iqm-benchmarks 2.14__tar.gz → 2.16__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of iqm-benchmarks might be problematic. Click here for more details.
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/CHANGELOG.rst +8 -0
- {iqm_benchmarks-2.14/src/iqm_benchmarks.egg-info → iqm_benchmarks-2.16}/PKG-INFO +2 -2
- iqm_benchmarks-2.16/docs/examples/example_ghz_deneb.ipynb +272 -0
- iqm_benchmarks-2.16/docs/examples/example_qscore.ipynb +1199 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/examples.rst +1 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/pyproject.toml +1 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/entanglement/ghz.py +37 -3
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/optimization/qscore.py +41 -13
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/utils.py +1 -1
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16/src/iqm_benchmarks.egg-info}/PKG-INFO +2 -2
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm_benchmarks.egg-info/SOURCES.txt +1 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/tests/test_qscore.py +5 -3
- iqm_benchmarks-2.14/docs/examples/example_qscore.ipynb +0 -285
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/.github/workflows/main.yml +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/.github/workflows/publish.yml +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/.github/workflows/tag_and_release.yml +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/.gitignore +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/LICENSE +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/MANIFEST.in +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/README.md +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/benchmark_runner.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docbuild +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/API.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/Makefile +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/_static/images/favicon.ico +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/_static/images/logo.png +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/_templates/autosummary-class-template.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/_templates/autosummary-module-template.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/changelog.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/conf.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/development/development.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/development/generate_2qubit_cliffords.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/development/how_to_make_your_own_benchmark.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/devices/devices.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/devices/spark.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_clifford_rb.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_clops.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_experiment_all.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_ghz.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_gst.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_interleaved_rb.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_mirror_rb.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_quantum_volume.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/examples/example_quantum_volume_deneb.ipynb +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/index.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/license.rst +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/docs/readme.md +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/format +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/requirements.txt +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/scheduled_experiments/adonis/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/scheduled_experiments/adonis/weekly.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/setup.cfg +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/benchmark.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/benchmark_definition.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/circuit_containers.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/compressive_gst/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/compressive_gst/compressive_gst.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/compressive_gst/gst_analysis.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/entanglement/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/logging_config.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/optimization/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/quantum_volume/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/quantum_volume/clops.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/quantum_volume/quantum_volume.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/clifford_1q.pkl +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/clifford_2q.pkl +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/clifford_rb/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/clifford_rb/clifford_rb.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/interleaved_rb/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/interleaved_rb/interleaved_rb.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/mirror_rb/__init__.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/mirror_rb/mirror_rb.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/multi_lmfit.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/randomized_benchmarking/randomized_benchmarking_common.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm/benchmarks/readout_mitigation.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm_benchmarks.egg-info/dependency_links.txt +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm_benchmarks.egg-info/requires.txt +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/iqm_benchmarks.egg-info/top_level.txt +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/LICENSE +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/README.md +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/additional_fns.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/algorithm.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/compatibility.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/low_level_jit.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/optimization.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/qiskit_interface.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/reporting/figure_gen.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/src/mGST/reporting/reporting.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/tag-from-pipeline.sh +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/test +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/tests/test_ghz.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/tests/test_gst.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/tests/test_qv.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/tests/test_rb.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/tests/unit/test_benchmark_circuit.py +0 -0
- {iqm_benchmarks-2.14 → iqm_benchmarks-2.16}/update-requirements.py +0 -0
|
@@ -2,6 +2,14 @@
|
|
|
2
2
|
Changelog
|
|
3
3
|
=========
|
|
4
4
|
|
|
5
|
+
Version 2.16
|
|
6
|
+
============
|
|
7
|
+
* Added readout error mitigation for Qscore benchmark.
|
|
8
|
+
|
|
9
|
+
Version 2.15
|
|
10
|
+
============
|
|
11
|
+
* Added optimal GHZ circuit generation and corresponding example notebook for all-to-all connected QPU topology.
|
|
12
|
+
|
|
5
13
|
Version 2.14
|
|
6
14
|
============
|
|
7
15
|
* Added devices folder in docs with notebook to benchmark IQM Spark.
|
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: iqm-benchmarks
|
|
3
|
-
Version: 2.
|
|
3
|
+
Version: 2.16
|
|
4
4
|
Summary: A package for implementation of Quantum Characterization, Verification and Validation (QCVV) techniques on IQM's hardware at gate level abstraction
|
|
5
|
-
Author-email: IQM Finland Oy <developers@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>, Miikka Koistinen <miikka@meetiqm.com>, Adrian Auer <adrian.auer@meetiqm.com>
|
|
5
|
+
Author-email: IQM Finland Oy <developers@meetiqm.com>, Aniket Rath <aniket.rath@meetiqm.com>, Jami Rönkkö <jami@meetiqm.com>, Pedro Figueroa Romero <pedro.romero@meetiqm.com>, Vicente Pina Canelles <vicente.pina@meetiqm.com>, Raphael Brieger <raphael.brieger@meetiqm.com>, Stefan Seegerer <stefan.seegerer@meetiqm.com>, Miikka Koistinen <miikka@meetiqm.com>, Adrian Auer <adrian.auer@meetiqm.com>, Nadia Milazzo <nadia.milazzo@meetiqm.com>
|
|
6
6
|
Project-URL: Homepage, https://github.com/iqm-finland/iqm-benchmarks
|
|
7
7
|
Classifier: Development Status :: 4 - Beta
|
|
8
8
|
Classifier: Programming Language :: Python :: 3 :: Only
|
|
@@ -0,0 +1,272 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"id": "feba4cfa-dc9d-4029-967c-83140c11d750",
|
|
6
|
+
"metadata": {},
|
|
7
|
+
"source": [
|
|
8
|
+
"# Greenberger–Horne–Zeilinger (GHZ) State Fidelity\n",
|
|
9
|
+
"\n",
|
|
10
|
+
"The aim of this benchmark is to show whether a GHZ state with high enough fidelity can be prepared such that the state is genuinely multipartite entangled. One can show that a fidelity larger than 0.5 is a sufficient condition (see Leibfried, D. et al., [Nature 438, 639–642](https://www.nature.com/articles/nature04251) (2005))\n",
|
|
11
|
+
"\n",
|
|
12
|
+
"The benchmark currently offers two methods to estimate the fidelity:\n",
|
|
13
|
+
"* Multiple quantum coherences (G. J. Mooney et al., [J. Phys. Commun. 5, 095004](https://iopscience.iop.org/article/10.1088/2399-6528/ac1df7) (2021))\n",
|
|
14
|
+
"* Randomized measurements (Elben, A. et al., [Phys. Rev. A 99, 052323](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.052323) (2019))\n",
|
|
15
|
+
"\n",
|
|
16
|
+
"Additionally, for a given set of $n$ qubits, different circuits can be applied which lead to the same GHZ state. Currently there are the following implementations:\n",
|
|
17
|
+
"* \"naive\": The textbook ciruit of depth $n$, which starts from a Hadamard gate on one qubit and entangles each additional qubit with a CNOT operation from the first qubit.\n",
|
|
18
|
+
"* \"log_depth\": A logarithmic depth circuit utilizing parallel CNOT applications. Either the method in Cruz et al. [arXiv:1807.05572](https://arxiv.org/abs/1807.05572) or the method in Mooney et al. [arXiv:2101.08946](https://arxiv.org/abs/2101.08946) is used, depending on which yields the lower depth or the lower number of 2-qubit gates. \n",
|
|
19
|
+
"* \"star\": A linear circuit that creates GHZ states that is tailored for IQM's novel, effectively all-to-all, connected QPU topology.\n",
|
|
20
|
+
"* \"tree\": An IQM-developed logarithmic depth circuit utilizing calibration data of the CZ average fidelities and a tree-graph algorithm to find a circuit with minimal depth and high fidelity 2-qubit gates. \n",
|
|
21
|
+
"\n",
|
|
22
|
+
"Note that the first two methods will always give, respectively, the same circuits for the same qubit layouts and same coupling maps, while the `tree` method relies on the latest calibration data and can give different circuits at different execution times. \n",
|
|
23
|
+
"Thus, for consistent comparisons, one of the first two methods should be chosen, while for the best results, i.e., the largest possible Genuine Multipartite Entanglement (GME) - entangled GHZ state, the `tree`-method is preferable."
|
|
24
|
+
]
|
|
25
|
+
},
|
|
26
|
+
{
|
|
27
|
+
"cell_type": "code",
|
|
28
|
+
"execution_count": 1,
|
|
29
|
+
"id": "fead11ad-e2d7-48dd-a7a4-c302a7eba65c",
|
|
30
|
+
"metadata": {
|
|
31
|
+
"ExecuteTime": {
|
|
32
|
+
"end_time": "2025-02-03T16:56:46.397710Z",
|
|
33
|
+
"start_time": "2025-02-03T16:56:44.394254Z"
|
|
34
|
+
}
|
|
35
|
+
},
|
|
36
|
+
"outputs": [],
|
|
37
|
+
"source": [
|
|
38
|
+
"from iqm.benchmarks.entanglement.ghz import *\n",
|
|
39
|
+
"backend = \"deneb\""
|
|
40
|
+
]
|
|
41
|
+
},
|
|
42
|
+
{
|
|
43
|
+
"cell_type": "markdown",
|
|
44
|
+
"id": "e74946d29adbd96a",
|
|
45
|
+
"metadata": {},
|
|
46
|
+
"source": [
|
|
47
|
+
"## Set IQM Token if using Resonance."
|
|
48
|
+
]
|
|
49
|
+
},
|
|
50
|
+
{
|
|
51
|
+
"cell_type": "code",
|
|
52
|
+
"execution_count": 2,
|
|
53
|
+
"id": "fad1b158a1d7fdb2",
|
|
54
|
+
"metadata": {
|
|
55
|
+
"ExecuteTime": {
|
|
56
|
+
"end_time": "2025-02-03T16:56:46.400003Z",
|
|
57
|
+
"start_time": "2025-02-03T16:56:46.398588Z"
|
|
58
|
+
}
|
|
59
|
+
},
|
|
60
|
+
"outputs": [],
|
|
61
|
+
"source": [
|
|
62
|
+
"import os\n",
|
|
63
|
+
"os.environ[\"IQM_TOKEN\"] = \"\""
|
|
64
|
+
]
|
|
65
|
+
},
|
|
66
|
+
{
|
|
67
|
+
"cell_type": "markdown",
|
|
68
|
+
"id": "8b80d21e-1bf1-490f-870a-fac14ad421de",
|
|
69
|
+
"metadata": {},
|
|
70
|
+
"source": [
|
|
71
|
+
"## Definition of the benchmark configuration\n",
|
|
72
|
+
"The important parameters are:\n",
|
|
73
|
+
"* ``custom_qubits_array``: A ``list[list[int]]`` which includes all qubit layouts on which the benchmark is run.\n",
|
|
74
|
+
"* ``shots``: The number of shots for the fidelity measurement\n",
|
|
75
|
+
"* ``fidelity_routine``: Either \"coherences\" or \"randomized_measurements\"\n",
|
|
76
|
+
"* ``rem``: Boolean value that controls whether readout error mitigation is used\n",
|
|
77
|
+
"* ``mit_shots``: Whenever rem=True, this parameter controls the total number of shots used to calibrate readout error mitgation\n",
|
|
78
|
+
"* ``num_RMs``: The number of randomized measurement settings (only necessary when choosing ``fidelity_routine=randomized_measurements``)"
|
|
79
|
+
]
|
|
80
|
+
},
|
|
81
|
+
{
|
|
82
|
+
"cell_type": "code",
|
|
83
|
+
"execution_count": 3,
|
|
84
|
+
"id": "0028204b-d013-4202-b592-1cf86047fc22",
|
|
85
|
+
"metadata": {
|
|
86
|
+
"ExecuteTime": {
|
|
87
|
+
"end_time": "2025-02-03T16:56:46.402573Z",
|
|
88
|
+
"start_time": "2025-02-03T16:56:46.400501Z"
|
|
89
|
+
}
|
|
90
|
+
},
|
|
91
|
+
"outputs": [],
|
|
92
|
+
"source": [
|
|
93
|
+
"num_qubits = 7\n",
|
|
94
|
+
"MINIMAL_GHZ = GHZConfiguration(\n",
|
|
95
|
+
" state_generation_routine=\"star\",\n",
|
|
96
|
+
" custom_qubits_array=[\n",
|
|
97
|
+
" list(range(1,x+1)) for x in range(2,num_qubits)\n",
|
|
98
|
+
" ],\n",
|
|
99
|
+
" shots=1000,\n",
|
|
100
|
+
" fidelity_routine=\"coherences\", \n",
|
|
101
|
+
" rem=True,\n",
|
|
102
|
+
" mit_shots=1000,\n",
|
|
103
|
+
")"
|
|
104
|
+
]
|
|
105
|
+
},
|
|
106
|
+
{
|
|
107
|
+
"cell_type": "markdown",
|
|
108
|
+
"id": "bc253129-4f0d-4a9e-aff1-852c2e7d4e21",
|
|
109
|
+
"metadata": {},
|
|
110
|
+
"source": [
|
|
111
|
+
"## Running the benchmark"
|
|
112
|
+
]
|
|
113
|
+
},
|
|
114
|
+
{
|
|
115
|
+
"cell_type": "code",
|
|
116
|
+
"execution_count": 4,
|
|
117
|
+
"id": "3ca4c757-9b58-4ee6-b9b6-365e22e3b378",
|
|
118
|
+
"metadata": {
|
|
119
|
+
"ExecuteTime": {
|
|
120
|
+
"end_time": "2025-02-03T16:57:53.182944Z",
|
|
121
|
+
