_utils/input.py,sha256=U6SRkdiZvkpSA2vfw0EocayQvyjUOjtkSI05dsqZuIE,5985
66
- jarvis/jarvis_utils/methodology.py,sha256=qr7SHLusqc5BkDy6TcOj4rMKT2je_8DFTimXp11DXag,6418
67
- jarvis/jarvis_utils/output.py,sha256=-7sRJjAJRSrbVeMO9HEDgKVvHNWxD56RLsbA8Xnf-Xk,8566
68
- jarvis/jarvis_utils/utils.py,sha256=NZwbJWVC4cd30DEoVvfV4bcau2cU9k9ID07rpEvxZ-I,5578
69
- jarvis_ai_assistant-0.1.128.dist-info/LICENSE,sha256=AGgVgQmTqFvaztRtCAXsAMryUymB18gZif7_l2e1XOg,1063
70
- jarvis_ai_assistant-0.1.128.dist-info/METADATA,sha256=soyyoOLcJqo7VOOgb-CSdKA1btnwx2ojiokmPUYdvNk,10519
71
- jarvis_ai_assistant-0.1.128.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
72
- jarvis_ai_assistant-0.1.128.dist-info/entry_points.txt,sha256=1oZg_a7zwEjnsFkOTkcGWcYfhA2-1-XTcqS1VS6sXgQ,674
73
- jarvis_ai_assistant-0.1.128.dist-info/top_level.txt,sha256=1BOxyWfzOP_ZXj8rVTDnNCJ92bBGB0rwq8N1PCpoMIs,7
74
- jarvis_ai_assistant-0.1.128.dist-info/RECORD,,
63
+ jarvis/jarvis_tools/tool_generator.py,sha256=rBx5PsXJDQRkWfZFHiHon6q0KsU8kPYHmPCQ6yRi_cU,7722
64
+ jarvis/jarvis_utils/__init__.py,sha256=THxqKNkLvhnuoZRSQHCJ2-0epoZRrtrekJPQ3savarM,824
65
+ jarvis/jarvis_utils/config.py,sha256=j1Hqqluxo7W6BUpScjBtKUJpYKRw-DU0qlQSa8vvUtQ,4999
66
+ jarvis/jarvis_utils/embedding.py,sha256=vaY4lTE9Yw0joQVWTX1FxV0ZnnOz6W9vjQE1NASzXIk,6110
67
+ jarvis/jarvis_utils/git_utils.py,sha256=wU2CPmRP4cUnm5Omz1-a7l4HYML-dYZAZ5bwNrLoQH8,4467
68
+ jarvis/jarvis_utils/globals.py,sha256=nvykWxBnqfAFqAIyJfxP5Y1yYIXIQXjippVE5i2Bubg,2269
69
+ jarvis/jarvis_utils/input.py,sha256=_PjnmRFWoe2dSxY6nBaKZoMkFLkkMJsDjXybiASYLek,6466
70
+ jarvis/jarvis_utils/methodology.py,sha256=915rbvNbrOAJHBRUFq_h06BC_lA2eezCtBmZMbIk0B0,6351
71
+ jarvis/jarvis_utils/output.py,sha256=eboIP02NAFVFntP51hqMKGUOCUEAjs0e0VLkmJgGfOo,8335
72
+ jarvis/jarvis_utils/utils.py,sha256=DfnCwgPfQpX5DZz9WGbXkWoDYrB7qnVmA6JVPoFnBuk,5564
73
+ jarvis_ai_assistant-0.1.129.dist-info/LICENSE,sha256=AGgVgQmTqFvaztRtCAXsAMryUymB18gZif7_l2e1XOg,1063
74
+ jarvis_ai_assistant-0.1.129.dist-info/METADATA,sha256=fJjo3cbS48iGf5QBtlUR1WVelXtpwbpMeoag7y-vD3U,10519
75
+ jarvis_ai_assistant-0.1.129.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
76
+ jarvis_ai_assistant-0.1.129.dist-info/entry_points.txt,sha256=npKEpBACgZAF97wZgHSJNnturrh9DP33usD0kzjMXPo,771
77
+ jarvis_ai_assistant-0.1.129.dist-info/top_level.txt,sha256=1BOxyWfzOP_ZXj8rVTDnNCJ92bBGB0rwq8N1PCpoMIs,7
78
+ jarvis_ai_assistant-0.1.129.dist-info/RECORD,,
@@ -1,11 +1,13 @@
1
1
  [console_scripts]
2
2
  jarvis = jarvis.jarvis_agent:main
3
+ jarvis-agent = jarvis.jarvis_agent.main:main
3
4
  jarvis-code-agent = jarvis.jarvis_code_agent.code_agent:main
4
5
  jarvis-code-review = jarvis.jarvis_tools.code_review:main
5
6
  jarvis-codebase = jarvis.jarvis_codebase.main:main
6
7
  jarvis-dev = jarvis.jarvis_dev.main:main
7
8
  jarvis-git-commit = jarvis.jarvis_tools.git_commiter:main
8
9
  jarvis-git-squash = jarvis.jarvis_git_squash.main:main
10
+ jarvis-multi-agent = jarvis.jarvis_multi_agent:main
9
11
  jarvis-platform-manager = jarvis.jarvis_platform_manager.main:main
10
12
  jarvis-rag = jarvis.jarvis_rag.main:main
11
13
  jarvis-smart-shell = jarvis.jarvis_smart_shell.main:main