"start_time": "2025-02-03T16:56:46.403219Z"
|
|
122
|
+
}
|
|
123
|
+
},
|
|
124
|
+
"outputs": [
|
|
125
|
+
{
|
|
126
|
+
"name": "stderr",
|
|
127
|
+
"output_type": "stream",
|
|
128
|
+
"text": [
|
|
129
|
+
"2025-02-04 14:11:31,352 - iqm.benchmarks.logging_config - INFO - Now generating a 2-qubit GHZ state on qubits [1, 2]\n",
|
|
130
|
+
"2025-02-04 14:11:31,356 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
131
|
+
"2025-02-04 14:11:31,704 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
132
|
+
"2025-02-04 14:11:31,776 - iqm.benchmarks.logging_config - INFO - Submitting batch with 7 circuits corresponding to qubits [1, 2]\n",
|
|
133
|
+
"/opt/anaconda3/envs/iqm-benchmarks/lib/python3.11/site-packages/iqm/qiskit_iqm/iqm_provider.py:170: UserWarning: Unknown backend option(s): {'calibration_set_id'}\n",
|
|
134
|
+
" warnings.warn(f'Unknown backend option(s): {unknown_options}')\n",
|
|
135
|
+
"2025-02-04 14:11:32,204 - iqm.benchmarks.logging_config - INFO - Now generating a 3-qubit GHZ state on qubits [1, 2, 3]\n",
|
|
136
|
+
"2025-02-04 14:11:32,205 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
137
|
+
"2025-02-04 14:11:32,219 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
138
|
+
"2025-02-04 14:11:32,339 - iqm.benchmarks.logging_config - INFO - Submitting batch with 9 circuits corresponding to qubits [1, 2, 3]\n",
|
|
139
|
+
"2025-02-04 14:11:32,723 - iqm.benchmarks.logging_config - INFO - Now generating a 4-qubit GHZ state on qubits [1, 2, 3, 4]\n",
|
|
140
|
+
"2025-02-04 14:11:32,724 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
141
|
+
"2025-02-04 14:11:32,740 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
142
|
+
"2025-02-04 14:11:32,919 - iqm.benchmarks.logging_config - INFO - Submitting batch with 11 circuits corresponding to qubits [1, 2, 3, 4]\n",
|
|
143
|
+
"2025-02-04 14:11:33,276 - iqm.benchmarks.logging_config - INFO - Now generating a 5-qubit GHZ state on qubits [1, 2, 3, 4, 5]\n",
|
|
144
|
+
"2025-02-04 14:11:33,278 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
145
|
+
"2025-02-04 14:11:33,308 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
146
|
+
"2025-02-04 14:11:33,543 - iqm.benchmarks.logging_config - INFO - Submitting batch with 13 circuits corresponding to qubits [1, 2, 3, 4, 5]\n",
|
|
147
|
+
"2025-02-04 14:11:34,078 - iqm.benchmarks.logging_config - INFO - Now generating a 6-qubit GHZ state on qubits [1, 2, 3, 4, 5, 6]\n",
|
|
148
|
+
"2025-02-04 14:11:34,081 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
149
|
+
"2025-02-04 14:11:34,125 - iqm.benchmarks.logging_config - INFO - Transpiling for backend IQM Backend with optimization level 3, sabre routing method and SQG optimization all circuits\n",
|
|
150
|
+
"2025-02-04 14:11:34,441 - iqm.benchmarks.logging_config - INFO - Submitting batch with 15 circuits corresponding to qubits [1, 2, 3, 4, 5, 6]\n",
|
|
151
|
+
"2025-02-04 14:11:34,927 - iqm.benchmarks.logging_config - INFO - Retrieving all counts\n",
|
|
152
|
+
"2025-02-04 14:14:20,649 - iqm.benchmarks.logging_config - INFO - Applying readout error mitigation\n",
|
|
153
|
+
"/opt/anaconda3/envs/iqm-benchmarks/lib/python3.11/site-packages/iqm/qiskit_iqm/iqm_provider.py:170: UserWarning: Unknown backend option(s): {'calibration_set_id', 'rep_delay'}\n",
|
|
154
|
+
" warnings.warn(f'Unknown backend option(s): {unknown_options}')\n",
|
|
155
|
+
"2025-02-04 14:14:52,548 - iqm.benchmarks.logging_config - INFO - Retrieving all counts\n",
|
|
156
|
+
"2025-02-04 14:14:52,872 - iqm.benchmarks.logging_config - INFO - Applying readout error mitigation\n",
|
|
157
|
+
"/opt/anaconda3/envs/iqm-benchmarks/lib/python3.11/site-packages/iqm/qiskit_iqm/iqm_provider.py:170: UserWarning: Unknown backend option(s): {'calibration_set_id', 'rep_delay'}\n",
|
|
158
|
+
" warnings.warn(f'Unknown backend option(s): {unknown_options}')\n",
|
|
159
|
+
"2025-02-04 14:14:58,455 - iqm.benchmarks.logging_config - INFO - Retrieving all counts\n",
|
|
160
|
+
"2025-02-04 14:14:58,912 - iqm.benchmarks.logging_config - INFO - Applying readout error mitigation\n",
|
|
161
|
+
"/opt/anaconda3/envs/iqm-benchmarks/lib/python3.11/site-packages/iqm/qiskit_iqm/iqm_provider.py:170: UserWarning: Unknown backend option(s): {'calibration_set_id', 'rep_delay'}\n",
|
|
162
|
+
" warnings.warn(f'Unknown backend option(s): {unknown_options}')\n",
|
|
163
|
+
"2025-02-04 14:15:04,339 - iqm.benchmarks.logging_config - INFO - Retrieving all counts\n",
|
|
164
|
+
"2025-02-04 14:15:04,805 - iqm.benchmarks.logging_config - INFO - Applying readout error mitigation\n",
|
|
165
|
+
"/opt/anaconda3/envs/iqm-benchmarks/lib/python3.11/site-packages/iqm/qiskit_iqm/iqm_provider.py:170: UserWarning: Unknown backend option(s): {'calibration_set_id', 'rep_delay'}\n",
|
|
166
|
+
" warnings.warn(f'Unknown backend option(s): {unknown_options}')\n",
|
|
167
|
+
"2025-02-04 14:15:10,102 - iqm.benchmarks.logging_config - INFO - Retrieving all counts\n",
|
|
168
|
+
"2025-02-04 14:15:10,595 - iqm.benchmarks.logging_config - INFO - Applying readout error mitigation\n",
|
|
169
|
+
"/opt/anaconda3/envs/iqm-benchmarks/lib/python3.11/site-packages/iqm/qiskit_iqm/iqm_provider.py:170: UserWarning: Unknown backend option(s): {'calibration_set_id', 'rep_delay'}\n",
|
|
170
|
+
" warnings.warn(f'Unknown backend option(s): {unknown_options}')\n"
|
|
171
|
+
]
|
|
172
|
+
}
|
|
173
|
+
],
|
|
174
|
+
"source": [
|
|
175
|
+
"benchmark_ghz = GHZBenchmark(backend, MINIMAL_GHZ)\n",
|
|
176
|
+
"run_ghz = benchmark_ghz.run()"
|
|
177
|
+
]
|
|
178
|
+
},
|
|
179
|
+
{
|
|
180
|
+
"cell_type": "code",
|
|
181
|
+
"execution_count": 5,
|
|
182
|
+
"id": "c20f246c-9fd0-4399-96a9-3755ccbfd81e",
|
|
183
|
+
"metadata": {
|
|
184
|
+
"ExecuteTime": {
|
|
185
|
+
"end_time": "2025-02-03T16:57:53.427294Z",
|
|
186
|
+
"start_time": "2025-02-03T16:57:53.185436Z"
|
|
187
|
+
}
|
|
188
|
+
},
|
|
189
|
+
"outputs": [
|
|
190
|
+
{
|
|
191
|
+
"data": {
|
|
192
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAABYkAAASeCAYAAACD76G7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAmcwAAJnMB82x1CgABAABJREFUeJzs3XdYFFfbBvB76UgVsCAK2LD3ig1ULDGWWLAX1BiN6TGxJDEaNa8Yk6hJjL3X2Hsv2GuwICpqRLBgoUsvO98ffIzMLrvswi5LuX/XtRec2XPmnJmdHdhnzzwjEwRBABERERERERERERGVSkaGHgARERERERERERERGQ6DxERERERERERERESlGIPERERERERERERERKUYg8REREREREREREREpRiDxERERERERERERESlGIPERERERERERERERKUYg8REREREREREREREpRiDxERERERERERERESlGIPERERERERERERERKUYg8REREREREREREREpRiDxERERERERERERESlGIPERERERERERERERKUYg8REREREREREREREpRiDxERERERERERERESlGIPERERERERERERERKUYg8REREREREREREREpRiDxERERERERERERESlGIPERERERERERERERKUYg8REREREREREREREpRiDxERERERERERERESlGIPERERERERERERERKUYg8REREREREREREREpRiDxERERERERERERESlGIPERERERERERERERKUYg8RERERkEGfPnsWYMWNQp04d2Nvbw8jICDKZDDKZDO7u7pK62ctlMhm8vb31NqaZM2dK+goICNBbX/oaU2HtKwB48uSJpD8/Pz+99keauXXrFj755BM0bNgQDg4OMDY2lrxOxYG2x5afn5+k/pMnTwplnMVZQECAZJ/NnDlTb315e3sX+WOQxxAREZV2JoYeABERUWF59eoVbt26hbCwMMTGxiI1NRXW1tawt7dHuXLl0KhRI1SuXNnQwyzxUlNTMWbMGGzevNnQQyEqUeRyOSZPnozffvvN0EMhIiIiomKGQWIiIirRHj58iBUrVmD37t149OhRnvXLlSuHDh06YNCgQejZsycsLS016sfPzw/r1q0TyzNmzMj3rCxt1qXPGVlubm56mUn12WefMUBMpAf+/v4MEBMRERFRvjDdBBERlUjPnz/HsGHDULt2bcyfP1+jADEAvHnzBjt37sTAgQNRoUIFTJ8+HbGxsfodbCkSHByMFStWiGVTU1N88skn2LZtG44fPy4+Nm3aZMBRlh5FMb0G5U90dDRmz54tlmUyGUaOHInNmzfj2LFjkvcXUVFWmGkwqGThsUNEVDCcSUxERCXOwYMHMXLkSERHR+f6vJWVFZycnODk5ITU1FS8evUKUVFRkMvlknpv377FnDlz8NdffyEsLAy2traFMfwiQx+zlDds2CApL1u2DKNHj9Z5P0SlzbZt25CSkiKWp0+fjp9++smAIyIiIiKi4oRBYiIiKlE2bNiA0aNHIzMzU7K8Xr16+PDDD9G5c2c0aNBAqV1aWhrOnj2Lw4cPY+fOnQgLCxOfi42NRVpamt7Hnh+6mhW4cuVK/PPPP5Jln376qU7WndOlS5fE362srDB8+HCN2gmCoPOxlFSFua/c3d352hQROd9bADB+/HgDjYRIGa9SICIiKvoYJCYiohLj6tWrGDt2rCRAbG9vjz/++APDhg2DkZHqLEtmZmbw8fGBj48P/P39sXbtWvz888+SYHFR5OPjU+B1XLx4Ebt27ZIs69+/PyZNmlTgdSt68OCB+HvNmjVhamqq8z6ISqOc7y17e3tUqlTJgKMhIiIiouKGOYmJiKhEiI6OxsCBA5Geni4uq1y5Ms6fP48RI0aoDRArMjU1xbhx4xASEoKPP/5YH8MtMl69egVfX1/JfqtVqxbWrFmjl/5y5ncubek7iPSJ7y0iIiIiKgjOJCYiohJh5syZklm/pqam2LdvH+rVq5fvdZqbm+Pvv/9G586dYWZmpothFimZmZkYPHgwXrx4IS6zsrLCzp07YWNjo5c+c+ZM1UfOY6LSiu8tIiIiIioIBomJiKjYi4qKwqpVqyTLvvvuOzRp0kQn6+/fv79O1lPUTJs2TSlP5IoVKwoUWC+qYmNjERAQgGfPniE+Ph4ODg6oX78+WrduDRMT3f87FBISglu3buHNmzeIi4uDg4MDKlWqhHbt2sHBwUHn/RV3SUlJuHDhAp4/f47Xr1/D2NgY5cuXR926ddG0adMCBT2Tk5Nx69Yt3L17FzExMUhOToalpSVsbW3h7u6O2rVro0qVKjrcmrwlJSXh/PnzePr0Kd68eQMLCwuUL18e9erVQ6NGjfK1TkPmhk5ISEBwcDDu37+PqKgoJCcnw87ODk5OTmjatCk8PDwMNjZ9u3v3Lm7cuIHnz58DAFxcXNC6dWtUr17dwCMruIyMDFy+fBl37txBdHQ0bG1tUaVKFXh7e8POzs7QwytyQkNDERwcjPDwcMTFxcHExAQODg5wc3ND69atYW1tbeghakwf56jiKD09HUFBQbhz5w6ioqKQmJgIc3Nz2NjYwM3NDR4eHiXivU5EJBKIiIiKudmzZwsAxEeZMmWE2NjYQh3DqFGjJGOYMWNGkViXKjt37pT0AUD47LPPdN6P4rZo8nBzc1NaT87nvby8NO7/6dOnwqBBgwQzM7Nc+ypXrpzg7+8vpKenC4IgCDNmzJA8f/r0aY37evv2rTBz5kyhatWqKrfN2NhY8Pb2Fs6ePavxerUdU1776vTp01q/JtkPRaGhoZLnR40apfF2CYIgnD9/XnjvvfcEc3NzlX2WL19emD59uhAfH6/Vuh8+fCiMGDFCsLKyynO7KlWqJIwePVq4dOmSVn1o6+bNm0KfPn0ECwsLlWNxcXERpk+fLrx9+1btuhSPi/y+hvkVEhIizJw5U2jdurVgYmKits+KFSsKP/30kxAdHa3x+rU9thTPNaGhoQXbwDzs379faNiwocptbt26tRAQECDWd3NzU3uOy0mbuoq0OV8onguy/9akpaUJ/v7+Qrly5XLdNnNzc2Hw4MHCs2fPNB6Xl5dXnsdhfs9L2pyn1dH2GEpOThZ27NghDB06VKhYsaLaMRobGwtdu3bVaKxPnz4VjI2NxbYeHh752p69e/dKxjBw4MA82+jyHJVTXn+X1NHkddH1sRMRESF88sknQtmyZfNch5OTkzBw4EDhyJEjWm0XEVFRxJzERERU7O3du1dS9vX15SwnNR48eIDRo0dLlnl6euK3334z0Ij049ChQ6hXrx7++ecfpKWl5VrnzZs3mDp1Kjp27Ii4uLh893XgwAFUr14dM2fORGhoqMp6mZmZCAgIQIcOHTB+/HhkZGTku8/iLDExEQMHDkS7du1w+PBhpKamqqz7+vVrzJ49Gx4eHrh27ZpG69+wYQPq16+PDRs2IDExMc/6L168wJo1a/DXX39pvA3aEAQBU6ZMQdOmTbF3715JaghFz58/x+zZs1GzZk2cP39eL+MpqAMHDqBWrVqYOXMmLl++nOdx/PLlS8yYMQMNGjTQ+DUsquRyOcaPH49evXrh9u3bKutdvnwZHTt2xPz58wtxdAUXGxuLjh07YurUqXjz5k2udVJTU7F161bUrVsXhw8fLuQRFh3t2rXDgAEDsHnzZrx8+VJt3czMTBw7dgwdO3bEp59+qvY9U7lyZbz//vti+cGDBzh79qzW41uxYoWk/NFHH6msW9LOUQVx/Phx1K5dG4sXL0ZMTEye9SMjI7Ft2zbMnj27EEZHRKRfTDdBRETFWkJCAm7cuCFZlvPDFUklJiaiX79+iI+PF5eVL18e27dvh6mpqQFHplunTp1C//79lT7olilTBlWrVoWpqSnCwsLED4Dnz5+Hr68vPD09te5r+fLlmDhxIjIzM5X6cnNzg42NDaKjo/H48WPI5XJJu1evXmH37t2lKofs69ev0aNHD/z7779Kz1WuXBkVKlRAZmam5PUBsgKN3t7eOHr0KNq1a6dy/cePH8eoUaOU0i+UKVMG7u7usLW1RWpqKmJiYhAeHi55TfRBEAT4+flh/fr1Ss85OTnB1dUVycnJCA0NlRyvL1++RNeuXbF7925069ZNr2PUVm4BJEtLS1SpUgU2NjaQyWSIiopCWFiYZP8+f/4c3t7euH79OurUqVOYQ9aZjz/+GMuXL1daXqFCBVSuXBlv375FaGgo0tPTIQgCJk+eDGdnZwOMVHtyuRy+vr64cOGCuMzR0RGurq5ISUlROkbj4+PRr18/HDp0CB07djTEkA0qt/dBpUqV4ODgAGtrayQmJoqpJ3JavHgxkpKSsHr1apXrnjBhAvbt2yeWV6xYgQ4dOmg8tufPn0sC+NWqVUOnTp1yrVsSz1H5FRwcjF69eil9cWlubg53d3fY2dkhMzMTcXFxCAsLk9z0l4ioJGCQmIiIirVLly4pBeeaN29uoNEUfR999BGCg4PFsrGxMbZs2QIXFxe99Dd58mQMHz5cLHfp0kX8vWHDhrnOXra0tCxQn7GxsRg2bJjkw2z58uUxf/58+Pr6iuuXy+U4deoUvv76awQFBeH48eN4+PChVn2dPHkSH3/8sSQQ1qtXL0yaNAlt27aV5DuOjo7GypUrMWfOHLx9+xZA1iz4X375BVOmTCnIJmulUaNGOH78OABg/fr12LBhg/jcr7/+qtd8k3K5HIMHD5YEiMuVKyceJxUrVpTUvXTpEn788UecOnUKQFaezCFDhuDmzZtwdHTMtY8vv/xSEiDu2LEjZsyYgXbt2sHY2FhSNzk5GTdv3sShQ4ewefNmXW6q6K+//lIKvrRv3x7+/v7w9PQUvyBISEjA1q1bMWXKFERHR4vjGzp0KIKCglCpUiXJOkaOHCkJlg8fPhyvXr0CkBWw3Lhxo162J5uxsTG6d++O3r17o1OnTqhWrRqMjKQXKb59+xb79u3DrFmz8ODBAwBZr+HQoUMRGBhY7L4c2bp1q1KAuHPnzpg3bx6aNWsmLouNjcXq1asxffp0JCUl4dNPPy0W27p+/XrxBrBNmzbFb7/9Bi8vL8kxunnzZkyZMgWxsbEAsgKlQ4cOxb1792Bvb1+g/rPPS7du3cI333wjLh8xYgRGjhypsp0hc+S6urrC19cXPXr0QPPmzWFrayt5XhAEBAUFYenSpVi+fLn4/8qaNWvQq1cv9O3bN9f1duvWDe7u7njy5AkAYMeOHfjjjz9QtmxZjca1evVqyf9GH374ocpjUF/nqMKkq2Nn8uTJkgBx48aNMWfOHHTp0kXpBsbp6em4c+cODh8+jK1bt+piM4iIDM9wmS6IiIgK7q+//pLkhrO1tTXIOBRz5o0YMUI4fvx4vh5du3bNNU9kQf35559KufTmzp2rk3VrKmff2uQl1Kbdxx9/LKnv5uamNndmSkqK0KlTJ61zXcbExEjyUBoZGQmrVq3Kc1uCg4MluT7NzMyEiIgIlfV1nZO4IOtWpG3eWH9/f0n9Vq1aCa9evVLbJjMzU/j0008l7T7//PNc6wYHB0vqdezYUcjMzNRoWzIzM4WQkBCN6mrq6dOngqWlpdI+ksvlKtuEhoYKLi4ukjZ9+vTJs6+C5LHV1uPHj4UnT55oXD85OVno0aOHZJsOHTqktk1Ry0kcHx8vlC9fXtLHuHHj1L6W//77r2BjY6N0XimqOYmzHz169BDS0tJUtnvw4IHSvpg4caLacWmSk1jVuPSRlz832h5DZ8+eFTIyMjRe/7FjxyT511u2bKm2/s8//ywZzx9//KFRP3K5XHB3dxfbmZiYqPwbU1jnqPz+7RcE7V6Xghw7sbGxkvzqtWvXFpKSkjRuf+/ePY3rEhEVVcxJTERExVr2bJZsTk5OBhqJ1IYNG9ClS5d8PY4dO6bz8Vy6dAlff/21ZFmfPn0KdQZrYYiNjcXatWvFskwmw/bt29XOlDY3N8fOnTtRrlw5rfpaunSpJA/lzz//jDFjxuTZrm7dupIxpqWl6S0XblGSlJSEX375RSw7Ozvj0KFDKF++vNp2RkZGWLhwIVq3bi0uW716tTiTMafs2arZxo8frzS7VV0/Hh4eGtXV1N9//43k5GSx3KhRI6xcuVLtrFJ3d3ds375dUmffvn1az3LXp6pVq8LNzU3j+hYWFtiwYYMkV/yaNWv0MTS92bx5M16/fi2WGzVqhCVLlqh9LZs2bYolS5YUxvB0xtnZGVu3blWbfqhmzZpKM0/XrFlToLzuxVH79u2Vrk5Qp0uXLvj222/F8tWrV3H37l2V9ceMGSN5HRRzDKty/PhxcQYyAPTs2VNylUZOJfUclR+hoaGSXNF+fn5aXdlUu3ZtfQyLiKhQMUhMRETFmmKQWNsb1p09exYnTpzI85EzR2Nx8/r1a/j6+kpy59WoUQPr1q0rFpdAa2PLli2SD7wDBgxAixYt8mxnb2+P77//XuN+MjMz8eeff4plV1dXTJo0SeP2PXr0QJMmTcTyzp07NW5bXK1fv17yfp05cyYcHBw0amtsbIxp06aJ5YSEBBw9elSpXs7XHoBB82wLgoBVq1ZJlv3666+SFCSqeHp6YtCgQZJ1rVy5UudjLEwODg547733xPLFixcNOBrtKeaP/d///qdRgHDYsGGS93pR98MPP8DGxibPet26dZPkuE1OTsaWLVv0ObQSIWf6JUD9+6BixYro06ePWA4KCsKVK1fy7EMxmDxu3Lhc6/EcJVWU/n4QERkKg8RERFSsZed2zWZlZaVV+379+mk0u3fYsGG6HHahyczMxJAhQ/D8+XNxmaWlJXbu3Kl1QL04CAgIkJTV5SJUNGzYMI0+HANZeQ9fvHghlgcPHqz1B8quXbuKv9+/fx+RkZFatS9uDh06JP5uYmKCwYMHa9W+c+fOklnB586dU6qjmBNz06ZNWo5Sd+7fvy+Zeerq6orOnTtr3F5xVvrZs2d1NjZDqVq1qvj78+fP8ebNGwOORnMJCQm4fv26WK5QoYJWN+oaNWqUPoalc6amplq9LxW3S/H8S8pyvgcAKN14V9H48eMl5bxmE79580Zyw7sqVaqge/fuudblOUpK8e/Htm3beGM6Iip1GCQmIqJiTXHGU2JiooFGIjVjxgwIgpCvhy4DCt9//714069sS5cuRcOGDXXWR1Fy9epV8XeZTAYvLy+N2zo5OaF+/foa1VUMUObnZomurq6S8r1797ReR3EhCIJkNr6Hh4fSDZ7yYmVlJblZXW77q1WrVpL17tq1CwMHDkRQUFA+Rl0wijP+OnbsqNXM/Q4dOki+tLhx4wbS0tJ0Nj5diY2NxapVqzB69Gg0bdoUzs7OsLKygkwmU3rMnTtX0ra4fDHy77//Sm5OmdtNENXx9vbWw6h0r2HDhhrP7geUtyvn+be0uXr1Kr777jv06NED1apVg4ODA0xNTZXeA+bm5pJ2eb0HOnfujJo1a4rlrVu3Kn05ntO6desk54kxY8aoTLlTWs5RmnJzc5Ps6ytXrqB79+7F7qoHIqKCYJCYiIiKNcUPtKUtJ6I6e/bskeSABYAJEyZoNbu2OJHL5QgLCxPLrq6uGl02nVODBg00qqcYoBw4cGCuQTF1j08++USyDsXUKSXJq1evJNt39+5drfeXTCaTzDzNbX9ZWFgo5dnevn07GjZsiLp16+LLL7/E7t27Jbmk9SXnsQhA6y9mzM3NJTkuU1NT8erVK52MTRcSExMxefJkVKxYER9++CHWrl2LGzdu4OXLl0hKStJoHbnllS6KQkNDJWVNv0zKVrduXa2Cyoai7Xa5urpKvpQJCwuDIAi6HlaRdu7cOTRq1AitWrXC3LlzcfjwYYSGhiImJkaS31aVvN4DMpkMH330kVhOTExUm9YjZ8oHIyMjtXnyS/o5Kj9mzpwpKZ86dQpt27ZF1apVMWHCBGzZskVpvxERlSQMEhMRUbGmGCSOiorSqn1kZGSus3lPnz6ty2EWukePHsHPz0/ygb1FixZYtGiRAUelX/Hx8ZLtzTnrVFOattH2ONNESf6CozD317Rp0yRBlWz37t3DokWL0K9fPzg7O6N27dr44osvNMrxmR8xMTGScn5uqqnYRnGdhhIZGQlPT0/Mnz8fqamp+V5PQdoWJsVAnrbnFlNTU62/sDKE/Jwzc/4NlsvliI+P1+WQirRly5bBy8sLt2/fzvc6NHkP+Pn5SWYgq8r9e+7cOYSEhIjlbt26KV2xklNJPkfl19ChQzF79mylGdVPnjzBsmXLMHToULi7u8Pd3R0fffQRTp06Veq+GCGikk2zxHtERERFlIeHh6QcFxeHJ0+ewN3d3TADKgKSkpLQr18/SRDN0dERO3bsgJmZmQFHpl8JCQmScpkyZbReh6Y5rfUxAzLn5ewlTWHuL5lMhmXLlqFfv36YM2cOzp8/n2u9kJAQhISE4I8//kDbtm2xcOHCfKUNUUXxeNQ2X3pubdRdZl6YfH19lVJ4VKlSBR07dkTdunVRuXJlWFtbw9LSUnKp+/r167Fhw4bCHm6B6ercUtRnTuvinJmQkFAi890rOn36ND7++GNJgNDExATt2rVDq1at4ObmhvLly8PCwkIpxUSXLl206svJyQn9+/fH5s2bAQDXrl3DrVu30KhRI0k9TW9Yl60kn6MK4ocffkCXLl0wa9YsHD16FJmZmUp1wsLCsGLFCqxYsQL169fH77//rvXrSkRUFDFITERExZqnpyeMjY0l/8Rfv369VAeJx48fLwngGBkZYfPmzWpnFJUEih9WNb3kPSdNc1orBlP8/f3RrFkzrfvLqV69egVqX5Qp7q+6desWeFa7paWl2ue7deuGbt26ITQ0FMeOHUNAQADOnj0rueFgtgsXLqBt27bYuHEjfH19CzSubNbW1pJyfvKlK7YpCrNR9+3bJ7lBmY2NDZYsWYIhQ4aozH2a7eTJk3oenX4U5rnFkHSxXYrHfUk1adIkSYD4/fffx9KlS1G5cmW17fI7e378+PFikBjICgj/9ddfYjk2NhY7duwQyxUrVkSvXr3UrrOknqN0oVWrVjh48CAiIiIkfz8eP36sVPfOnTvo1q0bfvvtN3z11VcGGC0Rke4wSExERMWatbU1mjRpIrnz/KFDhzBgwAADjspw/v77b2zcuFGybObMmejatauBRlR47OzsIJPJxA/u+bkplqZpERQvsa1atSp8fHy07q+0UNxfgiAU2v6qWrUqxo8fj/HjxwMAHj9+jJMnT2LXrl04duyYOCM5LS0NI0eORKtWrXTyhUrZsmUl5fyk3FA8hhXXaQhbt26VlJctW4YhQ4Zo1La45t22t7eXlLU9t6Snp2s1w1Kbm4cpyk+gN1t+zpk5X1MjIyOtb0hZHD148AA3btwQy/Xr18euXbs0ulInv++BDh06oE6dOmI+/E2bNmH+/Pnil2WbNm1CcnKyWN/Pz09yU7ncFJdzVEGO6YJydnbGqFGjxBsKv3jxAqdOncKePXuwb98+pKenA8j6mzZp0iR4enqidevWBhsvEVFBMScxEREVe3369JGUt23bVqryIma7cuWK0iyW999/Hz/88IOBRlS4jIyM4ObmJpafPn2q9XGgaW7JqlWrSsqPHj3Sqp/SpmLFipKZv2FhYeKH68JWrVo1jBs3DocPH8atW7dQrVo18bmUlBQsXrxYJ/3kPBYB4NatW1q1T01NleQXNTc3R4UKFXQytoK4fPmy+LujoyMGDhyocdvg4GB9DEnvch4jQNbMQW0EBwfnesm6KhYWFuLvOQN/msh5c0dtabtdYWFhknOsm5tbgQLcxUXO9wAAfPjhhxqncirIeyD7iy4ga+bw9u3bxXLOVBMymSzPVBNA4Z6jDHVM61qlSpUwfPhw7NixAw8fPkSLFi3E5wRBwIIFCww4OiKigmOQmIiIir2PP/5Ycjl7YmJiib5BW27evHmDAQMGIC0tTVxWtWpVbNiwoVR8aM+m+IHt7NmzGreNjIzU+AN8x44dJeVTp05p3E9RopgeQF834DE1NUXbtm3FclJSkt5uGKeN+vXrY/ny5ZJlqnIYa0txNllAQIBW+/fcuXOSQHrTpk2LRE7xV69eib/XqFEDxsbGGrWLj4/Hv//+q69h6VWzZs0k75Xz589rFfQ9c+aMVv3lnI0bExOj1Rcq165d06qvnIKCgrSa6aq4XS1btsx33zkV1nkpv3K+BwCgVq1aGrctyN+KUaNGSb5syw4MZ+coztapUyelLzZyU5jnqJzHtOL+U0culyMwMFDj+oV57Li5uUlSgAC6+/tBRGQoDBITEVGx5+joiDFjxkiWzZkzp0B3HC9OMjMzMWTIEDx79kxcZmFhgR07dhSJy9MLk7e3t6S8fv16jdtu2rQJGRkZGtVt2bKlZN+eOnUKd+/e1bivokIXuVY11b17d0n5zz//1Ftf2sgZvAbyd8l9bmrVqiWZVRcWFobTp09r3H716tWSspeXl07GVVA5gy45v5TKy+rVq5GSkqKPIemdtbW1JOf469evcfToUY3br127Vqv+cs7wTE9P13iG7507dwo0UzU9PV0pnYg669atk5R1dYwW5nkpPxQDj5q+D1JTU5Xe19qwt7eXzNw/f/487t+/j5UrV0rqaTKLGCjcc1TOYzo8PFzjLyMOHz6s1RVBhX3s1KhRQ7IPdfX3g4jIUBgkJiKiEmHmzJmoUqWKWE5LS0Pv3r1x//59A46qcEyfPl3phlB//fUXmjZtaqARGc6QIUMkl7Xu2LFDo5l1sbGx+PnnnzXux9TUFF9++aVYFgQB48ePN1gKhfxycHCQlENDQ/XW14cffijJ7bpjxw4cPHhQb/1pSl85NWUyGcaOHStZ9u2332o0A/Xq1auSYJ1MJsOHH36ok3EVVMWKFcXfg4ODERsbm2eb58+f46efftLjqPRP8YvI7777TqPXctOmTbh586ZWfSmeu7dt26ZRu++//16rfnIzZ84cjfInHz16VDIr1tLSUuPc1HkpzPNSfuR8DwCazx6dPn26VrNoczNhwgRJecGCBdiyZYtYdnJyQt++fTVaV2Geo3Ie04IgSFJlqJKeno4ZM2bkWS+nwj520tLSJEHs0vbFPBGVPAwSExFRieDo6Ih//vkHpqam4rKwsDC0bdsWW7du1fqSwwcPHuh6iHqxf/9++Pv7S5aNHTtW6YNfaVG2bFnxBjNA1ofRgQMH4sWLFyrbpKamYsCAAVrnPfziiy8kM4jOnz+PAQMGIC4uTuN1JCYm4o8//sCqVau06ltX6tWrJynv3LlTb33Z2dlhypQpYlkul2PIkCHYt2+fVuv5999/MWjQoFyfW7RoERYvXqzV7LH58+dLyjlnjBbUxx9/LLk8PDAwEBMmTFB7PgoPD8eAAQMkdfr06YPq1avrbFwF0aZNG/H3tLQ0TJs2TW39N2/eoGfPnhoFk4uyYcOGoVy5cmL51q1bmDhxoto2N27cyLNObnr06CEp//nnn3j48KHaNtOnT9f6vZSbiIgIDB48WO0XXo8ePcLIkSMly0aNGqV0g7/8cnNzg7W1tVg+efIkYmJidLJuXcj5HgCApUuX5pmXftmyZfj1118L3Hfr1q3RqFEjsbx8+XJJUH/kyJFapaUprHOU4jE9a9YstX9zMzIy8NFHH2mdoqYgx87mzZsxd+5crY61xYsXS3Is6/LvBxGRQQhEREQlyJo1awQjIyMBgOTRqFEj4Y8//hDu3r2bazu5XC48fvxYWLJkidC2bVul9m5ubmr7HTVqlKT+jBkz8r0Nmq7r0aNHgr29vaSuo6OjsH//fuH48eM6eURHR+d7O3KTc6xeXl56aRcVFSWUL19e0qZChQrC+vXrheTkZLFeZmamcOLECaFhw4ZiPXd3d0m706dPq+3r7NmzgqmpqaSNi4uL8OuvvwphYWG5tgkPDxe2b98uDBs2TLC1tc3zeJkxY4ZWY9JmX6WlpQlOTk6SNh07dhSWLFkiHDx4UOl4UBQaGippO2rUKLX9ZWZmCj169JC0kclkQt++fYWTJ08KKSkpSm2Sk5OFK1euCD///LPQtGlTsV1uvvjiCwGAYGdnJ4wcOVLYtWuX8OLFi1zr3rhxQxg0aJBkLEZGRsL169fVboO2/vzzT6Xzibe3t3Dp0iVJvYSEBGHlypVKr4eDg4Pw/PnzPPtxc3PT+HxVEEePHlXanpEjRwpPnjyR1IuPjxdWrlwpVKxYUaxXp04djY9lbY8txfNmaGhowTdWwcaNG5W2vUuXLkrHTExMjPDbb78JVlZW4vGY81ytyevTsmVLpfPKnj17hIyMDLGOXC4XLl26JHTv3l2sV716dY338enTp5X+zmX/3qxZMyEgIECQy+Vi/YSEBGH58uVC2bJllc6vef2t8PLykrTJS58+fST1PTw8BH9/f2HPnj16+zulzTHk6ekpqevs7Cxs27ZNSE9Pl9S7efOmMHDgQJXvAW3+Dmb7+++/lY7D7Ieq/3HUKYxzVHp6uuDi4iJpV6dOHeH06dOSYyw9PV04duyY0KpVK7Fe1apVtXpv5/fYWbBggQBAKFOmjNC/f39h8+bNSue1bCEhIcInn3wiyGQySV+7d+9Wv7OJiIo4BomJiKjE2bNnj1LwNOfD2tpaqFq1qtCiRQuhefPmQq1atcQP87k9nJychFWrVqnt0xBB4pkzZ6ocs64eeQUktZXfD8fatjt+/Lhgbm6utD1lypQR6tevLzRp0kRwcHCQPNe1a1fhxx9/1Hr7t2zZIlhYWOS6/5ydnYVGjRoJLVu2FGrVqqUUXNHkeNFnkFgQBGHWrFkaHw+KtA3kCYIgxMbGCt7e3rmu39zcXPDw8BBatWolNGrUSHBzcxOMjY01GosgvAsSKz7KlSsn1KtXT2jdurXQuHFjleeHqVOn5jl+bcnlcmHEiBEqx9W0aVOhbt26gqWlpdLzlpaWwpEjRzTqp7CCxIIgKAX6sx/VqlUTWrVqJdSqVUswMzOTPDd06FCtjuWiGCQWBEEYM2ZMrttesWJF8e+J4rZv2LBB69fnypUruR779vb2QtOmTYXGjRsrncOGDBmi1T5WDBJPnz5d6NKli2SZo6Oj2mPU3Nw81y+QFGkbJA4ICFAKwKl66OrvlDbH0IULF5S+IASy/r9o0qSJ0KxZM6FChQqS56ysrITAwECtz9GK4uPjBWtra6W+27Vrl6/tLqxz1I4dO3Lto3z58kLz5s2FBg0aCDY2NkrnZG3f2/k9drKDxLm952rXri20bt1aaNq0qVCuXLlc6w0ePDhf+5+IqChhugkiIipx+vTpg9u3b2PQoEGQyWRKzyckJCA0NBTXrl3D9evXERISgsTERKV6ZcuWxTfffIOHDx8q5aMsCoQidsf3osTHxwc7duyAjY2NZHlSUhLu3LmDGzduSG6c065dO2zbti3X4yUvgwcPxvnz5+Hh4aH0XEREBG7duoWrV68iJCQk18tYjY2NUalSJa371ZXvvvsOw4cPL7T+7OzscPz4cXz99dcwMTGRPJeamooHDx7gypUruHXrFsLCwnLNj5kz/7gm3rx5g+DgYFy+fBk3b95USn1gbGyMH3/8EXPnztV6e/Iik8mwbt06fPvttzAykv7r/ebNGwQGBuLu3buSS5aBrLynx44dQ7du3XQ+poLatGkTWrZsqbT88ePHuHLlCkJCQiQ38xo8eDDWrFlTmEPUmxUrVuT69+Dly5fi35PsbZfJZPj111/z9f5q2bIlVq5cCWNjY8ny2NhYBAYG4ubNm5Jz2JAhQ7S+QZ4iIyMjbN++He3atROXRUVFqTxGbWxssGPHDvj4+BSo39x4eXlh0aJFkhRSRUmbNm2wYsUKpfElJCTgxo0b+PfffyX5h8uWLYsDBw6gSZMmBe7bxsYm1/zPmt6wTlFhnaP69++PWbNmKS1//fo1rl+/jqCgIEnqjG+++Qb/+9//tN4eXR87sbGxuH//Pi5fvozAwMBc02SMGzcOGzZs0El/RESGxCAxERGVSFWqVMHWrVtx7949TJo0CdWqVdOoXYUKFfDBBx9g69atiIiIwPz583WWZ5EKV8+ePREcHAxfX1+VORqdnJwwd+5cnD59GnZ2dvnuq1mzZrh79y7Wr1+P1q1bKwV2FJmbm6NTp0749ddf8fTpU3z00Uf57rugjI2NsWHDBpw/fx6ffPIJWrZsCScnJ5ibm+utTxMTE/z2228ICQnBRx99hPLly+fZxt3dHR999BGOHTuGJ0+e5Fpn1qxZ2Lp1K4YPH65RINna2hrDhw/HjRs39HpjNZlMhl9++QWBgYHo3bu32n1bqVIlTJ8+HQ8fPpQE64oSe3t7nD17FtOnT1f7vqlXrx42b96MLVu2aJUntSgzMjLCqlWrsHfvXjRo0EBlvVatWuH06dOYNGlSvvvy8/PD2bNn4enpqbJO9erVsWHDBmzevFkn+9jOzg6nTp3C3Llz4eTklGsdMzMzDBw4EHfv3kXPnj0L3Kcqn332Ge7du4cff/wRnTp1QqVKlVCmTJl8fZmnD6NGjcLZs2fRoUMHlXUsLCwwZswYBAcHw9vbW2d9K35RYW9vD19f33yvr7DOUdOnT8f+/fuV8uHn1KhRIxw6dAjz58/P92udn2Nn/Pjx2Lt3Lz788EPUqFEjzz7Mzc3Rt29fnDt3DsuXL1f60pOIqDiSCZyGREREpURERARu376NsLAwxMTEIC0tDTY2NihbtiwcHR3RoEEDuLm5GXqYpAcxMTEICAjA06dP8fbtWzg4OKB+/frw9PTUywe7uLg4XL58GS9evEBkZCTS09NhY2OD8uXLo3bt2qhVqxYsLCx03m9xJQgCgoODERwcjMjISMTGxsLc3Bx2dnaoWrUq6tatm6/Z1s+fP8f9+/cRGhqKmJgYpKamokyZMnB0dES9evXQoEEDvQbDVUlKSsL58+cRHh6OyMhImJubo3z58qhXrx4aN25c6OMpiJSUFFy6dAn37t1DTEwMzMzMUKlSJbRo0SLX2fUlTXBwMAIDA8WbY7q4uKB169ZKQSZ3d3eEhYUByLq5lqovOlQJCwvD+fPn8fLlS6SkpKB8+fJo2rQpmjZtqregaUZGBi5duoSgoCDExMTA1tYWlStXRseOHfnlqYInT57gwoULiIiIQGpqKuzt7VGrVi20adMGZcqU0Xl/q1evltyg9pNPPsFff/2ls/UXxjnq3r17uHr1Kl6/fo2MjAw4OzujZcuWqFu3rk7WX1Bv3rzB3bt38fjxY0RHRyMpKQllypRB2bJlUbt2bTRq1AhWVlaGHiYRkU4xSExERERERKRHBQ0SE+XUpk0bXLp0SSzfvHkTjRo1MuCIiIioJGC6CSIiIiIiIqJi4Pbt25IAcatWrRggJiIinWCQmIiIiIiIiKgY+OWXXyTlTz75xEAjISKikoZBYiIiIiIiIqIi7vTp09i8ebNYdnFxwcCBAw04IiIiKkl4C04iIiIiIiKiIiQmJgb//vsvACA6OhoXLlzA8uXLkfOWQt9//71Bbr5JREQlE4PEREREREREREXIrVu30KVLF5XPt2rVCuPHjy/EERERUUnHdBNERERERERExUSNGjWwc+dOGBnx4zwREekOZxITERERERERFWHW1taoVasW+vXrh88//xzW1taGHhIREZUwMiFnUiMiIiIiIiIiIiIiKlV4fQoRERERERERERFRKcYgMREREREREREREVEpxiAxERERERERERERUSnGIDERERERERERERFRKcYgMREREREREREREVEpxiAxERERERERERERUSnGIDERlSgBAQGQyWTiY+bMmYYeUpE1c+ZMyb4KCAgw9JBKJG9vb8l+JiLt8X1UOHLuY29vb0MPh4iIiIgKkYmhB0BEREQlR0hICIKDg/H06VMkJCTA2NgYZcuWRdWqVdGsWTM4OjoaeohERIVKEAQ8efIEQUFBePbsGWJjY2Fubo6yZcuiZs2aaNGiBSwsLHTa59u3b3HhwgU8ePAA8fHxsLS0hJubG9q0aYNKlSoVeP1yuRyPHj1CUFAQIiIixD4cHBxQp04dNGnSBKampjrYksInCAICAwNx8+ZNvH79GgBQoUIFNGrUCE2bNtXJF1Vv3rxBUFAQ/vvvP8TExEAQBJQtWxaVK1dG69at4eDgUOA+csrIyMCVK1dw584dREVFwdjYGM7OzmjWrBnq1aun076ICioqKgr3799HeHg4Xr9+jcTERBgbG8Pe3h4uLi5o1qwZnJ2dDT1MohKJQWIiIqJSyt3dHWFhYWL59OnT+Zo9+PDhQyxevBjbtm1DRESEynoymQzNmzfHqFGjMGbMGFhaWmrdl5+fH9atW6e0fPDgwdiyZYvW6wOA0NBQVK9eHYIg5Pqcu7t7vtarytq1azF69GiN6pqamsLOzg7ly5dH48aN0b59ewwaNAhly5bV6ZiISLdiYmKwZ88eHDlyBKdOnUJkZKTKuqampnj//ffx5ZdfwsvLq0D9hoaG4scff8S2bduQlpam9LxMJoOXlxd++ukndOjQQat1v3z5Ejt37sSxY8cQEBCA+Ph4lXUtLS0xYMAAfPXVV2jSpIlW/QQEBKBjx45atcnJzc0NT5480bpdeno6Fi1ahIULF+L58+e51qlcuTK+/PJLfP7551oFwdPS0nD06FEcPHgQJ0+exKNHj1TWlclkaNGiBT777DMMHjwYJib5/8iekJAAf39/LFmyBNHR0bnWqVWrFqZMmQI/Pz+9XKkxbdo0+Pv7Ky3P7W+uPmVmZuLOnTu4cuUKrl69iqtXryI4OBhyuVysM2PGDL1fhajL/VGY2/TmzRuxj+yH4jGV39c0MjIS69evx7lz53D16lW8ePEizzb16tXD2LFjMX78eJQpUyZf/cbFxeHatWvi9ly5cgUvX76U1NHH/4FERZpARFSCnD59WgAgPmbMmGHoIRVZM2bMkOyr06dPG3pIJZKXl5dkPxclbm5uBToG4uPjhYkTJwrGxsaS9WjyqFixorB161atxzxq1Khc12dpaSnExcVpvT5BEISZM2eqHGdoaGi+1qnOmjVrtN5fOR/m5ubCtGnThKSkJJ2Pragqyu+jkiTnPvby8jL0cIqtiRMnCmZmZvl6f48cOTLf57J//vlHKFOmjEb9yGQyYcqUKYJcLtdo3b179xaMjIy03h4jIyPhm2++EVJTUzXeDsX/5bR9uLm5ab3vwsPDhSZNmmjcR7NmzYRnz55ptO41a9YIZcuWzde2tGjRQnjw4IHW2yMIgnD79m2hatWqGvfVrVs3ITY2Nl99qRIYGCiYmJjk2l9hmTdvntCuXTuN3hv6/tygq/1RWNt09+5dYdCgQRofR/l1/PjxfL/fq1atKpw9e1bjviIiIoSRI0cKtWvXFmQyWZ7r18f/gURFGXMSExERkdZCQkLQvHlz/P3338jMzJQ8Z2RkhIoVK6Jp06aoU6cO7O3tldq/fPkSgwcPxvjx45GRkVHg8SQnJ2P79u1atxMEAevXry9w/4UpNTUVc+fOhbe3N2JjYw09HCJScOXKlVxn8RobG6Ny5cpo1qwZGjZsCDs7O6U669evR5cuXZCQkKBVn9u3b8eQIUOQlJQkWV6uXDk0bdoUlStXlswSFQQB8+bNw9dff63R+i9cuCCZnZjN1NQUbm5uaN68OerXr680o08ul+PXX3+Fr6+vTs71+vD69Wt07NgRN27ckCy3tLREvXr1UKdOHaV0IP/++y86duyodoZ4tjt37iAmJibX58qXL48GDRqovHz+2rVraNOmDe7du6fFFmX9je7UqRNCQ0Mly62trdGwYUPUrFlTaSb00aNH8d577yElJUWrvlTJyMjAmDFjDP66b968GefPn1d6bxQ2Xe6PwtqmkJAQ/PPPP0rHUWFxcnJCvXr10Lp1azRs2DDXq6hCQ0PRtWtXHDt2TKN1vnz5EuvXr8f9+/cLfTY7UXHAdBNERESklfv378PLy0vM1ZitYcOG+PTTT9GvXz+l3MPBwcHYunUrFi1ahLdv34rLly9fjpiYGGzZsgXGxsZaj8XIyEgMXKxfvx5jx47Vqv358+fx+PHjXNdXWBo2bIjffvst1+eSkpLw6tUrXL16FTt37pQEGq5evYoRI0Zg//79hTVUItKSvb09hg4divfffx/t27eHjY2N+FxmZibOnTuHH3/8EefOnROXX716FX5+ftixY4dGffz3338YPXq05NzVqFEjLFiwQJK2ISQkBN999x127dolLlu4cCHat2+Pfv36abxNFSpUwMiRI9G9e3e0adNGEkBNT0/HkSNH8P333yMoKEhcvm/fPkydOhW//vqrxv1kGzFiBEaOHKlxfW1TGfn5+eG///4TyxYWFvD398e4cePEoHdiYiKWL1+O7777TgyiPnz4EGPGjMG+ffs07svU1BQ9e/bEgAED4O3trZQf+v79+/jll1+wZs0acVlkZCS6d++Oe/fuaXRZfUZGBnx9fSUBbAcHByxYsABDhgwRg8PR0dH4/fffMXfuXPHYuXTpEiZPnow//vhD421S5ZdffsHNmzcBAFZWVkhMTCzwOnXJyMgI5ubmSE5OLpT+CmN/FOY2WVtba/1lljoymQwtW7ZE165d0b59ezRr1izX3NzBwcFYtmyZZJJCSkoKhg4divv378PJySnfY9D1NhEVSwaeyUxEpFNMN6E5ppsoHEX5Mvn8pJtISkoSateuLWknk8mEWbNmCenp6Xm2f/r0qdC5c2ely/lmz56t0ZgV003kXJdMJtP6ssCxY8eK7StWrCjUr19f75cZKqab0PSy/piYGKFfv35K++7UqVM6H2NRU5TfRyVJfo5LUtasWTPB3d1dWLlypUZpYTIyMoSPPvoo3+/tIUOGKKUoUJWyQi6XK/VVvXr1PM/fjo6OQv369YXt27drdK5PTk4WevbsKenH1NRUCAkJybNtYf4vd/ToUaUxnjlzRmX9gIAAwdTUVKvXadKkSYKNjY0wffp04eXLlxqNa/369UqXwv/4448atV22bJmkXdmyZYXg4GCV9Tdt2iSpb2Jiku8UF9nu378vmJubi+v87bffdJaaQFuNGjUSgKw0JAMGDBDmzZsnnD59WoiPj1f6n0Jfx5qu90dhbdPu3bsFICull6enp/DFF18IGzduFEJCQoTHjx/r7DV98+aNxulbsh07dkwprc/kyZPzbHfjxg3xvd6sWTNhwoQJwqpVq4SgoCAhMzOT6Sao1ON/2URUojBIrDkGiQtHUQ5u5SdIPGHCBKV/oJcsWaJVvykpKYKPj4/Sh9IrV67k2Vbxw8/KlSslH9h/+uknjceRlJQk2Nraim2//vpr8YNXUQwSC4IgpKWlCbVq1ZK0nzBhgs7HWNQU5fdRScIgsW4cOHBAqxy8gpAVKG7evLnkNRg6dGie7e7cuSPJFWxmZibcvXtXbZvk5GShZs2akr6WL1+uts2ePXuEzMxMrbYpISFBqFy5sqSf7777Ls92hfm/XMuWLSV9TZ8+Pc82P/zwg6RNmzZt1NY/d+6c8ObNG63H9tVXX0n6cXFxybNNamqqUKVKFUm7VatW5dlu+PDhWh97qsjlcqFdu3biuvr06SOEhoYaLEh88eJF4dWrV7k+VxhBYn3sj8LapufPnwuBgYG5fjFkyNc029SpUyX9V6tWLc82MTExwuXLl4WUlJRcn2eQmEo75iQmIiIijVy5cgVLly6VLPviiy8wYcIErdZjbm6O3bt3w83NTVyWkZGBDz/8UOsxOTo64v333xfLGzZs0Ljt7t27ER8fL5ZHjRqldf+FzdTUVCmlxu3btw00GiLKzfvvvw8zMzOt2hgbG2Py5MmSZUePHs2z3erVqyVpJgYPHow6deqobWNhYYGpU6dKlq1cuVJtmz59+sDISLuPjlZWVvj8888lyzTZpsISFBSEq1evimUrKyt8++23ebabPHkyrKysxPLFixfV5gxu165dvi6BnzJliiSP9PPnz3Hnzh21bY4ePYqnT5+KZXd3d4wePTrPvmbOnCnpa/v27YiLi9N6zACwePFinD9/HgBgY2ODv/76K1/r0RVPT0+UL1/eYP3rY38U1jZVqlQJTZo0gYlJ0cxSOnz4cEn58ePHSE1NVdvG3t4erVq1grm5uT6HRlRsFc13OxGRnmRkZODy5cu4c+cOoqOjYWtriypVqsDb2zvXG8hoIzY2Fnfu3EFISAhiYmKQlpYGe3t7lC9fHi1atJAExHQhJCQEt2/fRmRkJKKjo2FhYYFy5cqhTp06aNSokdYfUAtDbGwsLl68iIiICLx580Ycc5MmTVC3bl2d93fr1i1cv34dr1+/hrm5OSpWrIg2bdrA3d29wOsODQ3FlStX8Pz5c6Snp6NixYrijXtKqt9//11SdnFxwezZs/O1LmtrayxatAgffPCBuCwoKAjHjx9Hly5dtFrXqFGjsGfPHgDAo0ePcPHiRbRp0ybPduvWrRN/b9y4MRo2bKhVv4ai+F558+aN1ut49uwZgoODERoaKgYCHBwc4OLiAk9Pz1xvDpNfmZmZuH79Ov777z9ERkbi7du3sLa2houLC+rWrYs6depIghNFRXh4OK5fv45Xr14hJiYGdnZ2qFixItq2bYuKFSvqtK/09HRcvHgRd+7cQWxsrPi3ycvLSyevxfXr1xEcHIyIiAiYmJjAzc0Nbdq0gYuLiw5GT7rSvn17STkqKgpJSUlq89Aq5sPVNC/7oEGD8Pnnn4t5Ua9du4YXL14o5cgtKMVtCg8P1+n6C2Lv3r2S8sCBAyU5o1WxsbGBr68v1q5dKy7bs2dPnsF5bVWoUAEeHh4ICQkRl4WHh6v9P0Nxm0aPHq3R+bV69erw8vJCQEAAgKxz0qFDhzBkyBCtxhweHo5p06aJ5f/973+oXLkynjx5otV6SgruD/2qXr260rKoqCidn8eIShVDT2UmItIlVZcopqWlCf7+/kK5cuWULiMCIJibmwuDBw/WOh9WYGCgMHnyZKFx48ZKueMUH9WqVRMWLVqkUX5CVd68eSNMnjxZ6VJCxYeVlZXwwQcfCAcPHhTkcnmu68pvuokLFy4IDg4OkrZjx45Vm6Nw3759QocOHQQTExOVY3Z1dRV+//13lZd/KVJ3OermzZuVLsnP+WjVqpVw7tw5jfpRdPHiRaFNmzYq112vXj1h586dYv2ifJm8NukmwsPDlV6/RYsWFXgMTZs2layzR48eausrXka5e/duIS0tTXB0dBSXjR8/Ps9+nz17JrlE+/fffxcEQSjy6SYEQRAOHjwoad+wYcM826SnpwuHDx8Wxo4dq/S6Kz5kMpng6ekp7N69W+X5QxN37twRhg4dKtjZ2antr2LFisL48eOFmzdvqlxXft9HixcvlrzOxsbGwooVK1TWT01NFRYuXCjUrVtX7f5p3ry5sHfvXo3Hoep8m5KSIsyaNUvpnJpzvIMGDRKePHmicV85rV69WqhevbrK7ejatatw69YtsX5BjksquJSUFKXX6cWLFyrr379/X+lvvyb5grN16dJF0j6vlBP5oThGMzOzPNsUVrqJ1q1bS/rZsmWLxm0V8/jmlXJCV2PcvHmz2voVK1aU1L906ZLGff3888+StvlJOdG9e3exfevWrcUUJUUhNUFu9J1uwhD7o7DyLBeF1zQmJkZpDImJiQVap+L6mG6CSpuicXYmItKR3D5YxMTECG3btlUbpMh+2NraCocOHdKorz///FOjdSo+6tatKzx8+FDrbVu6dKlgbW2tdX+q/rnJT5B4165dgoWFhaSduhupvHr1SvD29tZqvB4eHsKjR4/yHEtur3VqaqowbNgwjfoxNjYW1qxZk2c/Of3000+SgJO6x2effSbI5XKtg1uKAUQ3NzetxqgNbYLEise7mZmZEBkZWeAx/PHHH0qvy9u3b1XWzy1ILAiC8Omnn4rL7O3t8/yywd/fX6xvYmIi5vYrDkHiX3/9VdK+X79+ebbp379/vs5X/fr1ExISErQaX1pamvDxxx9r/F7R5FjPT5B42rRpkjZlypQRDhw4oLL+5cuXhapVq2o15l69emm0f3I73z579kxo3LixRv04OTkJgYGBGm23IOR+0zBVDzMzMzHwVJDjkgruv//+U3p91OU23rp1q6Rux44dtepv5syZkvYTJ04s6CYoOXnypKQPZ2fnPNsURpBYLpcLZcqUkfQTFhamcfsnT55I2lpZWRXoSzVVFCcFHD16VGXdly9fSuqam5trlRs7ICBA0r5u3bpajXXdunViW1NTU+H27dvic0UhoJgbfQZUDbU/SlOQ+MiRI5L+a9euXeB1Km4Tg8RU2jDdBBGVaHK5HL6+vrhw4YK4zNHREa6urkhJSUFoaChSUlLE5+Lj49GvXz8cOnQIHTt2VLvunO2y2djYoFKlSrCzs0NGRgbevHkjyQ0HAHfv3kX79u1x69YtjfOJffnll1i0aJHScmNjY7i6usLJyQkpKSl4+fJlvi4918Tff/+Nzz77TMx9aGxsjCVLlmDcuHG51n/48CG6deuG0NBQyXKZTAY3Nzc4OTkhNTUVoaGhSEhIEJ9/8OABPD09cf78eXh4eGg1xlGjRmHr1q1iuWzZsqhSpQpMTEzw+PFjxMbGis9lZmbiww8/RL169dCiRYs81/2///0PM2bMUFru4OAANzc3cVuSk5MBAH/++adBc+DpWnY+vWxeXl5wdHQs8Hr79+8vyVmZmZmJy5cvw8fHR6v1jBw5UszzFxsbi3379sHX11dl/ZypJrp161ZsXqvMzEysWbNGskyT9By5na/KlSuHcuXKwcbGBikpKXj+/DkiIyMldXbt2oW4uDgcO3ZMo3ykcXFx6N27N86ePav0nKWlJapUqYKyZcsiPj4eT58+lbz3dSU9PR1jx46V5KcuV64cDhw4gJYtW+baZv/+/Rg0aJD4/s1mZmaGqlWrws7ODvHx8Xj06BEyMjIk7Tp16oQzZ87AwsJC4zHGxsbCx8cH9+/fF5e5uLjA2dkZKSkpePjwoSSvYmRkJHr37o3g4GDY2tqqXXdGRgb69++PQ4cOKT1XuXJlVKxYETExMQgNDYVcLkdaWhpGjhwJZ2dnjcdP+nHu3DlJ2c3NTW3qKMU8uNqmbVKsry6vbn4pbpO2f9ezCYKA0NBQvH79GpmZmXBwcEDFihXznY4lLCwMSUlJYtnKygqurq4at3dzc0OZMmXEdSQmJuLp06darSMvoaGhePbsmWRZzZo1VdZXfP1q1KihVeoxxeMh+3ynST7a169f46uvvhLL33zzDRo0aKBx3yUN94f+yeVyzJ07V7KsONxbgqjIM3SUmohIlxRnn+ScKdm0aVPh9OnTkpkeb9++FZYtWybY29tL2lWsWFGIiYlR29f8+fMFc3NzYeDAgcL69etVzkCJjIwUlixZIlSqVEnSR+/evTXapoULFyp9q12tWjVh7dq1QnR0tFL98PBwYcWKFUKnTp3UfgOuzUzi3Gbk7du3T2X9xMREoU6dOpI2VatWFZYtW6Y05uzL4BXTDjRu3FjtbFDF17patWri7927dxcuXbokea0zMjKE3bt3K70OLVu2VNlHtgsXLiilE8nteEpMTBRWrVolpj4wMTERXFxctJplUVRnEiveoX7q1Kk6G4fi5bEzZ85UWVfVTGJBECTHXM+ePVWu4+rVq5J1bNu2TXyuKM8kjo+PF4YMGSJpW6lSJbUzr7O9//77gpOTkzBx4kTh4MGDwps3b3Kt9/DhQ2HatGlKVwxkp+PIS9++fZXOV15eXsKRI0eU3s+ZmZnCnTt3hJ9//lmoU6eOTmYSx8fHK11CX61aNeHBgwcq29y5c0ewtLSUtGnfvr1w4MABITk5WWn9y5cvFypUqCCpP2HCBLX7RfF8m32+MjExET799FOlqycSEhKEX3/9VTA1NZW0mzx5stp+BEEQ5s6dq/QaDB48WLh3756kXkREhPDdd9+JaWTc3d3zdVyS7nTo0EHyGnz88cdq6w8ePFhS39/fX6v+Ll26pHQ+0aWMjAzJ32YAwrx58/Jsp/j33d3dXWVKltq1awsTJ04U7ty5o9XYdDEDUTGt1bFjx7Rehzo//vijZP116tRRW3/p0qWS+t27d9e6T8Vzv7pzZ06+vr5imxo1aiidO4vCrNPc6GvWrSH3R2mYSRwTEyMMGjRI6T1ckJR+2RS3iTOJqbQpGmdnIiIdUfxgkf3o0aOHkJaWprLdgwcPhPLly0va5HXZ5Z07d8RL1DURHR0tNGvWTNJHcHCw2jZBQUFKQYIBAwZonLf3+vXrQmxsbK7PaRIkTktLE0aMGCGp5+TkJFy+fFltvxMmTJC06dWrV56BrJSUFKUAk7rAlKrXevr06Wr7CQkJUbrEVF0u1MzMTKFevXpaHU9PnjxRCg5r+g90UQwSJyQkKG3HP//8o7NxvPfee5J1Dxw4UGVddUFiVSkkFH3yySdivbJly0reT4YIEjds2FA4fvx4ro/9+/cLK1euFMaPHy84OTlJ2tnY2Ajnz5/XqM+LFy8qfUhV58aNG5KgjIuLS565ThUDFDKZTJg/f75G/cnlcuHUqVMqn9ckSBwRESE0adJEUq9Zs2bCy5cvVa43PT1dqF+/vqTNTz/9lOdl48+ePRNq1qwpaacuHYTi+RbIuhT84MGDavvZuHGjpE358uXzPPcoBnnmzJmjto9Dhw4p/Z0BGCQubIq5xgEIV65cUdsm+8vg7MfGjRu16jM8PFzS3tTUtCCboGTx4sVK63/69Gme7VT9fVf3kMlkwoABA4SoqCiNxrZ+/XpJex8fH623r6D7X50XL14Itra2kvXnFWCfNWuWpP6HH36odb+KQX1N/sbs2bNH0ubkyZNKdUpTkNjQ+6OkBIkDAgIk/w/t3btXWLp0qeDn56d0rwMPD4985+5XpLhNDBJTaVM0zs5ERDqS2wcLZ2dnIT4+Ps+2irNKLC0tVQZY8+vBgweSPJ3ffvut2vqKswbbtWsn3vSioPIKEuc2I69q1ap5zipRvMFZw4YNNQ5qJyYmSmazubm5CRkZGbnWze217tOnj0b9TJkyRdJu7ty5KusqHheaHk/nzp3L9YNsXopikFgxkABAOHv2rM7GMXr0aI0/rKsLEivejG7BggVK7VNTUyXBT8Wb3BkiSKztw8LCQhg6dKjw33//6XxsOa1cuVLSr7qAZnp6uuDq6iqp/9133+lsLHkFie/du6c0E7Z79+55fjm1ZcsWSRtNbnqY7fbt25LjbdiwYSrr5hYkzu34zE2rVq0k7dTdiGrq1KmSuupm1Oc0Z84cpfExSFx4oqKilK7W+OCDD/Js17JlS5XnQ037VXzdNf17nZdHjx4JNjY2knV/+eWXGrXNT5A4++Hq6prnF/CCIAh///13vv5/yKlXr16SdSxdulTrdeRGLpcLPXr0kKzbxcUlz/znkydPlrT54osvtO67QYMGknUcOXJEbf3Y2FjJFVqjRo3KtV5pCRIXhf1RUoLEed30FoBgZ2cnTJs2TaMrqjSl2AeDxFTa5J1cjoiomPvhhx9gY2OTZ71u3bqhU6dOYjk5ORlbtmzR6Vhq1qwpyYl58eJFlXUjIiKwbds2sWxkZITVq1drlBe0oF6+fAkvLy8cP35cXNa0aVNcunRJbT48AFi8eLEkZ+f8+fNhbm6uUb9lypSR5HALCwvD9evXNR73//73P43qDRo0SFIODAxUWXf16tWSsqbHU7t27fDBBx9oNJ6c/Pz8IGR9iQtBEPDkyROt16Fr0dHRSsvs7Ox0tn7FdcXExORrPS4uLujcubNYXr9+vVKdAwcOSLanuOWvMzExwaBBgzBhwgRUq1ZNr30NHjwYxsbGYlnd+WrXrl0IDw8Xy9WqVcPMmTP1OTzRxYsX0bZtW8l7ZdSoUdi/fz+sra3Vtl24cKH4e5kyZZTyG6rToEED9OnTRyzv3bsXmZmZGrV1cXHBJ598olFdTc9XgiBg7dq1kmXz5s3TqI9vvvkGFStW1Kgu6ZZcLsfw4cMluWft7Ozwxx9/5NlWMae3Nnmxgaw84XmtMz+SkpIwYMAAvH37Vlzm5uaGWbNmabUeDw8PfP3119i7dy8ePXqE+Ph4pKen4/Xr1zh//jxmzJihdNyGh4ejR48eePXqldp1F3TfAcr7T1c51v39/ZVyiv/999+wsrJS284Q2zRp0iS8ePECQFbu999++03rPksS7o/CY2tri8mTJ+Ozzz7L8289EWmOQWIiKtFMTU0xePBgjesrBowCAgJ0PCKgatWq4u83btxQWe/kyZOSgMN7772XZ4BWF0JCQuDp6SkZW7du3XDmzBlUqFAhz/Y5P9hUrFhR6xuQde3aVVJWvOmNKg0aNND4pj3169eX3IhF8eaCOeU8BrQ9nvz8/DSuW5Tl/KCfLa8Pq9pQXFdcXFy+15XzPXzjxg0EBwdLns95wzoPDw94enrmuy9DyMjIwLp169ChQwd069ZN/DCqD1ZWVpIb+qk7Xx07dkxS/vjjj2Fqaqq3sWXbs2cPfHx8JIH/7777DmvXrs3zZktRUVG4evWqWO7Zs6fWN8HKeb5KSEhQu49y6tevn8b7p3HjxpKyqvPV/fv38fLlS7HcrFkzjc+J5ubmWp3bSHe+/fZbHD58WLJs2bJlqFKlSp5tFW9Iqc1NygDk+gWu4s0btSUIAkaNGoWbN2+Ky0xMTLBp0yaNvmAFAHd3d5w+fRohISH47bff0Lt3b1SvXh02NjYwMTFBuXLl0LZtW8ycOROhoaEYP368pH1YWBgmTpyoto+C7jtAef8VdN8BWV82/fDDD5JlEyZMQO/evfNsW9jbdPLkSaxatUos//777zq5oW1xxf1RuOLj4/H999+jatWqmDp1KtLS0gw9JKISgUFiIirRGjZsCAcHB43re3t7S8o5AwjqvHr1Cn/++SeGDRuGBg0aoEKFCrC0tIRMJlN65JydnJSUpPIfcMXgaI8ePTTejvy6dOmS0oy8kSNHajQjD8iaAXrnzh2x3LRpU61nPiveGVzTu603b95c4z5MTU1hb28vllUFJcPCwvD69WuxrO3x5OXlpXHdoiy3D/aJiYk6W7/iuvIz+ylb3759JePNGRR+8+aNJBgzYsSIfPejS15eXpLZ4zkfGRkZiIqKwoULFzBz5kzJFzXHjh1D69atERYWplV/wcHB+Omnn9CnTx/UrFkTTk5OMDMzy/V8FRERIbaLjIxUuU5DnK+WLFmC/v37i+dQIyMj/P333/j55581an/+/HkIgiCWtTmHZCuM81XOQD2g+nyl+PdK8e9ZXrStTwX3xx9/4Pfff5csmzx5stLscVUUz5XaBklSU1PzXKe2Jk2ahB07dkiWLVq0CG3bttV4He7u7hofjxYWFli6dCm+/PJLyfJdu3apvRKpoPsOUN5/Bd13ly9fxtChQyGXy8Vl7du3l1zxoE5hblNSUhLGjRsnlrt27Yrhw4dr3V9Jwf2he7GxseL/QnK5HLGxsbhz5w5WrFghOZ+kpqZi3rx5eP/995W+KCEi7amfYkFEVMzVr19fq/qurq6wtbVFfHw8gKwgoSAIkMlkudaPjIzE5MmTsX79eo0vM1YUGxub6yWf//33n6ScnwCGNvbt24elS5dKgtbTpk3TOIUDkDULOWfQ5dChQyr3naZyS3WQG8VASl6srKzEoJeqQH1oaKikrO3xZG9vjypVqqidqVwc5BYYL8hs37zWZWtrm+91lSlTBgMGDMCaNWsAAJs2bcLcuXNhbGyMzZs3Iz09HQAgk8mKTJBYHWNjYzg4OKBNmzZo06YNPvvsM3zwwQdiUPbp06cYNGgQLl68mOcXMkFBQfj0009x9uzZfI0lNjZW5XOPHz8Wf7eyskKdOnXy1Yemvv/+e8m5ydLSEps3b9YqxYtiQHfy5MmYPHlygcalj/OV4kx7fZ2vGjRooFV9bcTExODff//VqG7ZsmXRrFkzg7fVt82bNysFNv38/ODv76/xOhS/vNU2QJLbsVSQy7b9/f2xYMECybIZM2bkOatXF+bPn48DBw7g0aNH4rKNGzeq/N+poPsOUN5/Bdl3wcHBeP/995GUlCQua9SoEfbv369xyq7C3Kbvv/9ePOeUKVMGS5Ys0bqvvERERChdDaRKpUqVNL5yQh8KY3+UZjKZDHZ2drCzs0O9evXw4YcfYtOmTRg7dqz4xcaJEycwadIkLF682MCjJSreGCQmohItP5d5OTg4iEFiuVyO+Pj4XPOv/vfff/D29pbkEcyP3GbyAMrBBm2DoNpS/GA3b948rQMmUVFRuhwSAM2DkQWZwZMzsJ2TYlAsP8eTo6NjiQwS57ysvaAU16VJWhN1Ro4cKQaJX7x4gRMnTqBbt26SWcVeXl5wc3MrUD+G4ODggF27dqFatWpiGpArV67gn3/+wZAhQ1S2O3DgAPr371+gyzFVnavi4+MlecidnJwK/OVQXnIGiE1MTHD8+HGtZioCPF8p0udl0bdu3UKXLl00quvl5SVJ82Ootvp04MABjBo1SvJa9uvXDytXrtTqvaMYwNP2Cg/F+iYmJvk+NpctW4Zp06ZJln3++eeFlpvcxMQEn3/+OT7//HNxmWIanJwKuu9ya5PfIHFoaCi6du0q+b+vZs2aOHr0qFb5/wtrm65cuSLJmT1jxgy95Mg/evQoRo8erVHdUaNGKeVkLyyFtT9IatiwYTAxMZGkSlqyZAk+//xz1KpVy4AjIyreGCQmohKtTJkyWrdRnLWVkJCg9E96WloaevTooRQgrlmzJry8vFCrVi24uLjAyspKTDuRbf78+Wo/uGRTzAOr75symJubS4JAO3bswLhx47TK0alupmF+5bzssrAp3rBFF8dTcWRlZYXKlStLjvcbN27A19dXJ+tXzONa0NlA2QHg7DQM69evR6VKlST9FLcb1uXk5OSEYcOGYenSpeKyNWvWqAwSP3jwAAMGDJAEiGUyGVq2bIk2bdqgWrVqqFixIiwsLJQCRMOHD8/zBlCFfa4CpOer7DzNbdq00SrAxvOVVEk4VxUHp0+fhq+vr+SLlS5dumDLli2SG0VqQvHLY22/tH7+/LmkXK5cOa3aZ9u8ebPSbOFRo0ZpnCZBV3LeuBQAHj58qPJqsILuO0B5/+Xny/wXL17Ax8dHkl++SpUqOHHihNZfmOpimxTz3Oe2TVOmTBHPdY0aNcLXX3+tdT8lCfeH4QwaNAh///23eIWUIAhYv369xmmniEgZg8REVKLlvGxPU5rMoli6dCkePHgglitUqIC1a9eie/fuea4/500t1FHMA5uQkAAnJyeN2ubH0qVLMWvWLPFyuWvXrqFTp044fvy4xv0qBiU6duyI7777rkDj0vZGUrqkGDTRxfFUXLVt2xb//POPWFaX61EbL168UJpJ3LBhwwKtUyaTYeTIkZg9ezaArJub5XwtraysMGDAgAL1YWht2rSRBIkvXboEuVyea8qJqVOnSr4AatmyJdatW4fatWvn2Y8mQdfczlX6tmfPHvTt21e8nHrFihVIS0vD6tWrNc6Drni++vLLL/H+++8XaFyGnD1W0PNVSTlXFWVXrlxB7969JWkA2rRpg927d+frJmOKs+XCw8O1aq9YX5NzgqK9e/di1KhRki9I+vfvj1WrVun9igJFijf7y8jIQExMTK5Xwyjuu/xc8aPYRtv9FxkZCR8fH0m6nvLly+PEiRNK+c41UdDj4fXr15Jj08zMLNdzWs4v2G7dupXvm5QqHh+7d+/WKmVQUcH9YVj9+vWTpNG6ePGiAUdDVPwxSExEJZq6Gy2pkvNyPyMjo1zzo27dulVS3r17Nzw9PbVevzqKH2pev34Nd3d3jdrmh7u7O86ePYtOnTrh4cOHAICbN2/C29sbJ0+e1GhGi2Iw2cLCAj4+PnoZb2HIeXM7IH/Hkz4uaTcExSDxmTNnEBUVVeBL1Hfu3Ckpm5iY6OSYyRkkTkpKwooVK8Tn+vbtWyizXfVJcXZXQkICYmNjlc4bCQkJOHjwoFiuUKECjhw5ovGXLzExMXnWsbW1hYmJiTgzMjIyUm0ud13o3r07Dh48iF69eonB0HXr1iEtLQ3r16+HiUne/+Iqnq+cnZ1L9flKn+cqb29vlWkyimpbXbt9+zbee+89yZcoTZo0waFDh/I9i1sxKHn37l2t2ivm5dY2yHnixAkMGjRIMiu6W7du2Lx5s9azonUht+Bcdh56RW5ubrC0tBRz8CYmJiIsLEzjNERhYWGSL2KsrKyUgtTqxMXFoVu3bpLXwN7eHseOHYOHh4fG68lJ8fX777//kJaWpvEXEIrHQ/Xq1TU6l+qLn58f/Pz8DNY/FQ/Vq1eXlHWZDo2oNNLulvNERMXMnTt3tKofFhYm5iMGsj5EKAY65HI5rl27JpYbN26scYAYgMY34ahZs6akrKuZm+pUrlwZZ86ckdx0Kjg4GN7e3kqXIOamatWqknLOG8gUR4ozaLQ9nmJjY4t9PuJsffr0kXzoT0tLw6ZNmwq8XsUcgu3atct11pe2atSogTZt2uT6XHFONZEtt8BHbjmDAwMDJWkmhgwZonGA+NGjRyrzECuqUaOG+HtiYqJSsEEfOnXqhCNHjkhmMm/ZsgWDBw9WGRjKiecrqdu3b+tyOJRDSEgIunTpIvnSpU6dOlrnnFXUuHFjSfnatWuSgG1eLly4oHZ9ebXt06eP5BzRvn37fM+K1gXF4JBMJlP5RaZMJlO6akWbGYiK+65hw4YafzGWmJiI999/H4GBgeIya2trHD58GI0aNdJ4DIoqVqyIihUriuXU1FSNb9wIFOx4ICoq8juTm4iycCYxEZVoQUFBiI6O1jjodObMGUm5ZcuWSnWioqIkH8K0uTnCgwcPlHLYqdK+fXvJ5eSHDh0qlDuEOzs7IyAgAD4+PggKCgIA3L9/H15eXjh16pTamTKVK1dGjRo1xGDLw4cP8fTpU61m1xQlbm5uKF++PF6/fg2g4MdTcebq6op+/fph+/bt4rL58+djzJgx+Z6Vu2/fPsmHZAA6PcZHjhyp9KG/cuXK6NSpk876MBTFy4hlMlmu+UQV8wlrc746deqUxnXbt2+P+/fvi+VDhw4Vyp3m27dvj2PHjqF79+7iTeN27tyJ/v37Y/v27TA3N1fZtmPHjpKyNttbFLVo0UJS1vb8U5LOV0VJWFgYfHx8xL8jQNYXFMePH893DuBstWvXRvXq1fHff/8ByAo+Xrx4ER06dMizbWJiIi5duiSWZTIZevbsqVG/gYGBeP/99yUzaZs3b44DBw7A0tJSy63QnfPnz0vKzs7OamfC9uzZE1euXBHLx48fV3sD0JyOHz8uKffq1Uujdqmpqfjggw8kAVkLCwvs3bsXrVu31mgd6rz//vuStGbHjx/XeCKDptu0bNkypVz0eXn16hWGDx+utr+CBMgNifvDsLLvP5GtoDc/Jir1BCKiEuT06dMCAMlj8eLFGrfv1KmTpO3ff/+tVOfVq1eSOn379tV4/V988YXS+EJDQ3Ot+/LlS8HExESsZ2RkJDx48EDjvvIyY8YMyThOnz4teT4yMlJo2rSppI67u7vw+PFjtev99NNPJW0mT56sszHnpPhaz5gxQ6v2bm5uYls3NzeV9Xx9ffN9PH3wwQdKr3dRknMf5HYMKLp06ZLS9nz55Zf56vvt27dK/deoUUPIzMxU227UqFGSNrt371ZZNyYmRjA3N5fUnzp1qtr1N2rUSKP3Z0GsWbNG0oeXl5fW6+jdu7dkHdWqVcu13j///COpt2jRIo3WL5fLhcaNG0vaqnuf7Ny5U2k8aWlpWm+XKl5eXmrfR9evXxccHBwkdbp37y4kJyerXW/9+vUlbQ4dOqSzMeeU1/lWndDQUEnbUaNG5VpPLpcLFSpUkNQNDg7WqI+UlBSltvk5LknqxYsXQvXq1SX71cXFJc+/o9r46quvJOsfOXKkRu1WrVoladeiRQuN2gUHBwtOTk6StvXr1xciIyMLshk64e3tLRnXiBEj1Na/deuWpL61tbXw9u3bPPuJj48XrKystH6vpaenK527TU1Nhf3792u8jXnZu3ev0v9tcrk8z3aPHj0SZDKZZFyxsbE6G5fieayo/D+k+D+Ftv9L5pc+90dhbVNReU27desmGcPXX39doPUpbpM+/g8kKsqYboKISrw5c+Zo9A3/0aNHJTPJLC0tc51R4ujoKJmZcvnyZY0u77x58yb+/vtvDUed9U344MGDxbJcLsfYsWMlN4fRJ0dHR5w8eVIym/rJkyfw8vJSe1n2V199Jdk/f/75p9Js0eJkzJgxkrKmx9P58+exZ88ePY3KMFq3bo2PPvpIsmzhwoVYvny5VutJTU1F3759lWZ//P333xrfdEwT9vb2iI6Oxtu3b8VHdp7i4uzKlSvYv3+/ZJmqG67lvPQYUJ5pp8qSJUtw8+ZNjcfUp08fSc70x48fY+bMmRq3L6hmzZrh9OnTkpmZR44cQc+ePdXewO3bb7+VlL/88ktxRnJxI5PJlPJ3TpkyRaO2v/76q9KscyqY6OhodOnSRZzlCwDlypXD8ePHlVKdFMSYMWMkaQ62bt2aZ7qXlJQU+Pv7S5aNHTs2z75CQ0PRpUsXSb7rGjVq4Pjx4wXOT19QGzduREBAgGRZXjf9atiwoWQGfkJCAn755Zc8+/rll18kN3ps3bp1nldOyOVy+Pn5Yd++feIyIyMjbNy4UeMZ3Jro1q0bKleuLJafPHmCNWvW5Nlu5syZkvzd/fv3L1AqFKLCcOrUKRw9elSyrE+fPgYaDVEJYegoNRGRLuU2kxiA0KNHD7Wz2h4+fCiUL19e0mbChAkq67dt21ZS19/fX+24Hj58KLi6uuY6NnXfUAcHByvNhPT19RVSUlLy3BeCIAjXrl1TORNE05ltcXFxStvr7Ows3L17V2W/48ePV6p/8eJFjcac7eTJk8K4ceNUPl9YM4kzMzOFOnXqaHU8PXnyRHBxccn19c6L4ixTdWMrKG1nEguCICQmJgq1atWStDMyMhLmzJkjpKen59n+6dOngo+Pj9J++fjjjzUaszYzifOjqM8kPnXqlNKMTzMzM5VXGSQkJAhmZmZiXWNjY+HChQtq+9i/f7/SeUeTY3HlypWS+jKZTPj111812i65XC6cOnVK5fN5zSTOFhwcLFSsWFFSt3379ipnB2ZkZAj16tWT1Pf09BSeP3+u0bgFQRDS0tKEtWvXqv07UBgzibPrKr52P//8s9r1Hz58WDA1NVV6vTmTOP/i4+OFFi1aSPanvb29cOPGDb30N2jQIElfLVq0EOLi4nKtK5fLlf5GazLz//nz50K1atUk7VxdXYWwsDCdbsuWLVuEnTt3ajT7NdvmzZuVjvvGjRtrtI7Dhw9L2pmamgpnzpxRWT8gIEDp/XLixIk8+5kwYYLS+XH16tUab6M2lixZIumrbNmyamc6b9q0SVLf2NhYCAkJ0emYisqsU0WcSZx/utqG+/fvC9OmTROioqK0anfmzBnB3t5e0n+rVq20OnfkRnGbOJOYShvmJCaiEs3NzQ1hYWE4dOgQPD098dtvv6FDhw7irJvExERs3rwZU6ZMkdxQpkKFCvjf//6ncr0jR46U5JObNm0a3rx5g8mTJ6N8+fLi8sjISKxbtw6zZ89GXFwcZDIZPDw8EBISotH469ati19//RWfffaZuGz79u0IDAzE9OnT0bt3b6WbUD179gxHjhzBpk2bEBAQgNDQ0ALNBrG1tcXRo0fRq1cvnD59GgAQEREBb29vnDx5EvXr11dqs2DBAly9ehU3btwQ63fo0AHDhw/H+PHj0bx5c6U8gQkJCbh58yYOHz6MnTt3IiQkROO7jOuTkZERli1bBi8vL3GWTfbx9Ouvv8LLy0s8npKSkvDPP/9g8uTJiIyMhImJCSpUqKBxHurioEyZMti1axe8vb3x5s0bAFkzpH744Qds27YNn332Gfr166eUt/nu3bvYsmUL/vjjD8nNIYGsvId//PFHoW1DURMTE4MTJ07k+lxmZibi4uIQEhKCo0ePKt1YCACmT5+udKPLbFZWVujfvz+2bNkiru+9997D/PnzMXLkSFhYWIh1Hz58iAULFmDZsmWQy+UoX748MjMzERUVpdF2jB07FkeOHMGOHTsAAIIg4JtvvsHBgwcxdepUeHl5SXIEy+Vy3Lt3D3v37sX69euRkpKCJ0+eaNSXKnXr1sWZM2fQqVMn8X137tw5dO3aFYcPH1Y6FxobG2Pnzp1o1aqVOIP40qVLqF+/Pj777DMMGzYMHh4eSv28evUK165dw/79+7F79268efOmSNwQ0d3dHdOnT8cPP/wgLvv+++9x584d/Pjjj6hdu7a4/NWrV/jzzz8xb948ZGRkwN3dvcD7n7L07t1bcoNbAPj6668RGRmp8r2uSrNmzfK82eScOXOwf/9+cdb8tWvX0KFDByxcuBDe3t5ivQcPHmDatGnYtWuXpL2/v7/amz0lJSWha9euePz4sbjM2NgYU6dOxYMHD/DgwQOttqldu3aSc09O9+/fx08//YQaNWpg4MCB6NmzJxo2bAgrKytJvbS0NJw/fx6LFi2SzM4FsnL8LlmyRKMbyXXv3h1du3bFsWPHAGTdFLRbt27w9/fHuHHjUKZMGQBZ/y+uWLEC06ZNk9wYs0ePHujcubPaPn766SfJPSaArJm6VapU0fp4qFatmtJNKhWNHTsWf/31l3ij5JiYGLRv3x4LFizA0KFDxf+/oqOjsWDBAqX/d8ePH5/rea+4iomJUXkDv4iICEn58ePHKl8TTd6LhaUwt+nff/+VfEbKltvVJ6r6KVu2LJo1a5brc8nJyZg7dy4WLVqEXr16YcCAAWjVqlWu9zNJTk7GhQsXsHr1amzdulUy+93c3ByLFy/W6H1/9+5djW7IDWTd0DG3KygtLS3Rtm1bjdZBVKwYOEhNRKRTirNLp0+fLnTp0kWyzNHRUWjatKlQt25dwdLSUukbY3Nzc+H48eNq+0lLS1PK14n/n1FZq1YtoVWrVkKNGjUEY2NjyfPfffed0jf8mnxDrZhzMPthbGwsVKtWTWjRooXQsGFDoVy5chp/A67tzLakpCSha9euSvsyMDAw1/pPnz4VGjRokOu4rayshNq1awutWrUSGjRoIFSuXFmSCy/7oW7mYmHNJM42a9asXLcl+3iqV6+e0vE0Z84cjWdAZivqM4mz3b17VynXZs7jslKlSuJ+KVu2bK71AAh+fn555o3NqSTOJC7IY9KkSXn29+jRI8HW1laprYWFhdCwYUOhRYsWQuXKlZVew0OHDmn9PomLi1M65rMfZcqUEc+PdevWFaytrTU+1rV9H/33339Kx3fz5s2F6OjoXOufOnVK5XHq5OQk1K9fX2jVqpVQp06dXM+zgPoZvoU1k1gQsv4+KeZozH5UqVJFaNGihdLfJxMTE6VzKmcS55+u3t/aHCtbtmzJ9e9ouXLlhGbNmglVqlTJ9fnPPvssz3XnNmOwIA9151XF9wqQ9b+Vq6ur0LBhQ6FVq1ZC7dq1BQsLi1zXbWpqKuzcuVPDVyrLy5cvhapVqyqty9LSUqhXr55Qt27dXPurXr268Pr16zzXr+qcmJ+Hpv/r3L17VylPO5CVd7lRo0aCh4dHrlcQtGzZUkhKStJq/2nCkDOJVV1lqK/3oiYKuj8Kc5t0cfyq+3ty48aNXNuULVtWqFWrltCyZUuhadOmQrVq1ZQ+V2U/zM3NtbqngOL/kvl56PP/cyJDYk5iIirRjIyMsH37drRr105cFhUVhcDAQNy9exfJycmS+jY2NtixYwd8fHzUrtfU1BR79+5Vmr0nl8sREhKCK1eu4NGjR8jMzBSf+/rrrzFnzpx8bcfvv/+OxYsXizNasmVmZuLx48e4du0abt++Lc7s1AdLS0vs27dPkvs0KioKnTt3VpoxBQCVK1fGpUuXMHz4cKVv9RMTE3H//n1cuXIFQUFBePbsmWQ2QDZXV1fdb0g+TZ8+HT/++KPStmQfT8HBwZLj6fPPP8f3339f2MMsNHXq1MG///6L8ePHK+URzszMxIsXL8T9ktsMlPLly2P16tVYs2aNyhllpFqtWrVw+PBh/Prrr3nWrV69OrZv3w5ra2vJ8pSUFNy+fRvXrl3Ds2fPxOUWFhbYtGkT3nvvPa3HZWtri2PHjuHDDz9Ueq8kJSWJ58e7d+8iISFB6/Vrqlq1ajh79iyqV68uLrt+/To6deokyaearWPHjrh27ZokP2m2yMhI3LlzB1euXMG9e/dyPc/KZLJcZz0ZgqmpKXbv3p3r6/f06VNcu3ZN8vfJzMwMGzZskMw4peJn8ODB2LRpEywtLSXL37x5g3///RdPnz5V+jv7zTffYNGiRYU5zHyRy+UIDw/H7du3ceXKFdy/fx8pKSlK9Tw8PHDp0iX069dPq/VXqFABp0+fRqNGjSTLk5OTERwcjLt37yr117hxY6U86EVJnTp1cOrUKaUrshISEnDr1i08ePBAMiMaAHx8fHD06FGlY4jIEGJiYhASEoKrV68iMDAQjx8/lnyuyta8eXNcvnw5X/+zEJEyBomJqMSzs7PDqVOnMHfuXDg5OeVax8zMDAMHDsTdu3c1voGIq6srrl27hk8//VRtkKt169Y4evQofvvtN40ugVJl4sSJ+O+///D555+jQoUKauva29tjyJAhOHnypORmUgVlbm6OXbt2oW/fvuKymJgY+Pj44OLFi0r1rayssGHDBty8eRNDhgyBvb19nn3Url0bX3zxBS5evIizZ8/qbOy68NNPP+HcuXPw9PRUWadOnTrYuXNnsfjgXVB2dnZYunQp7t27h88++yzP4zKbh4cHHj16hNGjR+t5hMWfTCaDra0tqlSpgo4dO+Lbb7/F2bNncf/+fXTv3l3j9XTt2hXXrl1Dr169VNYxMTHBgAEDcOvWLQwaNCjfYzYzM8OKFSsQGBiIfv36KV0mrsjNzQ1ffPEFjhw5ku8+c+Pq6oozZ86gVq1a4rKbN2/C29s718tkq1evjqtXr2Lfvn3o1KkTzMzM1K7f2NgYnp6emDVrFh49elSkbopoaWmJQ4cOYeXKlWovTe/SpQuuXbsmuUkqFV9DhgzBnTt3MHToULXpIzp06ICAgADMnz+/QP+X6MPAgQMxbdo0eHp6ahSsNDExQfv27bF582bcuXNH5SXteXFzc8PVq1cxb948VKpUSWW9SpUq4ZdffsGVK1eKzBdDqjRq1AhBQUGYNm2a2pQCNWvWxIoVK3Ds2DGN/k8j0qV69erhyJEj+Pzzz9GwYUMYGxvn2cbS0hJ9+vTBnj17cPnyZTRu3Fj/AyUqJWRCblO3iIhKqIyMDFy6dAlBQUGIiYmBra0tKleujI4dOxboH+OEhAScO3cOjx49QlxcHCwtLVGlShW0bt1aL7NhBUHAzZs3xVltb9++hZWVFSpWrIi6deuifv36Gv2TVdjkcjkCAwPx4MEDREZGIj4+HmXKlIG9vT2qV6+OunXrFtlZOYoeP36My5cv48WLF0hPT0fFihXRvHlzNGjQwNBDM6h79+4hODgYz549Q0JCAjIyMhAWFoa1a9dK6s2YMQMzZ840yBhLu4iICJw7dw7Pnj1DUlISbG1tUaNGDbRp00YvAYLU1FRcunQJYWFhePPmDdLS0mBjYwNXV1fUr19fMtu3KElKSsLly5fx9OlTREVFITk5GdbW1nByckKtWrVQp06dPAPgRcW1a9dw584dvHz5EiYmJnB1dUW7du3g4uJi6KGRnsTHx+P8+fN4+PAh3r59CwsLC7i6uqJt27bF5nXPzMxESEgIHj9+jGfPniE+Ph5paWmwtrZG2bJlUbVqVbRo0ULnM1/lcjn+/fdf3Lp1C69fvwaQdfVL48aN0bRpU6WrZ4qD9PR0XLlyBXfu3EFUVBSMjY3h7OyMpk2blvr/W6hoSUxMxN27d/Hff//h9evXSEhIgJGREezs7FC2bFnUq1cPdevWLZKfc4hKAgaJiYiISO8+++wz/PXXX5Jly5cvx7hx4ww0IiIiIiIiIsrGIDERERHpnVwux+DBg7F9+3ZxmbGxMXbt2oXevXsbcGRERERERETEIDEREREVitTUVHTr1g1nzpwRl1laWuLkyZNq8zwTERERERGRfjFITERERIUmLi4O7du3R1BQkLjMwcEBFy5cQO3atQ04MiIiIiIiotKLQWIiIiIqVC9evMCKFSuQ818QNzc3jB492oCjIiIiIiIiKr0YJCYiIiIiIiIiIiIqxYwMPQAiIiIiIiIiIiIiMhwGiQvgzZs3OHz4MGbNmoXevXvD2dkZMplMfKxdu7ZQxvHy5UvMmzcPnp6ecHZ2hoWFBdzd3dG9e3esW7cOycnJhTIOIiIiIiIiIiIiKn6YbiIfXr58idatWyMsLExtvTVr1sDPz0+vY9m6dSsmTJiAuLg4lXVq166NzZs3o0mTJnodCxERERERERERERU/nEmcDykpKXkGiAvDhg0bMGTIEEmA2MPDA15eXnBzcxOX3b9/H97e3rh7964hhklERERERERERERFGIPEBVSuXDl0794dP/zwA/bu3Vto/QYFBWHcuHFiuVatWrh+/TpCQkIQEBCAJ0+e4NixY6hQoQIAID4+Hr169UJKSkqhjZGIiIiIiIiIiIiKPhNDD6A4cnBwwPbt29GiRQvJjN3C9P333yM1NRUA4OTkhDNnzogB4WxdunTByZMn0axZM6SmpuLx48dYsmQJvvrqK0MMmYiIiIiIiIiIiIogziTOB1tbWwwYMMBgAeK7d+9i//79YnnOnDlKAeJs9erVw5dffimWf/nlF8jlcn0PkTTg5+cn3uTQ29tbp+t+/PgxfvzxRzRr1gzlypWDpaUlqlevjr59+2LHjh3IzMzUaX9ERERERERERFR8MUhcDO3atUv83draGsOGDVNb/6OPPhJ/f/nyJS5duqS3sZHhLVy4EHXr1sXs2bMRGBiIyMhIpKSk4PHjx9izZw98fX3Rvn17hIaGGnqoRERERERERERUBDBIXAwdPHhQ/L1du3awtrZWW79atWqoVatWru2pZJk9eza++uorMRWJkZER6tevjw4dOsDZ2Vmsd+nSJXTo0AEvX7401FCJiIiIiIiIiKiIYJC4mBEEAUFBQWLZ09NTo3Y56926dUvn4yLDO3r0KGbMmCGWPT09ce/ePQQFBeHMmTN49uwZtmzZIn6p8OzZMwwYMMBQwyUiIiIiIiIioiKCQeJiJjw8HImJiWK5evXqGrXLWe/evXs6HxcZliAImDJlCgRBAADUqlULJ06cgIeHh1jHyMgIgwcPxu7du8VlFy5ckJSJiIiIiIiIiKj0YZC4mAkLC5OUXV1dNWqXs15YWJgYTKSS4ciRI5IZ4osWLUKZMmVyrevj44NBgwaJZX9/f72Pj4gMQx83yExMTMT58+excOFCDBs2DB4eHjAyMhL78fPz00k/REREREREVHhMDD0A0k58fLykbGdnp1E7W1tb8Xe5XI6kpCRYWVnlawy///47fv/9d43qvnjxAgBgYmKC8uXL56u/kiomJkb8/dKlS6hcubJO1mVsbIwxY8ZAJpOprJ+dsxgArl69CmdnZxgbG+e7fyIqmnR5ngGAyMhIyfkjN9u3b8eJEycK1A8RERERERG98/r1a2RmZsLCwkKSYUCXGCQuZhQPBAsLC43aWVpaKq0nv0Hi+Ph4PH/+XKs26enpWrcpTdLS0nS2fzIzM8XgvKZ4Azuikk+X5xl1kpKSkJSUpPd+iIiIiIiISpuUlBS9rZtB4mImPT1dUjYx0ewlVKyXlpaW7zHY2trCxcVFo7rZAQkjIyM4ODjku8+iKmfaDnUzd3Pz9u1bcUaeiYkJ7O3t8zUGuVyO6OhosWxtba3RlwdxcXHi8WRhYSHe0I6IipaicJ7JFh0dDblcLq4v+5GcnIzMzEwAgLm5OWxsbArUDxEVroKcZ4iI8sJzDBHpW2k4z2R/FtPnVeAMEhczinlmNf0GQbFefmcRA8DXX3+Nr7/+WqO6lStXxvPnz+Hs7Ixnz57lu8+iau/eveLvffr00aqtn58f1q1bBwBo27YtAgIC8jWGM2fOSHKNHjlyBG3bts2z3YcffohVq1YBADw9PXHq1Kl89U9E+lUUzjPZdu/ejZo1a6JOnTqSf068vb1x5swZAMDgwYOxdu3aAvVDRIWrIOcZIqK88BxDRPpWGs4z2fE1faZyZZC4mFGc7ZmcnKxRO8VLfzlrtOTQxc0Mnzx5osshEVEJ1bdvX0MPgYiIiIiIiPTAyNADIO04OTlJyhERERq1y5lz1sbGBqampjodFxmOLm5m+PbtW52OiYiIiIiIiIiIig8GiYsZDw8PSTk8PFyjdk+fPhV/r127tk7HRIali5sZ6uvOmEREREREREREVPQxSFzMWFtbo0qVKmL55s2bGrW7ceOG+HudOnV0PSwyIF3czLAgNzIkIiIiIiIiIqLijUHiYqhDhw7i7+fPn8+zfnp6Oq5cuZJreyr+dHEzw4LcyJCIiIiIiIiIiIo3BomLoZx3arx3755klnBu9u3bJ+acNTIyQq9evfQ6vpIuPj4eixcvhre3Nz7++GP4+fnh448/hre3NxYvXqyUI1jfdHEzQ97IkIiIiIiIiIio9GKQuBjq0aMHypUrJ5bnzJmjsm5mZib8/f3F8nvvvYfy5cvrdXwlVXh4OCZOnAgXFxd8+umnOHPmDCIiIhAbG4uIiAicOXMGn376KVxcXDBx4kSN80UXlC5uZujo6KjTMRERERERERERUfHBIHERIpPJxIefn5/KelZWVpg2bZpY3rVrFxYuXKhUTxAEfPPNN7h+/bq4/tmzZ+t62KXChQsX0KRJEyxZsgQJCQlq6yYkJGDJkiVo2rQpLl68qPex1apVS1LmzQyJiIiIiIiIiEgbDBLn07hx42BhYaH00LZOfn3yySdo27atWP7qq6/Qq1cvbN26FQEBAVi7di06dOggCR5PmjQJTZo00Un/pcmFCxfg4+OD6Oho6ROONkDP5sDwDlk/HW0kT0dFRaFz584qA8U580lregPC3NSsWVNyE7qbN2/i8ePH+PHHH9GsWTOUK1cOlpaWqF69Ovr27YsdO3YgMzOTNzMkIiIiIiIiIiIAgEneVSg36enpSE1NVVsnIyMDGRkZeunfzMwMu3fvRufOnREUFAQAOHDgAA4cOJBr/aFDh2LevHl6GUtJFh4ejt69e0tvBudRCZjQFejSCDDL8RZKSweO3QKWHQcevACQdXO43r17IzAwEK6urnoZo5mZGVq1aoULFy4AADZu3IhZs2YpHZ+PHz/G48ePsWfPHjRr1gyPHj0Sn+PNDImIiIiIiIiISi/OJC7GypUrh6tXr+Lbb7+FnZ1drnXc3d2xatUqbNq0CUZGfLm15e/vL51B3KkBsOMb4P1m0gAxAJiZZs0o3j4pq97/i4qK0nuAXvFmhtkBYiMjI9SvXx8dOnSAs7OzWOfff/8Vf7e3t4eXl5dex0dEREREREREREUXZxLn09q1a7F27VqdrlMQBK3bWFhY4JdffsGsWbMQEBCAJ0+eICYmBhUqVECdOnXQunVryGQynY6ztIiPj8eGDRveLfCoBCwcDZibqm9oYQYs8AN8fxNnFK9fvx5z586Fra2tXsY6ZMgQfP/990hPTxeXeXp6Yu3atfDw8AAAyOVybNu2DR9++CESExPFesOGDZOkqyAiw8s+/2zfvh0PHjxAcnIyLC0tsWDBAvj6+mLEiBF6O58QERERERFR6cPIUAlhYWGB7t27G3oYJcqGDRukN6mb0DXvAHE2CzNgfBdg0joAWTez27hxIyZOnKiHkQIuLi6ws7NDZGSkuOzTTz8VA8RA1qzi/v374++//8a5c+fE5cxTTVR0hIeHw9/fX/n8AyA2NhYRERE4c+YMpk6dihEjRmDq1Kl6S2VDREREREREpQfzDxCpsH379ncFR5usHMTa6NpIcjO7bdu2qawaFxeX600O1T3CwsLE9keOHJEEiAFgxIgRGDFiBHbu3InTp09j6dKlaN68uSRADADLly/XbruISC8uXLiAJk2aYMmSJUoBYkUJCQlYsmQJmjZtqvLmmERERERERESa4kxiIhWeP3/+ruBZSzkHcV7MTAFPD+BAVv7fFy9eqK2e140QFeVMT7Jz507xd2NjY2RmZkIul2Pjxo3YuHGj2vVcu3YNz549Q+XKlbXqn4h058KFC/Dx8ZHeJBPI+qLJsxZgXwaITQIuhQBRb8Wno6Ki0LlzZ5w8eRJt2rQp5FETERERERFRScGZxEQqvH37LhAD+zL5W4ndu3bx8fEFHJFqBw8eFH8fOXIkxo4dC0tLy1zr1q1bF3v27IGVlRWArGDzoUOH9DY2IlIvPDwcvXv3lgaIPSoBv/sBAbOA30YB032zfgb8lPXTo5JYNSUlBb1790Z4eHjhD56IiIiIiIhKBM4kJlLBxsYGr169yirEJuVvJXHv2ineZKpdu3b477//AABeXl4ICAjIVxevX7/Gy5cvxbK3tzdGjhyJBQsW4NSpU3j69CkSExPh7OyMBg0aiDmIW7RoIfZ569atfPVNRAXn7++P6Ojodws6NVB9k0wzU6Bnc8CnIfDVWuBUEICsGcXz5s3D4sWLC2fQREREREREVKIwSEykgouLCx49epRVuBQCpGVol3IiLR24GCIWK1WqpKZy/t27d09Srl69OoCsIHefPn1UtqtevboYJFZcBxEVjvj4eGzYsOHdAo9KqgPEOVmYAQv8AN/fgAdZqWzWr1+PuXPnKn0hRURERERERJQXppsgUsHX1/ddIeotcFzL2bbHbgHR724+NXDgQB2NTCrnDewAwNXVVaN2Oes9efJEl0MiIg1t2LBBepO6CV3zDhBnszADxncRiwkJCWpzkJ89e7ZAN8jMHm9u9c6ePatVHSIiIiIiIipaGCQmUmHEiBGwtrZ+t2DpMSAlTbPGKWnAsmNi0draGsOHD9fxCLMo5jq2s7PTqF3O2YaS/MtEVGi2b9/+ruBoA3RppN0KujbKavf/tm3bprKqIAhITU3V6pHzBpkAkJmZmWc9uVyeax25XK7dthEREREREVGhYZCYSAVbW1uMGDHi3YIHL7JygOYVKE5Jy6r3IEJcNHLkSL1dAp6YmCgpW1hYaNQu543tFNdBRIXj+fPn7wqetbRLaQNk5Sj29BCLL1680NHIiIiIiIiIqDRhkJhIjalTp8LR0fHdglNBWTlAD1zPyjmcU1o6sP961vP/fzMpAHB0dMSUKVP0Nsb0dOk4TEw0CzLlrJeWpuEMaSLSKcksfvsy+VuJ3bt2ilcWrF27FoIg5Pvh7u4uWZ+fn1++1+Xt7Z2/7SMiIiIiIiK9443riNRwdXXF3r174ePjg5SUlKyFD14Ak9ZlXeLt6ZEVoIlLyrpJXY4cxEDWrN59+/ZpnCc4P8qUkQaWUlJSlJblRtweAFZWVjofFxHlzcbGBq9evcoqxCblbyVx79rxpnVERERERESUH5xJTJSHtm3b4sSJE9IZxUDWzewO/AtsOpf1UyFA7OjoiJMnT6JNmzZ6HZ8kbzKA5ORkjdolJb0LLCmug4gKh4uLy7vCpRAgLUO7FaSlZ31B9f8qVaqko5ERERERERFRacIgMZEG2rZti/3796NevXoa1a9Xrx7279+v9wAxADg5OUnKERERKmpKvXz5UvxdKQBORIXC19f3XSHqLXD8lnYrOHZL8gXVwIEDJU/7+flBJpNBJpPpLN1DYmIizp8/j4ULF2LYsGHw8PCAkZGR2I+fn59O+iEiIiIiIqLCwyAxkQYuXLiAnj17Ijg4WKP6wcHB6NWrFy5evKjnkQG1atWSlMPDwzVq9/TpU/H32rVr63RMRKSZESNGSGfyLz2W980xs6WkAcuOiUVra2sMHz5cxyOU6tKlC+zs7NC+fXt89dVX2Lx5Mx4+fAhBEPTaLxEREREREekXg8REebhw4QJ8fHwQHR0tfcK4HGDTH7D/MOuncTnJ01FRUejcubPeA8U1a9aU3ITu5s2bGrW7ceOG+HudOnV0PSwi0oCtrS1GjBjxbsGDF8BXa/MOFKekZdV78O7KgZEjR+o9J/HDhw+RmZmp1z6IiIiIiIio8DFITKRGeHg4evfuLbnJG8zqAhWXA9VuAc7LgPL+WT+r3gQqLst6/v+lpKSgd+/eGs/uzQ8zMzO0atVKLJ8/fz7PNi9fvsSjR4/EcocOHfQyNiLK29SpU6UpX04FAb6/AQeuZ+UcziktHdh/Pev5U0HiYkdHR0yZMqWQRpx1s8u2bdviiy++wIYNG9CkSZNC65uIiIiIiIh0zyTvKkSll7+/v3QGsVV3wHklYGShXNnIHLDtD1j3ACLGAYlHAGTNKJ43bx4WL16st3H26dMHFy5cAACcOHECr1+/Rvny5VXW37Rpk/i7vb09vLy89DY2IlLP1dUVe/fuhY+Pz7svpB68ACatAxxtAE8PwK4MEJeUdZM6hZtkWlhYYN++fXB1ddX7WBcsWICaNWuiTp06MDY2FpevXLlS730TUdHk5+eHdevWAQC8vLwQEBBQoPWlpaXh4sWLOHnyJK5fv467d+8iMjISmZmZKFu2LDw8PNCuXTuMHj0aNWrU0MEWEBERERHAmcREKsXHx2PDhg3vFpjVVR0gzsnIEnBeIZlRvH79esTHx+tppMCQIUNgbm4OAEhPT8e8efNU1k1ISMAff/whlocNGyZJV0FEha9t27Y4ceKE8k0ko94CB/4FNp3L+qkQIHZ0dMTJkycL5SaZANC3b1/Ur19fEiAmItKFlJQUjBkzBhUqVEDHjh0xZ84cHDlyBOHh4UhKSkJqaipevnyJs2fP4n//+x88PDwwbtw4vH371tBDJyIiIioRGCQmUmHDhg1ISMgRkHH4Mu8AcTYjS8DhC7GYkJCAjRs36naAOVSuXBnjx48Xy4sWLcLOnTuV6qWnp2P06NFi+gtLS0t8//33ehsXEWmubdu2CAwMxMSJE6U3s8uFtbU1Jk6ciMDAwEILEBMR6VNCQgLWrFmD2NhYyXJXV1e0bt0a3t7ecHd3F5cLgoCVK1fC29sbcXFxhTtYIiIiohKIQWIiFbZv3/6uYFwOsOmp3Qqse0puZrdt2zaVVc+ePQsLCwutHmFhYZJ1zJw5EzVr1gQAZGZmYuDAgRgxYgR27tyJ06dPY+nSpWjevDl27Nghtpk/fz6cnZ212y4i0htXV1csXrwYz58/x+LFi+Hl5YVKlSrB3t4elSpVgpeXFxYvXowXL15g8eLFhZJigoiosLVq1QrLly/Hs2fPEBYWhkuXLuH06dMIDQ1FYGAg2rZtK9YNDAzERx99ZMDREhEREZUMvMacSIXnz5+/K5TpAMjMtFuBkTlQpj3wdhcA4MWLFyqrCoKA1NRUrVYvCIKkXLZsWRw4cAA+Pj54+vQp5HI5Nm7cqHIG85QpU/DJJ59o1ScRFQ5bW1tMnDgREydOxN69e8Xlffr0MeCoiIj0RyaToXPnzpg9ezY8PT1V1mvSpAlOnz6Nbt264fTp0wCyvoifOnUqb6JJREREVACcSUykgiTHnXHZ/K3E6F07feYkzubh4YHbt29j7NixsLS0zLVO3bp1sX//fvj7++t9PERERESacHR0xIkTJ9QGiLOZmppi6dKlkmW7du3S19CIiIiISgXOJCZSwcbGBq9evcoqZMbkbyXyd+1sbW0lT61duxZr167N5+hUs7e3x8qVK7FgwQKcOnUKT58+RWJiIpydndGgQQPOsiEiIqJiz8PDAx4eHnjw4AEA4P79+wYeEREREVHxxiAxkQouLi549OhRViHpLCCkaZdyQp6a1e7/VapUSccjVM/GxoaXphMREVGJ5eDgIP5eGFdsEREREZVkTDdBpIKvr++7QuYb4O0B7VaQcADIjBSLAwcO1NHIiIiIiCjnTXzLly9vwJEQERERFX8MEhOpMGLECFhbW79bEL0QkCdr1lienFX//1lbW2P48OE6HR8RERFRaXX58mVERESI5datWxtwNERERETFH4PERCrY2tpixIgR7xak3QUixuUdKJYnZ9VLuycuGjlypFJOYiIiIiLKn59++kn83cLCAv369TPgaIiIiIiKP+YkJlJj6tSp2LZtG6KiorIWJB4BwrsBDl8A1j0BI/N3leWpQMJ+IPqPrIDy/3N0dMSUKVMKeeREVJzFx8djw4YN2L59Ox48eIDk5GRYWlpiwYIF8PX1xYgRI/jFExGVWhs3bsSRI0fE8sSJE+Hs7GzAEREREREVfwwSE6nh6uqKvXv3wsfHBykpKVkL0+4CL8cDxuWAMu0Bo7KAPCbrJnU5chADWTNb9u3bB1dXVwOMnoiKm/DwcPj7+2PDhg1ISEiQPBcbG4uIiAicOXMGU6dOxYgRIzB16lSeX4ioVAkKCsKECRPEco0aNSSziomIiIgof5hugigPbdu2xYkTJ+Do6Ch9IvMN8HYXELcq66dCgNjR0REnT55EmzZtCnG0RFRcXbhwAU2aNMGSJUuUAsSKEhISsGTJEjRt2hQXL14spBESERnWq1ev8MEHHyAxMREAYG5ujs2bN0vvIUFERERE+cIgMZEG2rZti8DAQEycODHPDyLW1taYOHEiAgMDGSAmIo1cuHABPj4+iI6Olj5hXA6w6Q/Yf5j107ic5OmoqCh07tyZgWIiKvHi4uLQvXt3PH78GABgbGyMTZs2oUWLFgYeGREREVHJwHQTRBpydXXF4sWLMXfuXGzcuBHbtm3Dw4cPkZSUhDJlyqBmzZoYOHAgRowYARsbG0MPl4iKifDwcPTu3ftdShsAMKsLOHwJ2PQEZGbvlstTgYQDQPQiMfd5SkoKevfujcDAQKaeICKNFafc54mJiejRowdu3rwJAJDJZFi1ahX69+9v2IERERERlSAMEhNpydbWFhMnTsTEiROxd+9ecXmfPn0MOCoiKq78/f2lM4itugPOKwEjC+XKRuaAbX/AugcQMS7rZprImlE8b948LF68uJBGTUTFVXHLfZ6SkoI+ffpIrpj466+/MGrUKIONiYiIiKgkYroJIiIiA8meyScyq6s6QJyTkSXgvCKr/v9bv3494uPj9TRSIioJilvu8/T0dAwYMAAnT54Ul/3yyy+YOHGiQcZDREREVJIxSExERGQgSjP5HL7MO0CczcgScPhCLCYkJGDjxo26HSARlRgqc5872gA9mwPDO2T9dJSmzDJU7vPMzEwMGTIEBw8eFJfNnDkT3377baGOg4iIiKi0YLoJIiIiA9m+ffu7gnG5rBzE2rDumdUu8w0AYNu2bSpn2J09exYWFhoGoP9fSEgI3NzcxPKGDRswbtw4pXppaWmSOlu3blWqc+zYMXTo0EGr/olIN3LNfe5RCZjQFejSCDDL8ZEgLR04dgtYdhx48AJA4ec+l8vl8PPzw86dO8VlkydPxowZM/TeNxEREVFpxZnEREREBvL8+fN3hTIdpDep04SROVCmvVh88eKFyqqCICA1NVWrhyAIknVkZmbmWU8ul+daRy6Xa7dtRKQzSrnPOzUAdnwDvN9MGiAGADPTrBnF2ydl1ft/2bnPC8PHH38suTLi888/L7S+iYiIiEorBomJiIgM5O3bt+8KxmXztxKjd+2Yk5iIFCnlPveoBCwcDZibqm9oYQYs8Muq//8KI/f5119/jeXLl4vljz76CAsXLtRrn0RERETEIDEREZHB2NjkyP2ZGZO/lcjftbO1tZU8tXbtWgiCkO+Hu7u7ZH1+fn75Xpe3t3f+to+ICkQp9/mErnkHiLNZmAHju4hFfec+//HHH7FgwQKx7Ofnh6VLl0Imk+mtTyIiIiLKwpzEREREBuLi4oJHjx5lFZLOAkKadikn5KlZ7f5fpUqV1FQmotJIkvvc0SYrB7E2ujbKaheVdeWDvnKfX716FbNnzxaXGxkZ4fnz53jvvfc0Wk+FChWwbt06rfomIiIioncYJCYiIjIQX19fnDlzJquQ+QZ4ewCw7af5ChIOAJmRYnHgwIE6HiERFXeS3OeetZRzEOfFzBTw9AAO/AtAs9zn2sjOaZ6UlCRZLpfLcfz4cY3Xk/Mmm0RERESkPaabICIiMpARI0bA2tr63YLohYA8WbPG8uSs+v/P2toaw4cP1+n4iKj4k+Q+ty+Tv5XYvWvH3OdEREREJRODxERERAZia2uLESNGvFuQdheIGJd3oFienFUv7Z64aOTIkUo5iYmIJLnPY5NUV1Qn7l07feU+9/b2LtB6njx5kr9tIyIiIiIADBITEREZ1NSpU+Ho6PhuQeIRILwbEL8zK+dwTvJUIH5H1vOJR8TFjo6OmDJlSiGNmIiKExcXl3eFSyFAWoZ2K0hLBy6GiEXmPiciIiIqmRgkJiIiMiBXV1fs3btXerOntLvAy/FAaGMg4iPg1ZSsn6GNgJcTsp7/fxYWFti3bx9cXV0Lf/BEVOT5+vq+K0S9BY7f0m4Fx24B0QliUTH3uZ+fH2QyGWQyGby9vQsw0ixpaWkICAjA9OnT8d5778HNzQ1WVlawsLCAs7MzvLy88P3337+76ScRERER6QSDxERERAbWtm1bnDhxQjqjGPj/m9ntAuJWZf3McZM6IGsG8cmTJ9GmTZtCHC0RFSdKuc+XHgNS0jRrnJIGLDsmFvWZ+zwlJQVjxoxBhQoV0LFjR8yZMwdHjhxBeHg4kpKSkJqaipcvX+Ls2bP43//+Bw8PD4wbN06ac5mIiIiI8o1BYiIioiKgbdu2CAwMxMSJE6UBnVxYW1tj4sSJCAwMZICYiNRSyn3+4AXw1dq8A8UpaVn1HkSIi/SZ+zwhIQFr1qxBbGysZLmrqytat24Nb29vMX8xAAiCgJUrV8Lb2xtxcXF6GRMRERFRacIgMRERURHh6uqKxYsX4/nz51i8eDG8vLxQqVIl2Nvbo1KlSvDy8sLixYvx4sULLF68mCkmiEgjSrnPTwUBvr8BB65n5RzOKS0d2H896/lTQeLiwsx93qpVKyxfvhzPnj1DWFgYLl26hNOnTyM0NBSBgYFo27atWDcwMBAfffRRoYyLiIiIqCQzMfQAiIiISMrW1hYTJ07ExIkTsXfvXnF5nz59DDgqIiqusnOf+/j4ICUlJWvhgxfApHWAow3g6QHYlQHikrJuUpcjBzFQOLnPZTIZOnfujNmzZ8PT01NlvSZNmuD06dPo1q0bTp8+DQDYtm0bpk6diiZNmuhtfEREREQlHWcSExERERGVcCpzn0e9BQ78C2w6l/VTIUBcWLnPHR0dceLECbUB4mympqZYunSpZNmuXbv0NTQiIiKiUoFBYiIiIiKiUqAk5T738PCAh4eHWL5//74BR0NERERU/DHdBBERERFRKZGd+3zu3LnYuHEjtm3bhocPHyIpKQllypRBzZo1MXDgQIwYMQI2NjaGHq5aDg4O4u/x8fEGHAkRERFR8ccgMRERERFRKVMScp+HhYWJv5cvX96AIyEiIiIq/phugoiIiIiIipXLly8jIiJCLLdu3dqAoyEiIiIq/hgkJiIiIiKiYuWnn34Sf7ewsEC/fv0MOBoi0hc/Pz/IZDLIZDJ4e3sXeH3379/HqlWr8Omnn6Jjx46oVq0abGxsYGJiAjs7OzHlztq1a5GUlFTwDSAiKkaYboKIiIiIiIqNjRs34siRI2J54sSJcHZ2NuCIiKg4OHjwIHr27Kny+fj4eMTHx+PRo0fYvn07pkyZgj/++AODBg0qxFESERkOg8RERERERFQsBAUFYcKECWK5Ro0aklnFRESqCIIgKZuamqJatWooV64czM3NER0djXv37iElJQUA8Pr1awwePBgvX77EF198YYghExEVKgaJiYiIiIioyHv16hU++OADJCYmAgDMzc2xefNmWFtbG3hkRFQcGBkZoXXr1ujbty+8vb3RtGlTmJhIQyIpKSnYvHkzpkyZgsjISADApEmT0KFDBzRp0sQQwyYiKjQMEhMRERERUZEWFxeH7t274/HjxwAAY2NjbNq0CS1atDDwyIiouOjRowd69Oihto6FhQXGjBmDli1bokWLFkhJSUFmZiYWLlyIdevWFdJIiYgMgzeuIyIiIiKiIisxMRE9evTAzZs3AQAymQyrVq1C//79DTswIiqx6tevj6FDh4rlgIAAww2GiKiQcCYxEREREVEpEx8fjw0bNmD79u148OABkpOTYWlpiQULFsDX1xcjRoyAra2toYeJlJQU9OnTBxcvXhSX/fXXXxg1apQBR0VEpUGzZs2wevVqAMDLly8NPBoiIv1jkJiIiIiIqJQIDw+Hv78/NmzYgISEBMlzsbGxiIiIwJkzZzB16lSMGDECU6dOhaurq0HGmp6ejgEDBuDkyZPisl9++QUTJ040yHiIqHTJyMgQfy8KX5oREekb000QEREREZUCFy5cQJMmTbBkyRKlALGihIQELFmyBE2bNpXM4i0smZmZGDJkCA4ePCgumzlzJr799ttCHwsRlU5nzpwRf/f09DTgSIiICgeDxEREREREJdyFCxfg4+OD6Oho6RPG5QCb/oD9h1k/jctJno6KikLnzp0LNVAsl8vh5+eHnTt3issmT56MGTNmFNoYiKh0O3DgAHbv3i2Wv/76awOOhoiocDDdBBERERFRCRYeHo7evXsjJSXl3UKzuoDDl4BNT0Bm9m65PBVIOABELwLS7gLIygvcu3dvBAYGFkrqiY8//hgbN24Uy59//jnmzZun936JqPSSy+WIi4tDUFAQNm3ahFWrVkEQBABZVzF4e3sbdoBERIWAM4mJiIiIiEowf39/6Qxiq+6A6zHAtp80QAwARuaAbX/A9WhWvf8XFRVVKIHar7/+GsuXLxfLH330ERYuXKj3fomo9BkwYABkMhlkMhmMjY3h4OAALy8vLF++HJmZmahduzZ27drFqxiIqNRgkJiIiIiIqISKj4/Hhg0b3i0wqws4rwSMLNQ3NLL8P/buPF6rut4X+Odh3EwbFKdAsGODQ5ZJZAmlnMAcMk1TrBRD71Gv1GmwQXM6pg2aOWQapqYo2im1AYfrkJYj3qtFph4VhxxhowjKZtqMz/1j5wNbmfa82ev9fr32y/Vb67d+v+96eFzgh+VvJe+6rL7/v1x99dWpra1tpUqT0047Leeff36lPX78+FxyySUplUqtNifAmgwdOjRf+9rXstdee7V3KQBtxnITAADQSU2ePLnhS+o2/cb6A+K3dOmVbPr1ZNaxSepfZnfNNddkwoQJa+x+7733pqpqA8f+l+nTp2ebbbbJQw89lDPPPHPV1F26ZMaMGdlnn302aJwtt9wyV111VaPmBoptl112qdwfly9fnrlz5+bJJ59MXV1dXnrppUyYMCFnnnlmJk+enNGjR7dztQCtT0gMAACd1PXXX7+q0XXz+jWIG6PvfvXnrZidJLnuuuvWGhKXy+UsWbKkUcO/tebnokWLGuxfuXJl/vSnP23wONtss02j5gU4+eST37Fv6dKl+cMf/pATTzwxL7zwQmpqavKZz3wmt99+e/bYY492qBKg7VhuAgAAOqkZM2asavTe/Z1rEK9Pl55J709WmjNnzmyhyoDOrLa2NhdffHFGjRqV4447LuPHj89xxx2XUaNG5eKLL27VpWuao0ePHjn00EMzbdq07LTTTkmSJUuW5Mgjj8zy5cvbuTqA1iUkBgCATmr+/PmrGl03adogXVad9/ZgZ9KkSSmXy03+efe7350kGTVqVLPGeeGFF5p2bUCLemuZhsGDB+erX/1q7rnnntTU1OTNN99MTU1N7rnnnnz1q1/N4MGDM2HChLz00kvtXfIabbLJJg1eovn888/n1ltvbceKAFqfkBgAADqpfv36rWqseKNpg6xcdV51dXUzKwI6qwceeCC77LJLJk6c2HAt9DVYsGBBJk6cmGHDhmXq1KltVGHj7Lbbbtl6660r7QcffLAdqwFofUJiAADopAYPHryqsejepLy0cQOsXFJ/3r8MGjSohSoDOpMHHnggY8aMydy5cxseGNgv2W94cvju9f8c2K/B4Tlz5mT06NEdNigeMmRIZfv1119vx0oAWp8X1wEAQCd1yCGH5J577qlvrJidzL85qT5owwdYcHOyYlUwMnbs2BauENjYvfTSS9l///1TV1e3auf7ByX/+9PJnjsnPVaLHZYuS+74R/LLPyVP169xXldXl/333z/Tpk3L0KFD27j6dZs3b15le8CAAe1XCEAb8CQxAAB0UuPGjUvfvn1X7Zh7QbJy8YadvHJxff9/6du3bw4//PAWrQ/Y+J111lkNnyD+1AeTG76dfOYjDQPiJOnRvf6J4uu/Vd/vX+bMmZOzzz67jSreMLNnz85TTz1Vab/nPe9px2oAWp+QGAAAOqnq6uqMGzdu1Y6lTyQ1R68/KF65uL7f0icru4444ghrEgMN1NbWZvLkyat2vH9QcsGRSc/u6z6xqkdy/vj6/v9y9dVXv+PlmO3p9NNPz8qVKyvtfffdtx2rAWh9QmIAAOjETjzxxAwcOHDVjoW3JS/tldT+rn7N4dWtXJLU3lB/fOFtld0DBw7MCSec0EYVAxuLyZMnN3xJ3f/+9PoD4rdU9UiO3bPSXLBgQa655poWrrBebW1tDjnkkPz9739fb9+6urp897vfzS9+8YvKvsMOO6zB+sQAnZE1iQEAoBMbOnRopkyZkjFjxqxaM3TpE8msY5Oumye9P5l02SRZ+Ub9S+pWNHw5U1VVVW688cYOt1Yo0P6uv/76VY2B/erXIG6MT+9cf96c+UmS6667LhMmTFhj13vvvTdVVVWNGn769OnZZpttsnLlytxwww254YYbst1222XPPffMhz/84QwaNCjV1dVZvHhxampq8tBDD+WGG27IrFmzKmO85z3vybnnntu46wLYCAmJAQCgkxs5cmTuvPPOHHDAAZkzZ86qAytmJ/N/v9bzBg4cmBtvvDEjRoxogyqBjc2MGTNWNXbb7p1rEK9Pj+7Jbu9Pbv5bkmTmzJlr7Voul7NkyZK1Hl/bOW83ffr0TJ8+fYPO32233fLb3/42W265ZaPmBTYe48ePz1VXXZUk2WOPPXL33Xe32lzLly/PRz7ykTz66KOVfa09Z2NYbgIAAApg5MiRmTZtWiZMmNDwZXZr0Ldv30yYMCHTpk0TEANrNX/+/FWNAb2bNkj/Vee11prEffr0yQ9/+MOMHDkyPXr0WG//kSNH5qqrrsr9999vmQmgxZxzzjkNAuKOxpPEAABQEEOHDs3FF1+cH//4x7nmmmty3XXX5ZlnnsmiRYvSu3fvvO9978vYsWMzbty49OvXr73LBTq4fv365dVXX61vvLmoaYPMW3Xe21+OOWnSpEyaNKmJ1a3SvXv3nHTSSTnppJOyZMmSPPbYY3nmmWcya9asLFy4MD179kz//v2z7bbbZtiwYdl0002bPSfA6p599tmcccYZ7V3GOgmJAQCgYKqrqzNhwoRMmDAhU6ZMqew/4IAD2rEqYGMzePDgPPvss/WNB6cnS5c3bsmJpcuSqauWfhg0aFALV/hOPXv2zPDhwzN8+PBWnwvgLcccc0zq6upSVVWVj3zkI3nggQfau6R3sNwEAAAA0GiHHHLIqsac+cmf/tG4Ae74RzJ3QaU5duzYFqoMoOP41a9+lb/85S9JkpNOOinvfe9727miNRMSAwAAAI02bty4hmucX3JHUrd0w06uW5r88o5Ks2/fvjn88MNbuEKA9vXqq6/mO9/5TpJk++23zwknnNDOFa2dkBgAAABotOrq6owbN27VjqdnJt+ctP6guG5pfb+nayq7jjjiiHesSQywsfvP//zPvPHGG0mSSy65ZINentlehMQAAABAk5x44okZOHDgqh1/fiw55Nzk5r/Wrzm8uqXLkpv+Wn/8z49Vdg8cOLBDP10H0BQ33XRTrr/++iTJ+PHjs8cee7RzRevmxXUAAABAkwwdOjRTpkzJmDFjUldXV7/z6ZnJt65KBvZLdnt/0r93Mm9R/UvqVluDOEmqqqpy4403ZujQoe1QPUDrmD9/fiZMmJCk/i/CzjnnnHauaP2ExAAAAECTjRw5MnfeeWcOOOCAzJkzZ9WBOfOTm/+21vMGDhyYG2+8MSNGjGiDKgHazve+97288sorSZJzzjknm222WTtXtH6WmwAAAACaZeTIkZk2bVomTJjQ8GV2a9C3b99MmDAh06ZNExADnc6DDz6YiRMnJkl23333jB8/vn0L2kCeJAYAAACabejQobn44ovz4x//ONdcc02uu+66PPPMM1m0aFF69+6d973vfRk7dmzGjRuXfv36tXe5AC1u2bJlOfroo7Ny5cr06NEjl1xySUqlUnuXtUGExAAAAECLqa6uzoQJEzJhwoRMmTKlsv+AAw5o1Djjx4/PVVddlSTZY489cvfddzerrqeeeioPPPBA/v73v+d//ud/8uKLL2b27NlZvHhx+vTpky222CK77LJL9t1334wdOza9e/du1nxA8fz4xz/O//zP/yRJvvvd72aHHXZo54o2nJAYAAAA6NRuueWW7Lfffms9Xltbm9ra2jz77LO5/vrrc8IJJ+TCCy/MoYce2oZVAhuzp556Kj/60Y+SJO95z3ty8sknt3NFjSMkBgAAADq1crncoN29e/dsu+222XzzzdOzZ8/MnTs3Tz75ZOrq6pIkr732Wr7whS9k1qxZ+frXv94eJQMbkXK5nGOOOSZLlixJkkycODFVVVXtXFXjCIkBAACATq1Lly75+Mc/ngMPPDCjRo3KsGHD0q1bw0ikrq4uv/71r3PCCSfk9ddfT5J861vfyu67755ddtmlPcoG1qK2tjaTJ0/O9ddfn6effjqLFy9Or169cv755+eQQw7JuHHjUl1d3Wb1/PKXv8x9992XJPniF7+YPffcs83mbilCYgAAAKBT23fffbPvvvuus09VVVWOOuqo7LrrrvnoRz+aurq6rFixIhdccEFlbWSgfb300ks566yzMnny5CxYsKDBsTfffDM1NTW55557cuKJJ2bcuHE58cQTM3To0Fatqa6uLieeeGKSZMCAATn//PNbdb7W0qW9CwAAAADoKHbaaad86UtfqrSb+8I8oGU88MAD2WWXXTJx4sR3BMRvt2DBgkycODHDhg3L1KlTW7Wuurq6zJs3L0l9UL3VVlulVCqt9Wf1v3S65557GhybNGlSq9a6LkJiAAAAgNV85CMfqWzPmjWrHSsBkvqAeMyYMZk7d27DAwP7JfsNTw7fvf6fA/s1ODxnzpyMHj261YPizsByEwAAAACrWb58eWW7Ldc1Bd7ppZdeyv777195sWSS5P2Dkv/96WTPnZMeq8WbS5cld/wj+eWfkqdnJql/0nf//ffPtGnTWmXpiS5dumTgwIEb3H/BggWVF9x169Yt/fv3rxxrz5fdCYkBAAAAVnPPPfdUtnfbbbd2rAQ466yzGj5B/KkPJhccmfTs/s7OPbrXP1E85kPJNyclf34sSf0TxWeffXYuvvjiFq+vurq68rLLDTF+/PjKkhMjR47sMEvaWG4CAAAA4F9uvvnm/OEPf6i0jz/++HasBoqttrY2kydPXrXj/YPWHhCvrqpHcv74+v7/cvXVV6e2trZ1Cu0EhMQAAABAYa1cuTJvvPFG7r333hx77LH53Oc+l3K5nCQ5/fTTM2rUqPYtEAps8uTJDV9S978/vf6A+C1VPZJj96w0FyxYkGuuuaaFK+w8LDcBAAAAFMrBBx+c3/3ud2s9vv322+dHP/pRDjzwwDasCni766+/flVjYL/6NYgb49M71583Z36S5LrrrsuECRPW2PXee+9t9JrA06dPzzbbbNO4mjooITEAAADAvwwdOjRf+9rXstdee7V3KVB4M2bMWNXYbbuGL6nbED26J7u9P7n5b0mSmTNnrrVruVyuvFBuQ731fx10BkJiAAAAoFB22WWXyv/Cvnz58sydOzdPPvlk6urq8tJLL2XChAk588wzM3ny5IwePbqdq4Ximj9//qrGgN5NG6T/qvOsSbx21iQGAAAACuXkk0/Obbfdlttuuy133nlnpk2blnnz5uU3v/lN3v3udydJampq8pnPfCb33HNP+xYLBdavX79VjTcXNW2QeavOq66ubnBo0qRJKZfLTf55637RGKvPeffddzftmlqBkBgAAABoMbW1tbn44oszatSoHHfccRk/fnyOO+64jBo1KhdffHGHfZKvR48eOfTQQzNt2rTstNNOSZIlS5bkyCOPzPLly9u5OiimwYMHr2o8OD1Z2sh/F5cuS6ZOrzQHDRrUQpV1PkJiAAAAoNneWqZh8ODB+epXv5p77rknNTU1efPNN1NTU5N77rknX/3qVzN48OBMmDAhL730UnuXvEabbLJJLr300kr7+eefz6233tqOFUFxHXLIIasac+Ynf/pH4wa44x/J3AWV5tixY1uoss5HSAwAAAA0ywMPPJBddtklEydOrKz1uzYLFizIxIkTM2zYsEydOrWNKmyc3XbbLVtvvXWl/eCDD7ZjNVBc48aNS9++fVftuOSOpG7php1ctzT55R2VZt++fXP44Ye3cIWdh5AYAAAAaLIHHnggY8aMydy5cxse6Lp50u/zyYD/qP9n180bHJ4zZ05Gjx7dYYPiIUOGVLZff/31dqwEiqu6ujrjxo1btePpmck3J60/KK5bWt/v6ZrKriOOOOIdaxKzipAYAAAAaJKXXnop+++/f+rq6lbt7LFjstWlybb/SN71y2SLs+r/+W+PJFv9sv74v9TV1WX//ffvkEtPzJs3r7I9YMCA9isECu7EE0/MwIEDV+3482PJIecmN/+1fs3h1S1dltz01/rjf36ssnvgwIE54YQT2qjijZOQGAAAAGiSs846q+ETxH32TobekVQflJR6NOzcpWdS/flk6O31/f5lzpw5Ofvss9uo4g0ze/bsPPXUU5X2e97znnasBopt6NChmTJlSqqqqlbtfHpm8q2rklH/lXxrUnLGdfX/3OO05NtX1R//l6qqqtx4440ZOnToO8YeP358SqVSSqVSRo0a1arXsXz58uy8886V+dpizsYQEgMAAACNVltbm8mTJ6/a0WPH5F2XJ12q1n5SknTplbzrsgZPFF999dWpra1tpUob7/TTT8/KlSsr7X333bcdqwFGjhyZO++8s+ETxUn9y+xu/lty7X31/5zbcE30gQMH5q677sqIESPasNo1O+ecc/Loo4+2dxlrJSQGAAAAGm3y5MkNX1K36TfWHxC/pUuvZNOvV5oLFizINddc07IF/kttbW0OOeSQ/P3vf19v37q6unz3u9/NL37xi8q+ww47rMH6xED7GDlyZKZNm5YJEyY0fJndGvTt2zcTJkzItGnTOkRA/Oyzz+aMM85o7zLWqVt7FwAAAABsfK6//vpVja6bJ/32a9wAfferP2/F7CTJddddlwkTJqyx67333tvwfzXfANOnT88222yTlStX5oYbbsgNN9yQ7bbbLnvuuWc+/OEPZ9CgQamurs7ixYtTU1OThx56KDfccENmzZpVGeM973lPzj333MZdF9Bqhg4dmosvvjg//vGPc8011+S6667LM888k0WLFqV379553/vel7Fjx2bcuHHp169fe5dbccwxx6Suri5VVVX5yEc+kgceeKC9S3oHITEAAADQaDNmzFjV6L37O9cgXp8uPZPen0zm/z5JMnPmzLV2LZfLWbJkSaOGL5fL79g3ffr0TJ8+fYPO32233fLb3/42W265ZaPmBVpfdXV1JkyYkAkTJmTKlCmV/QcccEA7VrVmv/rVr/KXv/wlSXLSSSflueee65AhseUmAAAAgEabP3/+qkbXTZo2SJdV57XWmsR9+vTJD3/4w4wcOTI9eqw/yB45cmSuuuqq3H///ZaZAJrl1VdfzXe+850kyfbbb58TTjihnStaO08SAwAAAI3Wr1+/vPrqq/WNFW80bZCVq86rrq5ucGjSpEmZNGlSE6tbpXv37jnppJNy0kknZcmSJXnsscfyzDPPZNasWVm4cGF69uyZ/v37Z9ttt82wYcOy6aabNntOgCT5z//8z7zxRv197pJLLtmgv6hqL0JiAAAAoNEGDx6cZ599tr6x6N6kvLRxS06sXFJ/3r8MGjSohSt8p549e2b48OEZPnx4q88FFNtNN91UWbt9/Pjx2WOPPdq5onWz3AQAAADQaIcccsiqxorZyfybGzfAgpuTFa9XmmPHjm2hygDa1/z58ysv4hw4cGDOOeecdq5o/YTEAAAAQKONGzcuffv2XbVj7gXJysUbdvLKxfX9/6Vv3745/PDDW7Q+gPbyve99L6+88kqS5Jxzzslmm23WzhWtn5AYAAAAaLTq6uqMGzdu1Y6lTyQ1R68/KF65uL7f0icru4444oh3rEkMsDF68MEHM3HixCTJ7rvvnvHjx7dvQRtISAwAAAA0yYknnpiBAweu2rHwtuSlvZLa39WvOby6lUuS2hvqjy+8rbJ74MCBOeGEE9qoYoDWs2zZshx99NFZuXJlevTokUsuuSSlUqm9y9ogXlwHAAAANMnQoUMzZcqUjBkzJnV1dfU7lz6RzDo26bp50vuTSZdNkpVv1L+kbrU1iJOkqqoqN954Y4YOHdoO1QO0rB//+Mf5n//5nyTJd7/73eywww7tXNGG8yQxAAAA0GQjR47MnXfe2fCJ4uRfL7P7fTLvV/X/fFtAPHDgwNx1110ZMWJEG1YL0Dqeeuqp/OhHP0qSvOc978nJJ5/czhU1jpAYAAAAaJaRI0dm2rRpmTBhQsOX2a1B3759M2HChEybNk1ADHQK5XI5xxxzTJYsqV9mZ+LEiamqqmrnqhrHchMAAABAsw0dOjQXX3xxfvzjH+eaa67Jddddl2eeeSaLFi1K79698773vS9jx47NuHHj0q9fv/YuF6DF/PKXv8x9992XJPniF7+YPffcs50rajwhMQAAANBiqqurM2HChEyYMCFTpkyp7D/ggAPasSqgM6mtrc3kyZNz/fXX5+mnn87ixYvTq1evnH/++TnkkEMybty4VFdXt0ktdXV1OfHEE5MkAwYMyPnnn98m87Y0ITEAAAAA0OG99NJLOeusszJ58uQsWLCgwbE333wzNTU1ueeee3LiiSdm3LhxOfHEE1v9xZh1dXWZN29epYatttpqg8+95557UiqVKu0rr7wy48ePb+kSN4g1iQEAAACADu2BBx7ILrvskokTJ74jIH67BQsWZOLEiRk2bFimTp3aRhVu3DxJDAAAAAB0WA888EDGjBmTurq6hge6bp703j3pukmy4o1k0b3JitmVw3PmzMno0aNz1113tdqLMrt06ZKBAwducP8FCxZUXnDXrVu39O/fv3KsPV92JyQGAAAAADqkl156Kfvvv3/DgLjHjsmm30j67ZeUeqzav3JJsuDmZO7PkqVPJKlfDmL//ffPtGnTWmXpierq6rz++usb3H/8+PG56qqrkiQjR47M3Xff3eI1NYXlJgAAAACADumss87K3LlzV+3os3cy9I6k+qCGAXGSdOmZVH8+GXp7fb9/mTNnTs4+++w2qnjjJCQGAAAAADqc2traTJ48edWOHjsm77o86bKeZRm69EredVl9/3+5+uqrU1tb20qVbvyExAAAAABAhzN58uSGL6nb9BvrD4jf0qVXsunXK80FCxbkmmuuWWv3e++9N1VVVY36efHFF5t4ZR2PkBgAAAAA6HCuv/76VY2um9evQdwYfferP+9frrvuurV2LZfLWbJkSaN+yuVyYy+pwxISAwAAAAAdzowZM1Y1eu/+zjWI16dLz6T3JyvNmTNntlBlnY+QGAAAAADocObPn7+q0XWTpg3SZdV5b1+TeNKkSSmXy03+efe7393oclaf8+67727aNbUCITEAAAAA0OH069dvVWPFG00bZOWq86qrq5tZUeclJAYAAAAAOpzBgwevaiy6NykvbdwAK5fUn/cvgwYNaqHKOh8hMQAAAADQ4RxyyCGrGitmJ/NvbtwAC25OVrxeaY4dO7aFKut8hMQAAAAAQIczbty49O3bd9WOuRckKxdv2MkrF9f3/5e+ffvm8MMPb9H6OhMhMQAAAADQ4VRXV2fcuHGrdix9Iqk5ev1B8crF9f2WPlnZdcQRR1iTeB2ExAAAAABAh3TiiSdm4MCBq3YsvC15aa+k9nf1aw6vbuWSpPaG+uMLb6vsHjhwYE444YQ2qnjj1K29CwAAAAAAWJOhQ4dmypQpGTNmTOrq6up3Ln0imXVs0nXzpPcnky6bJCvfqH9J3WprECdJVVVVbrzxxgwdOrQdqt94eJIYAAAAAOiwRo4cmTvvvLPhE8XJv15m9/tk3q/q//m2gHjgwIG56667MmLEiDasduMkJAYAAAAAOrSRI0dm2rRpmTBhQsOX2a1B3759M2HChEybNk1AvIEsNwEAAAAAdHhDhw7NxRdfnB//+Me55pprct111+WZZ57JokWL0rt377zvfe/L2LFjM27cuPTr16+9y92oCIkBAAAAgI1GdXV1JkyYkAkTJmTKlCmV/QcccEA7VrVxs9wEAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEjcTFOnTs0xxxyTHXfcMdXV1amurs6OO+6YY445JlOnTm3VuWtra/OLX/wiBxxwQN797nenb9++6dmzZ7bYYouMGDEi3/72t/P444+3ag0AAAAAwMatW3sXsLFauHBhvva1r+WKK654x7Enn3wyTz75ZC677LIcddRRufDCC9OnT58Wnf+///u/89WvfjVz5859x7HZs2dn9uzZefDBB3Puuedm/PjxufDCC9OvX78WrQEAAAAA2PgJiZtgxYoVOeigg3LHHXdU9vXq1Ssf+MAH0q1btzzxxBOpra1NklxxxRWZMWNGbrnllnTt2rVF5r/kkkty3HHHNdg3cODAbL/99unRo0deeeWVPPPMM5VjkyZNyjPPPJM777wzVVVVLVIDAAAAANA5WG6iCU499dQGAfHRRx+dV155JQ8//HAefPDBzJw5M6ecckrl+O23357TTjutReZ+7rnn8o1vfKPS3mqrrfKHP/whs2fPzv33358///nPefrppzN9+vTsueeelX4PPPBAzjrrrBapAQAAAADoPITEjTRjxoycf/75lfa4ceNy6aWXZtNNN63s69OnT84888wGQfH555+fmTNnNnv+yy67LEuWLEmSdOvWLbfddls+97nPpVQqNej3/ve/PzfffHM++tGPVvZdcsklWblyZbNrAAAAAAA6DyFxI1144YWpq6tLkvTu3TsXXHDBWvueeuqpGTJkSJJk8eLF+dnPftbs+e+7777K9t57752dd955rX179OiR7373u5X2q6++mueee67ZNQAAAAAAnYeQuJF+//vfV7bHjh3b4Anit+vRo0eOPPLISvsPf/hDs+efPXt2ZXunnXZab/+391n9fAAAAAAAIXEjTJ8+Pc8++2ylvffee6/3nH322aey/cwzz+Tpp59uVg19+/atbC9dunS9/d9amuItm2yySbPmBwAAAAA6FyFxI/zjH/9o0N5tt93We86wYcPSo0ePtY7RWLvuumtl+957711v/3vuuaeyvdlmm2W77bZr1vwAAAAAQOciJG6EJ598srLdo0ePynrD6/L2fquP0RTHHntsunSp/2X761//mquuumqtfV966aX8+Mc/rrSPP/74yrkAAAAAAImQuFFefPHFyvbWW2+dUqm0QecNHTq0sv3CCy80q4ZddtklP/nJTypzH3XUUTnuuOPy8MMPZ+HChVm2bFmef/75/PznP89HP/rRzJo1K0nypS99Kd/5zneaNTcAAAAA0Pl0a+8CNia1tbWV7f79+2/wedXV1ZXt+fPnN7uOb33rWxkyZEi++93v5sUXX8wll1ySSy65ZI19hw4dmm984xv55je/2ex533LeeeflvPPO26C+NTU1SerXRr799ttbrIaOqLNfH9D+3GeA1uY+A7Qm9xigtXXW+8zb3znWGoTEjbBw4cLKdlVV1Qaf16tXrzWO0Rxjx47NDjvskGOPPTYPPvjgGvv069cvxxxzTMaNG9cic76ltrY2M2bMaNQ55XI5dXV1LVpHR9PZrw9of+4zQGtznwFak3sM0No6632mXC63+hxC4kZYtmxZZbtbtw3/6Fbvu3Tp0mbXMXfu3HzlK1/Jb3/728qXpH///tlxxx1TVVWVmpqaTJ8+PfPnz88pp5ySs846KxdeeGGOPPLIZs+d1D8ZPXjw4A3qW1NTk5UrV6ZUKjUqWN9YrH7z6YzXB7Q/9xmgtbnPAK3JPQZobUW4z2zokrfNISRuhN69e1e2G/M3E6v37dOnT7NqeOONN7LHHnvk8ccfT5IMHjw4F154YT73uc81eCndK6+8klNPPTWTJk3KggULctRRR2X58uU5+uijmzV/Uv8CvOOPP36D+m699daZMWNGevbsmb322qvZc3c0U6ZMqWx3xusD2p/7DNDa3GeA1uQeA7S2Itxnevbs2epzeHFdI/Tt27eyvXjx4g0+b9GiRWscoym+/vWvVwLizTffPFOnTs1BBx3UICBO6sPZK6+8Mt/61rcanPvyyy83a34AAAAAoHMREjfCZpttVtl+64VsG2LWrFmV7YEDBzZ5/pdffjnXXnttpX3SSSdl6NCh6zznzDPPzBZbbJGkPti+9NJLmzw/AAAAAND5CIkbYbvttqtsz5kzp8ETwuuy+tO722+/fZPn/8tf/pKVK1dW2vvvv/96z+nVq1c+/elPV9r33ntvk+cHAAAAADofIXEj7LDDDg3ajzzyyHrPmTFjRmbPnr3WMRpjxowZDdpDhgzZoPNW77f6U80AAAAAAELiRth1110bLBR9//33r/ec++67r7JdVVWVXXfdtcnzv32R6g1dF3n1J5579erV5PkBAAAAgM5HSNwIffv2zejRoyvt1dcHXpvV+4wePTp9+vRp8vyDBg1q0P7rX/+6Qef97W9/q2wPHjy4yfMDAAAAAJ2PkLiRxo8fX9l+9NFHc9NNN62177Rp03Lrrbeu8dym+OQnP9mg/bOf/Wy95zz88MMNnnjeY489mlUDAAAAANC5CIkb6eCDD87OO+9caR977LF56qmn3tGvpqYmhx9+eFasWJEk+fCHP5zPf/7zaxzz7rvvTqlUqvxMmjRpjf0GDx6cPffcs9K+8cYbc9ppp6VcLq+x/1NPPZVDDjmk0q6qqsqXvvSl9V4jAAAAAFAc3dq7gI1NqVTK5Zdfnt133z2LFy9OTU1NPvaxj+W4447L7rvvnm7duuWhhx7KRRddlFdffTVJ/TrAl112WUqlUrPn/+lPf5rddtutss7wmWeemZtuuilHHHFEdtppp1RVVaWmpiZ/+tOfcs0116Surq5y7imnnJKtt9662TUAAAAAAJ2HkLgJhg8fnmuvvTaHHXZYFi9enNra2px99tk5++yz39G3V69eufbaazN8+PAWmftDH/pQfve73+ULX/hC5s2blyR55JFH8sgjj6zzvG9+85s5+eSTW6QGAAAAAKDzsNxEEx144IH529/+ltGjR6/xCeFSqZQxY8Zk2rRpOfDAA1t07r333juPPfZYjj766PW+CG/UqFG54447ct5557VoDQAAAABA5+BJ4mbYYYcdcuedd+bll1/O1KlTM2PGjCT1awePGDEiQ4YM2aBxRo0atdZ1hddmyJAhufTSS3PhhRdm2rRpeeKJJzJ37twsX748/fv3zzbbbJNdd901W2yxRaOvCwAAAAAoDiFxCxgyZEgOPfTQdpm7qqoqI0aMyIgRI9plfgAAAABg42a5CQAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwIXEzTZ06Ncccc0x23HHHVFdXp7q6OjvuuGOOOeaYTJ06tU1qqK2tzdVXX50DDjgg2223Xfr165eePXtm0KBBGTVqVE455ZT8+c9/zpIlS9qkHgAAAABg49GtvQvYWC1cuDBf+9rXcsUVV7zj2JNPPpknn3wyl112WY466qhceOGF6dOnT6vUce211+ab3/xmZs+e/Y5jNTU1qampyT333JMf/vCHuf7663PwwQe3Sh0AAAAAwMZJSNwEK1asyEEHHZQ77rijsq9Xr175wAc+kG7duuWJJ55IbW1tkuSKK67IjBkzcsstt6Rr164tWsfXv/71XHjhhQ32DRkyJEOGDEmPHj3y2muv5emnn87y5ctbdF4AAAAAoPOw3EQTnHrqqQ0C4qOPPjqvvPJKHn744Tz44IOZOXNmTjnllMrx22+/PaeddlqL1nDSSSdVAuJSqZTx48fnySefzEsvvZQHHnggf/nLX/I///M/qa2tzS233JIvfvGL6dGjR4vWAAAAAABs/DxJ3EgzZszI+eefX2mPGzcul156aYM+ffr0yZlnnpkk+cEPfpAkOf/88/OVr3wlgwYNanYNDzzwQM4666wkSZcuXTJp0qSMGzdujX179eqVfffdN/vuu2+z5wUAAAAAOh9PEjfShRdemLq6uiRJ7969c8EFF6y176mnnpohQ4YkSRYvXpyf/exnzZ6/XC7nmGOOSblcTpJ8+9vfXmtADAAAAACwPkLiRvr9739f2R47dmw23XTTtfbt0aNHjjzyyEr7D3/4Q7Pnv/POO/PEE08kSfr379/iy1gAAAAAAMUiJG6E6dOn59lnn62099577/Wes88++1S2n3nmmTz99NPNquHyyy+vbH/+859Pnz59mjUeAAAAAFBsQuJG+Mc//tGgvdtuu633nGHDhjV4Ydzbx2isO++8s7L9qU99qlljAQAAAAAIiRvhySefrGz36NGjst7wury93+pjNNazzz6buXPnVtof+tCHkiSPPfZYvvrVr2a77bZLnz59MmDAgOywww459thjc++99zZ5PgAAAACg8+vW3gVsTF588cXK9tZbb51SqbRB5w0dOjTPPfdckuSFF15o8vyPPvpog/ZWW22V008/PT/4wQ+yYsWKBsfmzZuXp556Kpdeemn233//XH311enfv3+T517deeedl/POO2+D+tbU1CRJlixZkttvv71F5u+oOvv1Ae3PfQZobe4zQGtyjwFaW2e9zyxZsqTV5xASN0JtbW1luzGBa3V1dWV7/vz5TZ5/zpw5Ddpnn312zj333CRJqVTKjjvumC222CKvvfZannjiiZTL5STJjTfemE9+8pOZOnVq+vbt2+T531JbW5sZM2Y06pxyuZy6urpmz92RdfbrA9qf+wzQ2txngNbkHgO0ts56n3kr42tNQuJGWLhwYWW7qqpqg8/r1avXGsdorHnz5jVovxUQ77nnnpk4cWLe8573VI7985//zHHHHZc77rgjSf2SFF/5yldy1VVXNXn+t1RXV2fw4MEb1LempiYrV65MqVRq1Ge2sVj95tMZrw9of+4zQGtznwFak3sM0NqKcJ/Z0NUMmkNI3AjLli2rbHfrtuEf3ep9ly5d2uT51/S3IXvssUduueWWdO/evcH+bbfdNrfccks+/elP5y9/+UuSZPLkyfne976X7bffvsk1JMnxxx+f448/foP6br311pkxY0Z69uyZvfbaq1nzdkRTpkypbHfG6wPan/sM0NrcZ4DW5B4DtLYi3Gd69uzZ6nN4cV0j9O7du7LdmMfXV+/bp0+fJs+/pnN/8YtfvCMgfku3bt0yceLEyt82lMvlTJo0qcnzAwAAAACdj5C4EVZfz3fx4sUbfN6iRYvWOEZz5k+SYcOGZccdd1znOdttt12GDx9ead97771Nnh8AAAAA6HyExI2w2WabVbZramo2+LxZs2ZVtgcOHNgi8yf1IfGGWL3fP//5zybPDwAAAAB0PkLiRthuu+0q23PmzGnwhPC6vPzyy5Xt5qwHvMMOOzRob2jgvHq/N954o8nzAwAAAACdj5C4Ed4e0j7yyCPrPWfGjBmZPXv2WsdojPe+973p0aNHpb1kyZINOq8Ib3kEAAAAAJpGSNwIu+66a4O3Cd5///3rPee+++6rbFdVVWXXXXdt8vzdunXLyJEjK+3nn39+g8574YUXKttbbrllk+cHAAAAADofIXEj9O3bN6NHj660r7322vWes3qf0aNHp0+fPs2q4aCDDqps33vvvet9mnjp0qUNXlb38Y9/vFnzAwAAAACdi5C4kcaPH1/ZfvTRR3PTTTette+0adNy6623rvHcpjr00EPTt2/fJPXrC//yl79cZ//LLrssr7/+eqV9wAEHNLsGAAAAAKDzEBI30sEHH5ydd9650j722GPz1FNPvaNfTU1NDj/88KxYsSJJ8uEPfzif//zn1zjm3XffnVKpVPmZNGnSWufffPPNc/zxx1fa3/ve9/LnP/95reOecMIJlfYOO+yQAw88cJ3XBwAAAAAUS7f2LmBjUyqVcvnll2f33XfP4sWLU1NTk4997GM57rjjsvvuu6dbt2556KGHctFFF+XVV19NkvTq1SuXXXZZSqVSi9Rwwgkn5NZbb83DDz+cRYsWZc8998xhhx2W/fffP1tuuWVeffXV3HTTTbnmmmuycuXKJPXrIV9zzTXp0sXfCwAAAAAAqwiJm2D48OG59tprc9hhh2Xx4sWpra3N2WefnbPPPvsdfXv16pVrr702w4cPb7H5e/funZtuuil77rlnHnvssaxcuTKTJ0/O5MmT19i/uro61113XYYNG9ZiNQAAAAAAnYPHSpvowAMPzN/+9reMHj16jU8Il0qljBkzJtOmTWuVJR623HLLPPzwwzn55JMzcODANfbp1q1bvvSlL+Xvf/979tprrxavAQAAAADY+HmSuBl22GGH3HnnnXn55ZczderUzJgxI0kyePDgjBgxIkOGDNmgcUaNGpVyudzo+Xv27Jkf/OAH+a//+q/ce++9+ec//5nZs2enuro622yzTfbYY49UV1c3elwAAAAAoDiExC1gyJAhOfTQQ9tt/u7du2f06NEZPXp0u9UAAAAAAGycLDcBAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAOkxIvN9++2XKlClZsWJFe5cCAAAAAFAYHSYk/j//5//koIMOypAhQ/K9730vzz77bHuXBAAAAADQ6XWYkPgts2bNyk9+8pNst912GTVqVK699tosWbKkvcsCAAAAAOiUOkxI/B//8R/p27dvkqRcLqdcLue+++7LEUcckXe96135z//8zzzyyCPtWyQAAAAAQCfTYULiSy+9NDU1NfnVr36VkSNHJlkVFr/55pv5xS9+kY985CMZPnx4fvnLX2b+/PntXDEAAAAAwMavw4TESdK7d+8ceeSRue+++/LUU0/lW9/6VrbYYoskqwLjv//975kwYULe9a535cgjj8z999/fzlUDAAAAAGy8OlRIvLr3v//9Oeecc/LKK6/kd7/7Xfbdd9907dq1EhYvWrQoV199dfbYY49sv/32+elPf5rZs2e3d9kAAAAAABuVDhsSv6Vbt2458MADc/PNN+fFF1/MGWeckW233TbJqqeLn3766ZxwwgnZeuutc/DBB+fWW29NuVxu58oBAAAAADq+Dh8Sr27QoEE55ZRT8uyzz+bOO+/MF77whVRVVSWpD4yXLVuWP/zhD9lvv/3y7ne/O9///vczc+bMdq4aAAAAAKDj2qhC4tV96lOfylVXXZVzzz03VVVVKZVKKZVKSeoD41deeSVnnHFG3v3ud+fII4/Miy++2M4VAwAAAAB0PBtlSPz444/nm9/8ZgYNGpSvfvWrWbJkSZJVy0907969sr18+fJcffXV2WmnnXLNNde0c+UAAAAAAB3LRhMSL1iwIJdddlk+9rGPZeedd86FF16YOXPmVMLg3r175z/+4z/y0EMPZe7cubnyyiszYsSIJPXh8cKFCzN+/Pjcd9997XwlAAAAAAAdR4cPiR944IEcddRRede73pX//b//d/76179WguEk2WWXXTJx4sTU1NTk0ksvzfDhw9OnT598+ctfzv3335977703O+64Y5Jk5cqV+clPftKelwMAAAAA0KF0a+8C1mT27Nm56qqr8qtf/SpPP/10klRC4STp27dvvvjFL+aYY47JRz7ykXWO9YlPfCJ33HFH3ve+92Xx4sV58MEHW7V2AAAAAICNSYcJicvlcm699dZcfvnlueWWW7J8+fLK/rcMGzYsxxxzTL70pS+lb9++Gzz2oEGDMnz48Nx333158803W7p0AAAAAICNVocJiYcOHZqZM2cmWfNTw8cee2yGDRvW5PE33XTTd4wNAAAAAFB0HSYknjFjRkqlUiXE/chHPlJ5arhPnz7NHn+LLbbINtts0+xxAAAAAAA6kw4TEicN1xpuzlPDa/LLX/6yRccDAAAAAOgMOkxIfOmll+aLX/xiizw1DAAAAADAhukwIfF//Md/tHcJAAAAAACF02FC4jPOOCNJ8t73vjdf+tKXmjTGddddl6eeeipJctppp7VYbQAAAAAAnVWHCYlPP/30lEql7LXXXk0Oif/7v/87U6ZMSalUEhIDAAAAAGyALu1dAAAAAAAA7UdIDAAAAABQYJ0qJF64cGGSpFevXu1cCQAAAADAxqHThMTlcjmPP/54kmSzzTZr52oAAAAAADYOHebFdU1VV1eXZ599NhdeeGFmzZqVUqmUnXfeub3LAgAAAADYKLRLSNy1a9c17i+Xy7n99tvXenxDHXzwwc06HwAAAACgKNolJC6XyymVSimXy2s81hz//u//nsMPP7xZYwAAAAAAFEW7rUnc3DB4dVVVVdl1111zwQUX5LbbbkupVGqxsQEAAAAAOrN2eZL4+eefb9Aul8vZdtttUyqVsvvuu2fSpEkbNE6XLl3Sp0+fDBgwIF26dJp38AEAAAAAtJl2CYm32WabNe4vl8vp1avXWo8DAAAAANCy2iUkXpMrr7wySTJ48OB2rgQAAAAAoDg6TEj85S9/ub1LAAAAAAAoHAv5AgAAAAAUmJAYAAAAAKDA2nS5iTPOOKNB+7TTTlvrseZafWwAAAAAANasTUPi008/PaVSqdJePch9+7HmEhIDAAAAAKxfm7+4rlwuJ8kaA+G3jjVXS4bNAAAAAACdWZuGxF/+8pebdAwAAAAAgNbRpiHxlVde2aRjAAAAAAC0ji7tXQAAAAAAAO1HSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAurXlZNtuu22bzFMqlfLcc8+1yVwAAAAAABuzNg2JX3jhhZRKpVado1wut/ocAAAAAACdRZuGxEl9iAsAAAAAQMfQpiHxX/7yl7acDgAAAACA9WjTkHiPPfZoy+kAAAAAAFiPLu1dAAAAAAAA7UdIDAAAAABQYG3+4joKasWKZMaM5o/To0ey+ebr7lNTk6xc2fy5kmTAgKRPn7Ue7rJ0aXrMn1/faInrGzx43cfnzEnq6po/T1J/XQMGrP34ihXJrFktM1dS/+vWo8faj8+fn9TWtsxc3bsnW2yx7j6zZtVfY0tYz/ckdXX1v3YtpS2/J717J5tssvbjK1fW/zvXUjrz96R//6Rv37UfX7Ikef31d+yuWv2705j7zKBBSam09uNz5yaLF2/4eOvS1t+TzTZLevZc+/EFC5J581pmrm7dki23XHefV19Nli9vmfma+D1psne9K+myjmcG3ngjWbSoZebq1SvZdNO1Hy+Xk5kzW2aupG2/J127Jlttte4+r72WLFvWMvNVVyf9+q39+NKlyezZGzzceu8zbfk9qapKBg5cd5+W+DPXWwYOrJ9zbRYuTN58s2Xm2si/J+u11Vb117g2b75Z/3m2hM78PenSpf7fuXWZPbv+168l9OtX/11Zm2XL6r+XzdDgHrNiRdt9T3r2rP+9YF1mzqz//aclbLpp/e91a7NoUf39siW09fekb9/6P6OszfLl9X8eailbbln/Z7C1mTev/vfxltDRvieLF9f/Ob0llEr1/02wLq+/Xv/ny5bQmb8nbZ1FbbJJ/X9jtbVyB1ZbW1u+7bbbyj/60Y/Kxx9/fPl//a//VT7qqKPauywaYfDgweUk5cH1t9Tm/4wYsf5JBw1qmbmScvnKK9c51YOnnNJyc3Xrtv5rO+CAlptvwoR1z/Xaay03V1Iu//3v657vBz9oubmGD1//Z7nNNi0336WXrnuuO+5o2c9yfQ4+uOXm+o//WPdcb7zRstf20EPrnu8nP2m5uXbeef2f5Xvf23LzXXTRuuf6y19a9rNcunTd833pSy0315e/vO65Fixo2Wu7//51z3f++S031447rnuucrm+T0vNd/75657r/vtb9rNcsGDd8335yy0315e+tO65li5t2Wv7y1/WPd9FF7XcXO9977rnKpfr7zktNd9PfrLuuR56qGU/yzfeWPd8//EfLTfXwQev/7NsyWu74451z3XppS031zbbrP/ahg9vufl+8IN1z/X3v7fsZ/naa+ueb8KElpvrgAPW/1l269Zy891887rnuvLKlptr0KD1X9uIES0333/917rnevzxlv2evPLKuuf7+tdbbq59913/Z9m7d8vN94c/rHuua65pubk222z917bHHi0330knrXuup59u2e/J88+ve75vf7vl5hozZv2fZf/+LTffddete67rrmu5ufr3X/+1jRnTcvN9+9vrnuv551v2e/L005Wh//jHP1Z+Kk46qeXm2mOP9X+Wm23WcvNdc807hq/ka4MHr7+WJuqQTxK//PLLOeOMM/LrX/86das9DVcul1MqlfKrX/3qHeeMGTMmTzzxREqlUv7yl7/k/e9/f1uWDAAAAACwUepwaxJPmTIlO++8c6644oosXrw45XK58rMuhx9+eGbNmpVZs2blqquuaqNqAQAAAAA2bh0qJL7jjjsyduzYzJs3L+VyOd27d8+YMWPyjW98I+95z3vWee7YsWPT+1/rdfzxj39sg2oBAAAAADZ+HSYkXrRoUY488sgs+9eLGvbZZ5/885//zB133JHzzjsv733ve9d5fu/evbPnnnumXC7nqaeeyqyWfOEWAAAAAEAnVSqvbx2HNvLzn/88X//611MqlTJmzJjceuut6bLaW5T32Wef3H777SmVSlmxljfNn3XWWTnppJNSKpVy2223Zc8992yr8lmLrbfeOjNmzMjgrbbKK3/9a/MHbOs3Sg4YkPTps9bDN11/fXrMn58k2WuvvZo/3+DB6z4+Z06y2jrdzdKnT/31rc2KFUlL/mXL5pvX//qtzfz5SW1ty8zVvXuyxRbr7jNrVv01toT1fE9SV1f/a9dS2vJ70rt3/ZtV12blyvp/51pKZ/6e9O9f/8bftVmypP7twm9z++23V7YbdZ8ZNKj+jcZrM3du/duTW0Jbf08226z+TdRrs2BB/duMW0K3bvVvTl6XV1+tf1tzS2ji96TJ3vWu+jekr80bb9S/jb0l9OpV/0bvtSmX698e3lLa8nvStWuy1Vbr7vPaa8m/HoZoturqpF+/tR9furT+rfYbaL33mbb8nlRVJQMHrrvPjBktM1dSP1dV1dqPL1yYvPlmy8y1kX9P1murreqvcW3efLP+82wJnfl70qVL/b9z6zJ7dv2vX0vo16/+u7I2y5bVfy+bocE95stfbrvvSc+e9b8XrMvMmfW//7SETTet/71ubRYtqr9ftoS2/p707Vv/Z5S1Wb68/s9DLWXLLev/DLY28+bV/z7eEjra92Tx4vo/p7eEUqn+vwnW5fXX6/982RLa8XsyZcqUyu4DDjigfqMlvydtnUVtskn9f2OtppKvDR6cV155pWXmeZsO8+K6m266qbL985//vEFAvKG23377yvY///nPFqmLFtK16/qDrZayvt8sW9DKHj1S99YfUNvi+tb3h+GW1Ja/Zkn9H1DX9R8yLW19/5HWkqqq2vazbMvvSZcuvictpWfPNX6Wdav/erbkZ72usK6ltfX3pG/fdQetLW19IXJLWsv3pNVsssm6/wKgJZVKnft7sr6/lGpJPXo06rNs9n2mLb8nSdt+T/r0WfdfBLe0Dvw9abYBA9b9gEJL68zfk/UFFS2pe/dmf5YN7jHrCoiTtv+erC9Aa0m9e78j9GlVbfk96datbf+d699/3WFkS2vL70mvXm37Wa4vIG9Jnf170oZZVGvpMMtNPPHEE0mS973vfXn/+9/fpDE2We0Pp/Na6skQAAAAAIBOrMOExK+//npKpVK23nrr9i4FAAAAAKAwOkxI3O9f//vwomasZ/bqamubDGzL/90aAAAAAGAj1WFC4ne9610pl8t58skn09R36U2dOrWy/W//9m8tVRoAAAAAQKfVYULiT37yk0mS2tra3HrrrY0+f/Hixfn1r3+dJOnZs2dGjhzZovUBAAAAAHRGHSYkPuiggyrb3/72t7Nw4cJGnX/88cdX1jX+7Gc/m549e7Z0iQAAAAAAnU6HCYlHjx6dUaNGpVwuZ/r06RkzZkxeeOGF9Z43f/78HHPMMbn00kuTJKVSKaeeemorVwsAAAAA0Dl0a+8CVnf55ZdnxIgRmT17dh566KHssMMO+exnP5t///d/z2uvvVbp9/vf/z6vvfZa/u///b+ZMmVKamtrUy6XUyqVcuaZZ2annXZqx6sAAAAAANh4dKiQeNttt83/+T//J/vvv39mzpyZJUuW5He/+11+97vfJal/SjhJDjnkkMo5q7/k7pvf/Ga+973vtW3RAAAAAAAbsQ6z3MRbhg0blkcffTTjxo1Lt27dUi6XKz9vefu+bbbZJr/5zW/y05/+tL3KBgAAAADYKHWoJ4nfsummm+aqq67Kj370o/zmN7/Jfffdl8cffzxz5szJwoUL079//2y55Zb5+Mc/nr322isHHXRQunbt2t5lAwAAAABsdDpkSPyWwYMH51vf+la+9a1vtXcpAAAAAACdUodbbgIAAAAAgLYjJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKrE1fXNe1a9c2madUKmX58uVtMhcAAAAAwMasTUPicrmcUqmUcrncltMCAAAAALAWbRoSJ9nggLhUKm1Q/7f6NWZsAAAAAADqtWlI/Pzzz6+3z9///vccc8wxef3119O9e/fsvffe2WefffKBD3wgAwcOTM+ePTN//vw8//zzeeihh3L99dfnn//8Z0qlUr7whS/kzDPPTLdubZ59AwAAAABslNo0Td1mm23Wefyuu+7KF7/4xSxdujT//u//nssuuyzbbrvtGvt++MMfzoEHHpgf/ehHufzyy/ONb3wjv/3tb/P666/ntttua43yAQAAAAA6nS7tXcBbXn311XzhC1/I0qVLs+eee+b2229fa0C8ulKplKOPPjq33HJLunTpkrvuuisnn3xyG1QMAAAAALDx6zAh8eWXX545c+akVCrlkksuafSSEaNGjcq4ceNSLpfzi1/8IosWLWqlSgEAAAAAOo8OExL/8Y9/TJLsuOOOefe7392kMfbbb78kyYIFC/LnP/+5hSoDAAAAAOi8OkxI/OKLL6ZUKmXzzTdv8hirn/vSSy+1RFkAAAAAAJ1ahwmJFy5cmCR5+eWXmzzGK6+88o7xAAAAAABYuw4TEg8ePDjlcjnPPfdcHnnkkSaN8Zvf/KbBeAAAAAAArFuHCYnHjBlT2T7qqKMyb968Rp1/9dVX56abbkqSdOnSJf/+7//eovUBAAAAAHRGHSYkPvbYY9O1a9ckyT/+8Y98/OMfz1133bXe82pra/Od73wnRx11VJKkVCrlgAMOyLve9a5WrRcAAAAAoDPo1t4FvGXnnXfOSSedlDPPPDOlUinTp0/Ppz/96bzvfe/Lpz/96ey0004ZOHBgevTokfnz5+eFF17IQw89lD/96U+pq6tLuVxOUv/yuosuuqidrwYAAAAAYOPQYULiJPn+97+fJUuW5Cc/+UlKpVLK5XKeeeaZPPPMM2s9p1wup1QqJUmGDBmS22+/PVtttVVblQwAAAAAsFHrMMtNvOWss87Kn/70p+ywww5J6kPg1X/evi9Junfvnq985St57LHHsv3227db7QAAAAAAG5sO9STxW0aPHp3HH388U6dOzR//+Mc8/PDDefbZZ/PGG29k6dKlqa6uzhZbbJFddtkln/zkJzN27Nhsuumm7V02AAAAAMBGp0OGxG8ZMWJERowY0d5lAAAAAAB0Wh1uuQkAAAAAANqOkBgAAAAAoMCExAAAAAAABSYkBgAAAAAosDZ9cd22225b2S6VSnnuuefWeKy53j42AAAAAABr1qYh8QsvvJBSqZRyuZxSqbTGY821prEBAAAAAFizNg2Jk/oQtynHAAAAAABoeW0aEv/lL39p0jEAAAAAAFpHm4bEe+yxR5OOAQAAAADQOrq09YSbbrppNt100xx66KFtPTUAAAAAAG/T5iHxm2++mXnz5mX+/Pnr7bvttttm2223zVFHHdUGlQEAAAAAFE+bv7iuMV544YWUSqXMmjWrvUsBAAAAAOiU2vxJYgAAAAAAOg4hMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAF1q29Jn7ooYfyqU99qsX7JkmpVMpdd93V1NIAAAAAAAqj3ULiN954I/fcc886+5RKpQ3u+5ZyuVw5DwAAAACAdWuXkLhcLrfHtAAAAAAAvE2bh8Rf/vKX23pKAAAAAADWos1D4iuvvLKtpwQAAAAAYC26tHcBAAAAAAC0HyExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwIXEzTZ06Ncccc0x23HHHVFdXp7q6OjvuuGOOOeaYTJ06tc3rmTdvXgYNGpRSqVT5GT9+fJvXAQAAAABsHLq1dwEbq4ULF+ZrX/tarrjiincce/LJJ/Pkk0/msssuy1FHHZULL7wwffr0aZO6vvvd76ampqZN5gIAAAAANn5C4iZYsWJFDjrooNxxxx2Vfb169coHPvCBdOvWLU888URqa2uTJFdccUVmzJiRW265JV27dm3Vuu67775cdtllrToHAAAAANC5WG6iCU499dQGAfHRRx+dV155JQ8//HAefPDBzJw5M6ecckrl+O23357TTjutVWtasmRJjj766JTL5Wy++eb50Ic+1KrzAQAAAACdg5C4kWbMmJHzzz+/0h43blwuvfTSbLrpppV9ffr0yZlnntkgKD7//PMzc+bMVqvrBz/4QaZPn54kOffcc7PJJpu02lwAAAAAQOchJG6kCy+8MHV1dUmS3r1754ILLlhr31NPPTVDhgxJkixevDg/+9nPWqWmxx9/PGeffXaS5FOf+lTGjRvXKvMAAAAAAJ2PkLiRfv/731e2x44d2+AJ4rfr0aNHjjzyyEr7D3/4Q4vXs3Llyhx99NFZtmxZevbsmYkTJ7b4HAAAAABA5yUkboTp06fn2WefrbT33nvv9Z6zzz77VLafeeaZPP300y1a08UXX5z/+3//b5Lke9/7Xt7//ve36PgAAAAAQOcmJG6Ef/zjHw3au+2223rPGTZsWHr06LHWMZrj5Zdfzsknn5wkef/7358TTzyxxcYGAAAAAIpBSNwITz75ZGW7R48elfWG1+Xt/VYfo7kmTJiQ+fPnJ0kmTpyYnj17ttjYAAAAAEAxdGvvAjYmL774YmV76623TqlU2qDzhg4dmueeey5J8sILL7RILb/97W9z8803J0nGjRuXT33qUy0y7oY477zzct55521Q35qamiTJkiVLcvvtt7dmWe2us18f0P7cZ4DW5j4DtCb3GKC1ddb7zJIlS1p9DiFxI9TW1la2+/fvv8HnVVdXV7bfevK3Od544418/etfT5JsuummOffcc5s9ZmPU1tZmxowZjTqnXC6nrq6ulSrqGDr79QHtz30GaG3uM0Brco8BWltnvc+Uy+VWn0NI3AgLFy6sbFdVVW3web169VrjGE31rW99K6+++mqS5Cc/+Uk233zzZo/ZGNXV1Rk8ePAG9a2pqcnKlStTKpUa9ZltLFa/+XTG6wPan/sM0NrcZ4DW5B4DtLYi3Gc2dDWD5hASN8KyZcsq2926bfhHt3rfpUuXNquGP//5z7nyyiuTJJ/4xCdy1FFHNWu8pjj++ONz/PHHb1DfrbfeOjNmzEjPnj2z1157tXJlbW/KlCmV7c54fUD7c58BWpv7DNCa3GOA1laE+0xbvIfMi+saoXfv3pXtxjy+vnrfPn36NHn+urq6HHvssUmS7t2755JLLmmTv0kAAAAAADovIXEj9O3bt7K9ePHiDT5v0aJFaxyjsU4//fQ8++yzSZJvf/vb+cAHPtDksQAAAAAAEiFxo2y22WaV7Zqamg0+b9asWZXtgQMHNmnul19+ufKCun/7t3/Lqaee2qRxAAAAAABWJyRuhO22266yPWfOnAZPCK/Lyy+/XNnefvvtmzT3nDlzsnz58iTJ888/n969e6dUKq3155577qmce9VVVzU4dvfddzepBgAAAACg8xESN8IOO+zQoP3II4+s95wZM2Zk9uzZax0DAAAAAKA9dWvvAjYmu+66a3r27JklS5YkSe6///6MGDFinefcd999le2qqqrsuuuuTZq7W7dujVqqYt68eZUnj3v27NlgLeTu3bs3qQYAAAAAoPPxJHEj9O3bN6NHj660r7322vWes3qf0aNHp0+fPk2ae6eddsrrr7++wT8jR46snPuFL3xhrccAAAAAgGITEjfS+PHjK9uPPvpobrrpprX2nTZtWm699dY1ngsAAAAA0BEIiRvp4IMPzs4771xpH3vssXnqqafe0a+mpiaHH354VqxYkST58Ic/nM9//vNrHPPuu+9u8GK5SZMmtUrtAAAAAABvZ03iRiqVSrn88suz++67Z/HixampqcnHPvaxHHfccdl9993TrVu3PPTQQ7nooovy6quvJkl69eqVyy67LKVSqZ2rBwAAAABoSEjcBMOHD8+1116bww47LIsXL05tbW3OPvvsnH322e/o26tXr1x77bUZPnx4O1QKAAAAALBulptoogMPPDB/+9vfMnr06DU+IVwqlTJmzJhMmzYtBx54YDtUCAAAAACwfp4kboYddtghd955Z15++eVMnTo1M2bMSJIMHjw4I0aMyJAhQzZonFGjRqVcLrdobXfffXeLjgcAAAAAdE5C4hYwZMiQHHrooe1dBgAAAABAo1luAgAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQAAAAAAAUmJAYAAAAAKDAhMQAAAABAgQmJAQAAAAAKTEgMAAAAAFBgQmIAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAAqsW3sXsLGbOnVqJk2alPvvvz+vvPJKkmTrrbfOJz7xiYwfPz4jRoxo8TkXLVqUe+65J3/+85/z97//PU899VTmzJmTUqmUTTbZJB/4wAeyxx575Mgjj8ygQYNafH4AAAAAoPMQEjfRwoUL87WvfS1XXHHFO449+eSTefLJJ3PZZZflqKOOyoUXXpg+ffo0e85XX301X/va13LzzTdn0aJFa+yzePHizJw5M3/605/y/e9/P9/+9rdz+umnp0ePHs2eHwAAAADofITETbBixYocdNBBueOOOyr7evXqlQ984APp1q1bnnjiidTW1iZJrrjiisyYMSO33HJLunbt2qx5X3755Vx33XUN9pVKpWy77bbZaqut0rVr1zzzzDOpqalJkixbtiw//vGP88gjj+SPf/yjoBgAAAAAeAdrEjfBqaee2iAgPvroo/PKK6/k4YcfzoMPPpiZM2fmlFNOqRy//fbbc9ppp7XY/KVSKaNHj861116b1157Lc8++2zuv//+3HPPPZk5c2buvvvu7LjjjpX+t956a0499dQWmx8AAAAA6DyExI00Y8aMnH/++ZX2uHHjcumll2bTTTet7OvTp0/OPPPMBkHx+eefn5kzZzZr7i5duuTzn/98Hn/88dx555350pe+lM022+wd/fbYY49MnTq1QVB8wQUX5NVXX23W/AAAAABA5yMkbqQLL7wwdXV1SZLevXvnggsuWGvfU089NUOGDElSv1bwz372s2bNPWzYsNxwww0Nwt+16d+/f4Mwe+nSpbn55pubNT8AAAAA0PkIiRvp97//fWV77NixDZ4gfrsePXrkyCOPrLT/8Ic/tGptbzd69Oj06tWr0n7qqafadH4AAAAAoOMTEjfC9OnT8+yzz1bae++993rP2WeffSrbzzzzTJ5++ulWqW1Nunbtmv79+1fab71MDwAAAADgLULiRvjHP/7RoL3bbrut95xhw4alR48eax2jNS1evDivvfZapb3FFlu02dwAAAAAwMZBSNwITz75ZGW7R48elfWG1+Xt/VYfo7VNmTIlK1eurLQ//vGPt9ncAAAAAMDGoVt7F7AxefHFFyvbW2+9dUql0gadN3To0Dz33HNJkhdeeKE1SnuH5cuX50c/+lGlvcUWW2T06NEtMvZ5552X8847b4P61tTUJEmWLFmS22+/vUXm76g6+/UB7c99Bmht7jNAa3KPAVpbZ73PLFmypNXnEBI3wupr+q6+1u/6VFdXV7bnz5/fojWtzVlnnZXHHnus0j7llFNSVVXVImPX1tZmxowZjTqnXC6nrq6uRebvqDr79QHtz30GaG3uM0Brco8BWltnvc+Uy+VWn0NI3AgLFy6sbDcmcO3Vq9cax2gtf/rTn3L66adX2iNGjMiECRNabPzq6uoMHjx4g/rW1NRk5cqVKZVKLRZSdySr33w64/UB7c99Bmht7jNAa3KPAVpbEe4zG7qaQXMIiRth2bJlle1u3Tb8o1u979KlS1u0prd76qmn8oUvfCErVqxIkmyyySb59a9/na5du7bYHMcff3yOP/74Deq79dZbZ8aMGenZs2f22muvFquho5gyZUpluzNeH9D+3GeA1uY+A7Qm9xigtRXhPtOzZ89Wn8OL6xqhd+/ele3GPL6+et8+ffq0aE2re/nll/PpT386c+fOTVJf780335xtttmm1eYEAAAAADZuQuJG6Nu3b2V78eLFG3zeokWL1jhGS3r11VczZsyYvPzyy0nq/4bhj3/8Y0aMGNEq8wEAAAAAnYOQuBE222yzynZNTc0Gnzdr1qzK9sCBA1u0piSZO3du9txzzzz99NNJ6pe3+O1vf5s999yzxecCAAAAADoXIXEjbLfddpXtOXPmNHhCeF3eero3SbbffvsWram2tjZ77bVXHnvssSRJly5dMnny5BxwwAEtOg8AAAAA0DkJiRthhx12aNB+5JFH1nvOjBkzMnv27LWO0RwLFy7Mvvvum7/+9a9J6t90ePnll+cLX/hCi80BAAAAAHRuQuJG2HXXXRu8TfD+++9f7zn33XdfZbuqqiq77rpri9RSV1eX/fffPw888EBl38UXX5wjjzyyRcYHAAAAAIpBSNwIffv2zejRoyvta6+9dr3nrN5n9OjR6dOnT7PrWLZsWQ4++OD8+c9/ruw777zzctxxxzV7bAAAAACgWITEjTR+/PjK9qOPPpqbbrpprX2nTZuWW2+9dY3nNtWKFSvypS99Kbfccktl3w9/+MN885vfbPbYAAAAAEDxCIkb6eCDD87OO+9caR977LF56qmn3tGvpqYmhx9+eFasWJEk+fCHP5zPf/7zaxzz7rvvTqlUqvxMmjRpjf3K5XL+1//6X7nhhhsq+0477bScdNJJzbgiAAAAAKDIurV3ARubt14Ot/vuu2fx4sWpqanJxz72sRx33HHZfffd061btzz00EO56KKL8uqrryZJevXqlcsuuyylUqlZc19//fW56qqrKu2qqqr8v//3/7L33ntv0Pkf+tCH8pOf/KRZNQAAAAAAnYuQuAmGDx+ea6+9NocddlgWL16c2tranH322Tn77LPf0bdXr1659tprM3z48GbPu2jRogbturq63H777Rt8fl1dXbNrAAAAAAA6F8tNNNGBBx6Yv/3tbxk9evQanxAulUoZM2ZMpk2blgMPPLAdKgQAAAAAWD9PEjfDDjvskDvvvDMvv/xypk6dmhkzZiRJBg8enBEjRmTIkCEbNM6oUaNSLpfX22/8+PEt8vI7AAAAAIC3CIlbwJAhQ3LooYe2dxkAAAAAAI1muQkAAAAAgAITEgMAAAAAFJiQGAAAAACgwITEAAAAAAAFJiQGAAAAACgwITEAAAAAQIEJiQEAAAAACkxIDAAAAABQYEJiAAAAAIACExIDAAAAABSYkBgAAAAAoMCExAAAAAAABSYkBgAAAAAoMCExAAAAAECBCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUWLf2LgA2xMqVK7NixYqUy+X2LqWBrl27VraXLl3ajpUA7aFUKqVbt24plUrtXQoAAAA0mZCYDmvlypVZuHBh6urqsmzZsvYuZ4369OlT2X799dfbsRKgvZRKpVRVVaV3797p2bNne5cDAAAAjSYkpkNatmxZ5s6dmxUrVrR3KevUq1ev9i4BaGflcjmLFy/O4sWLs8kmm7gvAAAAsNEREtPhLF++PK+//nqHW1piTXr37t3eJQAdyBtvvJEuXbp4ohgAAICNipCYDmfRokUNAuKuXbumV69e6dGjR0qlUoda+/PNN9+sbG+22WbtVwjQ5srlclasWJFFixY1WJN80aJFQmIAAAA2KkJiOpRyuZxFixZV2t26dctmm22WLl26tGNVa7d6XT169GjHSoD20qtXr8yZM6cSFNfV1aVcLneov9ACAACAdemYyRuFtXz58qxcubLS7tOnT4cNiAGS+hfXrb70TLlczvLly9uxIgAAAGgc6RsdytvXIe7WzcPuQMfXtWvXBu2NYU11AAAAeIuQmA7N/64NbAzcqwAAANiYCYkBAAAAAApMSAwAAAAAUGBCYgAAAACAAhMSAwAAAAAUmJAYAAAAAKDAhMQALWTUqFEplUoZNWpUe5fSJjrK9b7wwgsplUoplUqZNGlSk8eZNGlSZZwXXnihxeoDAACAjk5IDDSwfPny/O53v8sxxxyTD37wg9liiy3SvXv39O/fP+9973tz4IEH5pxzzsnzzz+/znHe/e53VwK3UqmUq6++eoPmP/rooxucN378+A0af30/AwYMaOQnAQAAAFAMQmKg4sYbb8wOO+yQgw8+OJdddlkef/zxzJ49O8uXL09tbW2ee+65/PGPf8x3v/vdbLvtttlvv/3y+OOPb9DY11xzzXr71NXV5frrr2/uZbSo008/vRI0AwAAAHRG3dq7AKBj+MEPfpDTTjst5XI5Sf1SAvvtt18+9KEPZeDAgVm0aFFqampy77335uabb84LL7yQW265JVtvvXUuueSStY5bVVWVurq63HXXXZk5c2YGDRq01r433XRT5s2bVzlnQwwaNCi33377evt17dp1g8YDAAAAKBohMZArrrgip556apJkyy23zG9+85u1rjN7yCGH5IILLshvfvObnHTSSesde/jw4XnuuedSU1OTX//61/n2t7+91r6TJ09OkhxwwAH57W9/u0G1d+/ePTvttNMG9QUAAADgnSw3AQX38ssv5ytf+UqSpLq6Ovfff/96X0TWtWvXHHbYYfnHP/6Rz3zmMxvUN1kVAq/J66+/nttuuy1JcsQRRzTiCgAAAABoDiExFNx5551XWdrhhz/8Yd773vdu8LkDBgzIZz/72fX2GzduXJLk0UcfzaOPPrrGPv/93/+dZcuWZYsttsinP/3pDa6htUyaNCmlUinf//73K/vW9EK8F154Ya1jzJgxI8cff3ze+973plevXhk4cGD22muv3HrrrWs954UXXqiMPWnSpCTJ73//++y7774ZNGhQunXrtsYQ/9lnn803v/nNfPCDH0z//v3Tq1evbLvtthk/fnz++te/rvNa6+rqcuGFF2bUqFHZfPPN071792y66abZbrvtss8+++S8885b53U253pXd//992fcuHF597vfnaqqqgwYMCC77LJLTjnllMyePXuDxliXN954IyeeeGK233779OrVK1tssUXGjBnT4dbBBgAAgLZmuQkosHK5XHm6t1+/fjnyyCNbZZ4PfehD+dCHPpRHH300kydPzjnnnPOOPm/V8cUvfjHdum38t6YHHnggn/vc5/L6669X9tXV1eWOO+7IHXfckXPOOWedS28k9b8+RxxxxDqfwE6Sn/70pznppJOybNmyBvuff/75PP/887n66qtzyimn5IwzznjHuTU1NRkzZkyeeOKJBvvfeOONvPHGG3n66adz2223ZebMmfnpT3/aKte7cuXKfO1rX8vFF1/cYP+SJUvyyCOP5JFHHslFF12U66+/Pnvuuec6P4u1efLJJzNmzJjMnDmzQX133XVX7rrrrhx55JHZfffdmzQ2AAAAbOw2/iQGkqS2Npk/v2XG6tEj2XzzdfepqUlWrky3V19dta9fv6bNN2BA0qdP085tpscffzxz5sxJknzyk59Mn1asY9y4cfnOd76TX//61zn77LPTpcuq/5Fh+vTpefjhhyv9OoLPfe5zGT58eH7xi19k4sSJSZLHHnvsHf0GDx78jn01NTX53Oc+ly5duuSss87KJz7xifTo0SP3339/zjjjjLz55pv53ve+l3322Scf+MAH1lrDBRdckEcffTSf/OQnc9xxx+X9739/3nzzzQZP9Z5zzjn57ne/m6Q+jD/uuOPyvve9LwMGDMj06dNz0UUX5cEHH8yZZ56ZzTbbLF/72tcazPGf//mflYD48MMPz0EHHZRBgwala9euqampyV//+tdMmTJlnZ9Vc6/3xBNPrATE//Zv/5YTTjghw4YNy8KFC3PjjTfmoosuyrx587LffvvloYceys4777zOet6utrY2e+21VyUgPvTQQ/PlL385W2yxRZ5++umcd955ufLKK/P44483alwAAADoLITEdA7nnZestixAs4wYkTzwwLr7DB+ezJyZDV+YYR2uvDIZP74lRmq01Zd+GDZsWKvOddhhh+XEE0/MzJkzc9dddzV4IvStJ2V33HHHfOQjH2nUuMuWLdugcG+LLbbIFltsscHjDhgwIAMGDGhwzoa+IO/pp5/ONttskwceeKBBiPzRj340H/3oR7P77rtn+fLlufTSS/Ozn/1sreM8+uijOeKIIypLX7zdE088kZNPPjlJ8l//9V/5r//6rwb9PvKRj+QLX/hCvvzlL+eaa67JySefnHHjxmWTTTZJUv8k7Y033pgk+da3vrXGJ4U/+9nP5vvf/37mzp3bKtf72GOP5dxzz01S//ned999GTBgQOX4qFGj8ulPfzqf+cxnsnTp0hxzzDH5f//v/621ljU588wz8/LLLydJfvSjH+V73/teg8/o4IMPzn777Zc77rijUeMCAABAZ2FNYiiw1ZcG2HwdT0+vXLkyjz/++Fp/3r7MwZq8613vyujRo5Mk11xzTWV/uVyutJvyFPHMmTPzwQ9+cL0/v/jFLxo9dnP8/Oc/X+NTxp/4xCfysY99LEly3333rXOMAQMG5KKLLlpjQJwk5557bpYtW5bhw4e/IyB+S5cuXfLzn/88PXv2zIIFC3LDDTdUjs2dO7fya7e+pRY23XTTdR5v6vVOnDgxK1euTJJcfvnlDQLit+y999456qijkiQPPfRQ5anzDbF06dL86le/SlL/pPWJJ574jj7du3fPr371q3Tv3n2DxwUAAIDOREgMBTZ/tSU61rXURG1t7ToD2BkzZmzQfG+FwL///e+zaNGiJPXB4YsvvpguXbrksMMOa8bVdBwDBgzIZz7zmbUef+tp6X/+85/rHOezn/1s+q1jGZObbropSfL5z39+rUHyW/V88IMfTJV+rjgAAFiKSURBVJL8//buOzyqauvj+G/SGwGTUEOHAFKkBqSHKiJFpAjSVVRU8MXrFUVFuKKiWBALYKGDiIACggoIoQRRulSRGhJqaCGkkWTeP2IOGdImIckkme/neebx7HP22XvNZBhhZc/av//+u3He19dXLi4ukpJXcyckJGQaT2bj5/T5rl+/XpJUp04dI5mcnhEjRqS5xxq7du3S1atXJUlDhw7N8HUqX758gdgwEQAAAAAAWyBJDNix1AnImzdv5vl8jzzyiLy8vBQVFaUffvhBkjRv3jxJyWUFKlSokO0xK1WqJLPZnOVjwoQJuflUMhUQEGBRc/lOKatyb2RRR/u+++7L8Nrp06d16dIlSdKrr74qk8mU6WPnzp2SpPPnzxtjuLq66tFHH5UkLV26VNWrV9fLL7+sNWvW6Nq1a1Y9VynnzzcuLk7//POPJGWaIJakhg0bGit9s1M7OHUd6cDAwEz7Nm3a1OpxAQAAAAAoSkgSA3bM19fXOE5JOKanRIkSaZKuQ4cOzfZ8Hh4eeuSRRyQlr1yNjY01yh8UlA3rcoOHh0em11MSqillFjKSUjs4PRcvXsx+YJKxgjvFZ599pu7du0tKTjxPmTJFDz30kHx9fRUYGKgpU6bo+vXrmY6Z0+ebssJXUpb1op2dnY33a2b1ke+Uum9Wc5QuXdrqcQEAAAAAKErYuA5Fw4svSqm+jn5X/v36faZ27pSSknTs2DHjVPXqOdzGLp0arPmlfv36xvGePXvyZc7Bgwdr3rx5Wr9+vWbOnKnr16/Lw8NDvXv3zpf5CxNHR8cMryUmJhrH48ePV9++fa0a886yIt7e3lq5cqX+/PNPLVmyRMHBwdq7d68SExO1c+dO7dy5Ux988IF+/PFHNW/ePGdPxAqZlcsoTHMAAAAAAFAYkSRG0eDtnfzIL2XLSpISUn99Pp1Nuwq6unXrytfXV5cvX9aWLVsUHR2d5arQu9W+fXv5+/srPDzc2ETs4YcfzrT2LtJKvQrc2dlZdevWvavxmjZtapRbuHHjhoKDgzVnzhwtX75cFy9eVO/evXX8+HG5u7vf1TyppV4pfeHChUz7JiQk6PLly5Ky3kQvszlq1KiRYd+sYgAAAAAAoKii3ARgx0wmkwYNGiQpeXO6uXPn5vmcqTeoi42NlVSwS00U1NWnVatWVfHixSVJISEhuTp2sWLF1L17dy1btkyjR4+WJJ07d05bt27N1XlcXV0VEBAgSfrjjz8y7btnzx7dunVLkrKVEE/ZsE+SduzYkWnfrK4DAAAAAFBUkSQG7NyLL74oNzc3SckboJ08eTLP5xw8eLBcXV3l6uqqChUqqFOnTnk+Z06lvDZS8kZrBYWjo6O6du0qSVq7dq0OHz6cJ/N06NDBOI6IiMj18Tt27ChJOnjwoP78888M+3399ddp7rFG48aNjdXE8+fPl9lsTrdfeHi41q5da/W4AAAAAAAUJSSJATtXsWJFTZs2TZJ0/fp1tWrVKssVo2azWdeuXcvxnHXr1lVsbKxiY2MVGhqaae1dWyv7b2kRSTp+/LgNI0nr1VdflaOjo5KSktSnTx+FhYVl2DcxMVELFy606HPixAlt2rQp0zlSJ06rVKly90HfYeTIkcbGdk899ZQiIyPTjeGbb76RlFwWIzAw0OrxXV1dNXz4cEnS3r17NWXKlDR9EhISNGLECMXHx+fkKQAAAAAAUOhRkxiARowYofDwcE2cOFFnz55V69at1b59e3Xv3l316tWTj4+PEhMTdf78ee3evVtLlizRwYMHJSWvaHWxZrO/PHLr1i0dOHDAqr7Vq1e3WBlsjRYtWhjHY8aM0WuvvaayZcsaZSgqV64sJyfbfJTWq1dPH3zwgcaMGaNDhw6pbt26euqpp9S+fXuVLl1asbGxOnXqlH7//XctXbpU586d0/79+1W+fHlJUmhoqNq1a6fatWurV69eatKkifz/ra195swZfffdd1qyZIkkqUGDBmrWrFmePIf//Oc/mjJlivbt26dGjRpp7NixatiwoW7evKlVq1Zp2rRpSkxMlIuLi2bOnJntOcaPH68lS5YoLCxMY8eO1d69ezVkyBCVKlVKR48e1UcffaQdO3aoSZMm2rlzZ64/RwAAAAAACjqSxAAkSRMmTFD9+vX10ksv6cSJE9qwYYM2bNiQYX+TyaQHHnhAU6ZMUbly5fIxUktnz561qDubmT179qhBgwbZGr969erq16+flixZorVr16YpSXDy5ElVrlw5W2Pmpv/7v/+Tp6en/u///k/Xr1/XlClT0l0tK0kuLi7pJskPHTqkQ4cOZThHrVq1tHz58jyrzzx58mTdvHlTX3zxhY4fP66nnnoqTZ/ixYtryZIl2f75pdz7yy+/qGPHjjp//ry+/fZbffvttxZ9hg0bprZt2xqrjgEAAAAAsCeUmwBg6NWrl/7++28tWbJETzzxhGrXri0/Pz85OTnJ29tbVapUUY8ePfTuu+/q+PHj+vnnn7O1iVhhtWDBAr3//vtq2rSpihcvbpRHKChGjBihEydOaOLEiWrZsqXxM/P09FSNGjXUu3dvzZgxQ+Hh4apevbpxX+vWrRUcHKxXX31V7dq1U/Xq1VWsWDE5OzurdOnS6ty5s2bMmKG9e/fmSamJFA4ODvr888+1efNmDRw4UBUrVpSrq6u8vb3VoEEDjRs3Tv/88486d+6c4znq1KmjgwcP6uWXX1ZAQIBcXV3l5+endu3aadGiRZo9e3YuPiMAAAAAAAoXkzmjXXyAXFC+fHmFh4fL398/03qpKeLj4y02x/Lz87NpKYOsHDlyxDiuVauWDSMBYEt5+dm1YsUK47hnz565MiYApMbnDIC8xGcMgLxmD58z2c2v5UTBWg4HAAAAAAAAAMhXJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGIDdmzNnjkwmk0wmk06dOnVXYwUFBclkMikoKChXYrM3EyZMMH4WAAAAAAAgf5AkBrIQGRmpzz//XEFBQQoICFCZMmUUEBCgoKAgLVy4UFFRUbYO8a4NGzYs20nSypUry2QyqXLlynkaGwAAAAAAAPIWSWIgA6GhoXr22Wfl7++v559/Xps2bdKxY8d04cIFHTt2TJs2bdKkSZPUtm1bTZw4UaGhobYOGXkkJYlelBLiubl6GgAAAAAAFG4kiYF0hISEqGHDhpo+fXqWK4Wjo6O1ePFiNWrUSNu2bcunCJGbhg0bJrPZLLPZfNeJ4ODgYJnNZgUHB+dKbAAAAAAAAHmNJDFwh5CQEHXs2FFXrlyxvOBYUirWWyrxZPJ/HUtaXL58+bI6dOhAohgAAAAAAACFipOtAwAKktDQUPXo0UOxsbG3T7rUlnz+TyrWTTK53D6fFCdF/SRd+USKPyRJio2NVY8ePbR7925VrFgxf4MHAAAAAAAAcoCVxEAqkydPtlxB7NlFqrhW8n7EMkEsSQ6ukndvqeKvyf3+dfnyZb333nv5FHHBExwcbNS6TSm5sGTJEnXo0EElS5aUu7u7atasqZdffjntau1U7qwDfP78eb300kuqUaOGPDw85O/vr379+ungwYMW9506dUqjR49WjRo15O7urtKlS2vgwIE6fvx4hnNlVJ93woQJMplMmjt3riTp9OnTRr/Uj9SCgoJkMpkUFBSU6es0b948tW3bVvfcc4+8vLxUr149/e9//1NkZKQkGWNPmDAh3fsPHDigSZMm6YEHHlD58uXl6uoqLy8vBQQEaOjQodq+fXu696X8fIYPH26cq1KlSprnlFG5jB9//FF9+/ZVxYoV5ebmphIlSqhJkyaaOHGirl69mulzlqSwsDA999xzqlq1qtzc3FSuXDn16NFD69evz/JeAAAAAACQN1hJDPwrMjJS8+fPv33CpbZU9mvJwS3zGx3cpbJfSaEPGCuK582bp3fffVfe3t55GHHBl5SUpMGDB2vBggUW548ePaopU6bohx9+0JYtW1SmTJlMx9m3b5+6dOmi8+fPG+diYmL0/fffa82aNfrll1/UqlUrbdiwQY888oiuX79u9IuNjdWiRYv0888/a8uWLapTp07uPslsunXrlvr27asVK1ZYnD9w4IAOHDigBQsWaN26dZmOERwcrHbt2qU5Hx8fr2PHjunYsWOaN2+eXnnlFb377ru5EvfVq1fVp08fbdiwweJ8XFycdu3apV27dumLL77QihUrdP/996c7xpYtW9StWzcjES5J586d06pVq7Rq1aoME+IAAAAAACBvsZIY+Nf8+fMtN6nz+b+sE8QpHNwlnxeMZlRUVJrEqD164403tGDBAj388MNavny5du3apTVr1uihhx6SJB07dkxjxozJdIzo6Gj16tVL8fHxeueddxQSEqLt27drwoQJcnFx0c2bNzV48GAdO3ZMDz/8sIoVK6ZPPvlE27dv19atWzVmzBiZTCZdvXpVTzzxRLbif/bZZ7V//3717NlTklSuXDnt378/zSM7XnjhBSNBXKdOHc2ePVs7duzQb7/9pueff14nTpzQo48+mukYCQkJ8vT0VL9+/TRjxgwFBwdr9+7d+uWXX/Thhx+qUqVKkpJXxs+ePdvi3sDAQO3fv1+TJk0yzv36669pnlNgYKBxPS4uTh07dtSGDRvk6OiowYMH69tvv9X27du1ZcsWvf322/L19dXFixfVtWtXnT59Ok3MoaGhRoLYwcFBzzzzjNavX68dO3bom2++UUBAgCZMmKDVq1dn6/UEAAAAAAB3j5XEwL++//772w3Hksk1iLPDq1vyfYmXJCWXWHj22WdzMcLCZ9u2bZo0aZJee+01i/NdunRRly5dtHbtWi1dulTTpk1TyZIl0x3j0qVLMpvN+vPPP1WtWjXjfLNmzeTn56fnn39ep06dUosWLVSmTBmFhIRYjNWyZUs5OTlpypQp+uOPP7Rnzx41bNjQqvhLlSqlUqVKqUSJEpIkZ2dn1a1bN5uvwm179uzRjBkzJEnNmzfXb7/9Jnd3d+N6+/bt1bZtW/Xt2zfTcRo0aKCwsDAjrtQeeOABPf/88+rWrZvWrVuniRMnasiQIXJ0dJQkeXp6qm7dutq5c6dxT40aNYyyHun53//+p927d6tEiRJav369GjdubHG9VatWGjhwoJo3b65z585p3LhxWrhwoUWf//znP8YK4gULFmjAgAHGtSZNmqhv375q3bq1RVwAAAAAACB/sJIY+Fd4ePjthkebtDWIs+LgKnm0Nppnz57NpcgKr8aNG2vcuHFpzptMJr344ouSklfF/v7775mO89Zbb1kkiFM8/vjjcnNLXu196dKlDJPNI0eONI63bNmSreeQm7788kuZzWZJ0ldffWWRIE7Rp08f9erVK9Nx/Pz80k0Qp3BxcdGUKVMkJddR3rt3b45jjoqK0ueffy4p+edwZ4I4RaVKlfTGG29ISv6Fy82bN41r58+f1w8//CBJ6tatm0WCOEWxYsX05Zdf5jhOAAAAAACQcySJgX/duHHjdsPxnpwN4nD7vtR1V+3VY489lmZjtxSpk40nTpzIcAyTyaR+/fqle83d3V0BAQGSpHvuuUcPPPBAuv2qVKmiYsWKZTlXXkvZnK1hw4aZ1kYeMmRItsaNi4tTaGioDh06ZNQ2TklGS8k1nXNq06ZNRo3nPn36ZNq3TZs2kpLrLu/atcs4v3HjRiUmJkqSxYZ5d2ratKnNa0YDAAAAAGCPKDcB/KtYsWK6cOFCciPxas4GSbp9n71vWidJtWrVyvCaj4+PcWyRoL+Dn5+fRd87payorV69eoYJ6ZR+N27cyHSuvBQbG6tjx45JUoarcVM0adIky/Fu3rypadOmafHixTp48KCRhE1PRERE9oJNJXX5h7Jly1p9X+pNBlPXbU5d6zg9TZs21cGDB7MRIQAAAAAAuFskiYF/+fv7G0k8RW+WzPHZKzmRFJd837/KlSuXyxHmndTJ1dQrUDOT0i+zxKyHh0eG1xwcbn+RIbMEZ2ZjpB7H2n6ZzZWXrl27ZhxnVH/Z2uunTp1S+/btdfLkSavmjomJsapfei5evJij+6Kjo43jK1euGMelSpXK9L7SpUvnaD4AAAAAAJBzJImBf/Xt21ebNm1KbiRekm78JHk/Yv0AUT9JibdXbGZUIqEgSl0b19qEYkrNWU9PzzyJCRkbPHiwTp48KZPJpOHDh6t///669957VbJkSbm4uMhkMikpKcnYrM7axH96UifVd+/eLWdnZ6vuK1++fLrnM/ulAgAAAAAAsA2SxMC/Bg8erFdeeUVRUVHJJ65MlbwelBzSbi6WRlJMcv9/eXl5adCgQXkSZ15IXc7h/Pnzql27dqb94+LijJWxmZWCwG2pN5q7dOlSpn0zu37kyBFt3bpVkjRu3DhNmjQp3X6pV+/eDV9fX+O4ZMmSGSZ/M3PPPbdrdV+4cEEVKlTIsK9R8gUAAAAAAOQbNq4D/uXt7a3BgwffPhF/SDo3IjkBnJmkmOR+8YeNU0OGDClUNYnvu+8+4zj1hmMZ2bdvn7HCNPW9RVVurH51c3NTtWrVJGX9GqeuA3yn1PV6H3300RyNIVn/nBo2bGgch4SEWHXPnerVq2cc79ixI9O+WV0HAAAAAAC5jyQxkMorr7xisXJSN3+RQh+QIpcl1xxOLSlOilyafP3mL8ZpX19fjR07Np8izh1t27aVk1PyFwsWL16cZXmCBQsWGMcdOnTI09gKAjc3N0nJK6jvRsprtWfPnkw3Z5s3b16G1xISEozjlJIf6ZkxY0amsaQ8Jynz59WxY0ej3vO0adNyVLqiXbt2RumLuXPnZthvx44dOnDgQLbHBwAAAAAAd4ckMZBKxYoVtWLFCosEmuIPSeeflk42kM49JV0Ym/zfk/Wl888kX/+Xm5ubVq5cqYoVK+Z/8HehdOnS6tu3r6TkurOTJ0/OsO+GDRuMBGTlypXVo0ePfInRlsqWLSspeRO3Gzdu5Hicp556yljBO2LEiHTrPy9btkw//PBDhmMEBAQYx3PmzEm3z/Tp07VixYpMY0l5TpJ0/PjxDPuVKFFCzz//vCRp27ZtGjNmjJKSkjLsf+HCBX399ddp5urZs6ckaeXKlVqyZEma+6KiovT0009nGjMAAAAAAMgb1CQG7tCyZUutX79ePXv21OXLl29fSLwk3Vie4X2+vr5auXKlWrRokQ9R5r4PP/xQv/32my5evKhx48YpODhYgwYNUo0aNeTk5KSwsDCtWrVKc+fOVUJCghwcHDRr1ixjhWhRlvIzTUpK0jPPPKNRo0bJz8/PuF69enWrxmncuLFGjBihL7/8Ur///rsCAwP13//+V3Xr1lVkZKSWL1+u6dOnq2nTpvrzzz8lpS0L0bBhQ9WtW1cHDhzQzJkzdfXqVQ0ePFhly5ZVWFiYFixYoKVLl6ply5aZlodo2LCh3NzcFBsbqzfeeEPOzs6qVKmSHBySf3fo7+9vbGj4v//9T5s2bdIff/yhTz75RMHBwRoxYoQaNGggT09PXb16VQcPHtT69ev1888/q169enryySct5vvwww+1bt063bhxQ4899pg2bdqkPn36yNvbW3/99ZcmT56so0ePqkmTJlmWygAAAAAAALmLJDGQjpYtW2r37t167733NG/evNub2aXDw8NDPXv21OTJkwvdCuLUypYtq82bN6tXr146fPiw1q5dq7Vr16bbt0SJElqwYIHatWuXz1HaRvv27XX//fdr+/btWrRokRYtWmRxPTslGD799FOdPXtWP/30kw4ePKhhw4ZZXK9SpYoWLVpkJJ4tVrUrOWk8f/58tW/fXlevXtWSJUvSrMytV6+evv/+e5UrVy7DOIoVK6bRo0fr/fff1+7du9W5c2eL6xs3blRQUJAkydXVVevWrdOwYcO0fPly7du3z1hdnJ706nFXrlxZK1euVI8ePXTjxg198cUX+uKLLyz6jB8/XiaTiSQxAAAAAAD5jHITQAYqVqyozz//XOHh4fr888/Vtm1bBQQEqHTp0goICFDbtm31xhtvaPPmzRo/fnyhThCnqFmzpv766y8tWLBAffr0UaVKleTh4SEXFxeVKVNGHTp00JQpU3Tq1Ck99NBDtg433zg4OGjt2rV6/fXXVb9+fXl5eeV4MzsXFxetXLlSs2fPVqtWrVS8eHF5eHjo3nvv1bhx47Rr1y6LutjFixdPM0aDBg20d+9ePfPMM6pUqZKcnZ3l4+Ojpk2b6oMPPtCff/5pUU4iI5MnT9ZXX32l1q1by8fHJ9NV4cWKFdOyZcu0ZcsWPfnkk6pZs6aKFSsmJycn+fj4KDAwUM8995zWrFmjdevWpTtGUFCQDh48qJEjR6pSpUpycXFR6dKl9dBDD+mXX37RxIkTrXgFAQAAAABAbjOZc7ILEWCl8uXLKzw8XP7+/goLC8uyf3x8vCIiIoy2n5+fXFxc8jLEu3LkyBHjuFatWjaMBEXJ1q1b1bp1a0nS+vXr7WJzwMIuLz+7UteXTqntDAC5ic8ZAHmJzxgAec0ePmeym1/LCVYSA0AB8+2330qSnJ2d1bhxYxtHAwAAAAAAijqSxACQjyIiInTt2rUMr//666+aOXOmJKlHjx4qUaJE/gQGAAAAAADsFhvXAUA+OnDggHr27Km+ffuqY8eOqlatmhwcHHT69GmtXLlSCxYsUGJiotzd3fXOO+/YOlwAAAAAAGAHSBIDQD6LjIzUN998o2+++Sbd697e3vr+++9Vo0aNfI4MAAAAAADYI5LEAJCPmjRpojlz5uiXX37Rvn37dOnSJV27dk3e3t6qXr26unTpoueff14lS5a0dagAAAAAAMBOkCQGgHzk5eWloUOHaujQobYOBQAAAAAAQBIb1wEAAAAAAACAXSNJDAAAAAAAAAB2jCQxAAAAAAAAANgxksQAAAAAAAAAYMdIEgMAAAAAAACAHSNJDAAAAAAAAAB2jCQxAAAAAAAAANgxksQAAAAAAAAAYMdIEgMAAAAAAACAHSNJDAAAAAAAAAB2jCQxAAAAAAAAANgxksQAAAAAAAAAYMdIEgPINxMmTJDJZJLJZLrrsVLGmTBhwt0HBgAAAAAAYMdIEgN2KjExUd7e3jKZTGrUqFGmfc1ms3x9fY3E7KxZszLtP3fuXKPv9OnTczPsfBccHGw8lzsfHh4eqlChgrp166ZZs2YpLi4uy/EyGiujR4MGDdKMMWfOHIs+1apVs+q5nDlzRo6Ojhb3njp1KpuvCAAAAAAAKGpIEgNZiIyM1Oeff66goCAFBASoTJkyCggIUFBQkBYuXKioqChbh5gjjo6OatGihSRp3759ioyMzLDvwYMHdeXKFaO9ZcuWTMdOfb1NmzZWxxQUFCSTyaSgoCCr77GlmJgYhYWFafXq1XriiSfUuHFjmyRdT5w4oW3btmXZb+HChUpKSsqHiAAAAAAAQGHiZOsAgIIqNDRUkydP1vz589Mkgi9cuKBjx45p06ZN+uijj9SjRw+99957qlixoo2izZk2bdro119/VVJSkrZt26YuXbqk2y8l6evo6KjExESrk8R+fn6qXbu2cX7ChAmFujzEyJEj9eyzzxrtixcv6sCBA5oyZYrCwsJ08OBB9ejRQ3v27JGjo2OmYzVp0kSzZ8/Ock53d/dMr7u5uSk2Nlbz5883kv4ZmT9/vsU9AAAAAAAAEiuJgXSFhISoYcOGmj59epYrhaOjo7V48WI1atTIqtWcBUnqVb6bN2/OsF/Ktb59+0qSjh8/rrNnz6bb9+LFizp69KgkqVWrVrlSf7igKFWqlOrWrWs82rdvr9GjR+vQoUOqXLmyJGn//v364YcfshzL09PTYqyMHlmVkujRo4ckacmSJYqPj8+w3+7du3Xo0CFJUs+ePa18xgAAAAAAwB6QJAbuEBISoo4dO1qUV5Ak+RaTujWRBrVJ/q9vMYvLly9fVocOHQpVojgwMFBubm6SMi8hkXKtT58+RtIyo/45LTVRmBUrVkyvv/660V6/fn2+zf3oo4/KxcVFV65c0erVqzPsl7KKODAwULVq1cqv8AAAAAAAQCFAkhhIJTQ0VD169LD8Kn6NctJHw6Tg/0kfDpXe6Jv83+CJyf+tUc7oGhsbqx49eig0NDT/g88BV1dXNW3aVJK0Y8eOdDdeO3nypMLDwyUlrwxu1aqVpJwliSdMmGBsmJbasGHDZDKZtGnTJknSpk2b0mzglrJSNyM7duzQgAEDVL58ebm6usrf31+DBw/W4cOHM70vt9SrV884PnPmTL7MKUk+Pj566KGHJN1OBN8pISFB3377rSRp8ODB+RYbAAAAAAAoHEgSA6lMnjzZcgVx+3rS0pekhxpLLneU8HZxTl5R/P1/kvv96/Lly3rvvffyKeK7l5LIjYuL0x9//JHmekqpiYCAAJUuXdpIEmdUniIlSezt7a0GDRrkQcRpffHFF2rRooUWL16s8PBwxcfH6+zZs1qwYIGaNGmSaSmN3OLi4mIcOzs75/l8qaUkflevXp12BbyktWvX6sKFC3JyclL//v3zNTYAAAAAAFDwkSQG/hUZGWm5ErNGOWnqcMk1i4Sfm4v08TCLFcXz5s1TZGRk3gSay1Kv9k1vdXDKuZTkcMp/Dxw4oKtXr1r0vXHjhvbt2ydJatGiRZabt6V4++23tX//fjVp0kRS8qZu+/fvt3isXbs23Xt//fVXjRo1SnXq1NGsWbO0Y8cObd68WWPGjJGDg4Oio6M1ePDgTOv15obUK5azWvWc2x566CH5+PgoPj5eS5YsSXM95X3dpUsXlSxZMl9jAwAAAAAABZ9T1l0A+zB//nzLTeqe6Zx1gjiFm4v0dCfpP3MlSVFRUVqwYIGeffbZPIg0dzVv3lxOTk5KSEjINEncunVrSVKtWrXk5+eniIgIhYSEqFu3bkbfbdu2KTExUVL26hH7+/vL399fnp6ekm5v6maN7du3q2vXrvrhhx8sVvO2bt1avr6+ev311xUaGqrVq1erV69eVseUHYmJiZoyZYrR7tOnT5b33Lx5UwcOHMiyX/ny5VWiRIlM+7i4uOjRRx/V9OnTNX/+fD3zzDPGtRs3bmjFihWSpCFDhmQ5HwAAAAAAsD+sJAb+9f33399u+BaTOtXP3gCd61tsZpfeis6CyMvLSw0bNpRkmeSVpIsXL+ro0aOSbq8glqSWLVtKSrvy2Bab1rm5uWn27NkWCeIUo0ePNs5ntjFfTl26dEkbNmxQ27ZttWfPHknJCeLUr1VGdu7cqXr16mX5+PHHH62KJaXkxLZt23TixAnj/NKlSxUTE6PixYure/fu2X+SAAAAAACgyCNJDPwrZXM2SVLzmmlrEGfFxVlqXsNonj17Npciy3spCd0bN25o7969xvmUWr6lS5dWQECAcT6jusQpiVg3NzcFBgbmZciGTp06qVSpUuleK1asmBF36sRpTk2cONFiM71SpUqpQ4cOCgkJkYeHh1588UUtWrTorufJiebNm6t69eqSpAULFhjnU0pN9O3bV25ubjaJDQAAAAAAFGwkiYF/3bhx43ajhEfOBil++77CUpNYul1KQrJccXtnPeI7++/atUsxMTGSpPj4eP3555+SpGbNmqW7sjcv1KpVK9PrPj4+ku74+eaBBg0aaPTo0VZvWte2bVuZzeYsH8OGDbM6hpTVxClJ4jNnzig4OFgSpSYAAAAAAEDGSBID/ypW7HapCF2Lztkg12/f5+3tfZcR5Z/WrVvLZDJJsi5J3KhRI3l4eOjWrVvavn27JGnHjh2KjY2VlH+lJiTJwyPzhL6DQ/LHXOoyGjk1cuRIYyO9PXv2aNWqVRo6dKgcHBy0bds2BQUF6dKlS3c9T04NGjRIkvTPP/9o+/btWrBggcxmsypXrmxVCQwAAAAAAGCfSBID//L397/d+P1vKT4hewPE35K2/W00y5Url0uR5T0fHx/VqVNH0u3EcGRkpPbt2ycpbZLY2dlZTZs2lXS75IQt6hHnt1KlSqlu3bqqW7euGjRooG7dumnOnDmaNWuWJOnUqVN68sknbRZf1apVjXrR8+fPN0pNDBo0yPglAAAAAAAAwJ1IEgP/6tu37+3G5RvSun3ZG2DtPulKlNHs169fLkWWP1ISu5cuXdKRI0cUEhKipKQki43tUktJHKckh1OSxc7OzmrevHk+RV0wDB06VL1795YkrVy5Uhs2bLBZLCllJWbNmqXDhw9Lul2GAgAAAAAAID0kiYF/DR48WF5eXrdPzFgrxcZbd3NsvDRzrdH08vIyvvpfWNxZlzgl+Xv//ffL0dExTf+UJPH27dsVFxenbdu2SUouReHp6ZmjGArzatd33nnHeJ3GjRtnszj69esnV1dXo/RHs2bNVKNGjSzuAgAAAAAA9owkMfAvb29vyxWXR89KY+ZknSiOjU/ud/SccWrIkCGFqiaxZFkiYvPmzcbK4Ixq2TZv3lyOjo66efOm5syZo+vXr6cZJ7vc3NwkSXFxcTkew1Zq1KhhrB7/448/tG7dOpvEUaJECT388MNydXWVq6urhg4dapM4AAAAAABA4UGSGEjllVdeka+v7+0TG/ZLfT+UftqZXHM4tfhb0qqdydc37DdO+/r6auzYsfkUce4pV66cqlWrJknauHGjdu7cKclyhXFq3t7eqlevniTp/fffN87fTZK4bNmykqQTJ07IbDbneBxbGTdunLEaetKkSTaLY/HixYqNjVVsbKxGjhxpszgAAAAAAEDh4GTrAICCpGLFilqxYoU6duxofF1fR89K/5kr+RaTmteQintI16OTN6lLVYNYSl4Ju3LlSlWsWNEG0d+91q1b6/jx4woPD5ckOTk56f7778+wf6tWrbR3716dOHFCkuTg4JDhymNrtGjRQrNnz9bFixf14osvatCgQSpevLik5FrHlSpVyvHY+aFu3brq0aOHVqxYoc2bN2vr1q0Zvh43b97UgQMHrBq3du3acnDgd3oAAAAAACBvkHUA7tCyZUutX7/eckWxlLyZ3U+7pIVbkv97R4LY19dXv/32m1q0aJGP0eauO1cBN2zYUB4eHhn2vzMBWq9ePZUoUSLH8/fv319Vq1aVJE2dOlVNmjRRQECAAgIC1LZt2xyPm59ee+014/itt97KsN/OnTtVr149qx6RkZH5EToAAAAAALBTJImBdLRs2VK7d+/Ws88+a7mZXTo8PDw0YMAA7d69u1AniKW0SeKsVgXfWYribkpNSMkb/m3btk0vvPCC7r333kwT1AVVYGCgOnXqJElau3atduzYYeOIAAAAAAAAMmcyF8bCnyg0ypcvr/DwcPn7+yssLCzL/vHx8YqIiDDafn5+cnFxycsQsxQZGakFCxZoyZIlOnv2rCIjI+Xt7a1y5cqpTZs26tmzpzw9PVWrVi2bxgnAdvLys2vFihXGcc+ePXNlTABIjc8ZAHmJzxgAec0ePmeym1/LCWoSA1nw9vbWs88+q2effTbNtSNHjtggIgAAAAAAACD3UG4CAAAAAAAAAOwYSWIAAAAAAAAAsGMkiQEAAAAAAADAjpEkBgAAAAAAAAA7RpIYAAAAAAAAAOwYSWIAAAAAAAAAsGMkiQEAAAAAAADAjpEkBgAAAAAAAAA7RpIYAAAAAAAAAOwYSWIUaGaz2dYhAECW+KwCAAAAABRmJIlRoJhMJot2UlKSjSIBAOvdmSS+87MMAAAAAICCjCQxChRHR0eL5EpcXJwNowEA69z5WeXo6GijSAAAAAAAyD6SxChQHBwc5OLiYrRjYmIUHx9vw4gAIHNJSUmKjY012i4uLnJw4H+vAAAAAIDCw8nWAQB3cnd3N1blmc1mXb58We7u7nJ1dZWDg0OB+hp36nIYJLMB+2I2m5WQkKCbN28qMTHROO/q6mrDqAAAAAAAyD6SxChw3N3dFRMTY5Eojo6OVnR0tI0jSyshIcE4joiIsGEkAAoCR0dHeXp62joMAAAAAACyhSQxChyTySQfHx9duXKlwNckLoiJawC2kfLZRakJAAAAAEBhQ5IYBVJKsiUmJkaxsbGKi4uT2Wy2dVhpxMTE2DoEADbm4OAgDw8PeXh4yMmJ/60CAAAAAAof/jV7l7Zt26Y5c+Zo69atCgsLkySVL19erVq10rBhw9SiRYs8nX///v2aPXu21q9fr7CwMMXHx8vf319NmjTR4MGD1aVLlzydPy+ZTCYj8ZKUlKTExMQClyjevXu3cezn52fDSADYgslkkpOTU4GqlQ4AAAAAQHaRJM6hmzdvavTo0Zo1a1aaa4cPH9bhw4f11Vdf6fHHH9e0adNyvUZlQkKCxo8fr/fee89i8zRJOnr0qI4ePapFixapW7dumjVrlkqWLJmr8+c3BweHAvkV7tSbVbm4uNgwEgAAAAAAACBnSBLnQGJioh555BGtXbvWOOfu7q46derIyclJhw4dUmRkpCRp1qxZCg8P1+rVq+Xo6JhrMTz99NMWCWpnZ2fVrl1bXl5eOnLkiC5fvixJ+umnn9SpUyeFhISwmRIAAAAAAACANAre0sxC4I033rBIEI8YMUJhYWHasWOHfv/9d509e1avv/66cf3XX3/V+PHjc23+L7/80iJB3KNHD508eVJ79+7V1q1bde7cOX366adGbcx9+/bpqaeeyrX5AQAAAAAAABQdJImzKTw8XB9//LHRHjx4sL788kv5+PgY5zw9PfXWW29ZJIo//vhjnT179q7nj46O1ptvvmm0g4KCtHz5cvn7+xvnnJ2d9fzzz2vGjBnGuW+//daifi4AAAAAAAAASCSJs23atGmKjY2VJHl4eGjq1KkZ9n3jjTdUoUIFSVJMTIw++eSTu55/7ty5On/+vKTkDZOmT5+eYRmLJ554Qs2aNZMkmc1mvffee3c9PwAAAAAAAICihSRxNi1fvtw47tevn8UK4ju5uLho+PDhRvuHH3646/mXLVtmHLdt21a1atXKtP/TTz9tHK9Zs0ZxcXF3HQMAAAAAAACAooMkcTb8/fffOnbsmNHu0qVLlvc8+OCDxvE///yjo0eP5nj+qKgobd68OcfzR0VFadOmTTmeHwAAAAAAAEDRQ5I4G/bt22fRbt68eZb3NGrUSC4uLhmOkR2HDh3SrVu3sjV/mTJlVLly5VyZHwAAAAAAAEDRQ5I4Gw4fPmwcu7i4GPWGM3Nnv9Rj3M38klStWjWr7kvd727mBwAAAAAAAFD0kCTOhtOnTxvH5cuXl8lksuq+ihUrGsenTp3KlfmdnJxUtmzZfJ0fAAAAAAAAQNHjZOsACpPIyEjjuHjx4lbf5+3tbRzfuHEjV+YvVqyYHBysy/Hn1vwpPvroI3300UdW9Q0PD5cknTt3TiVLlrzruQsas9lsHD/55JM2jARAUcXnDIC8xucMgLzEZwyAvGYPnzNXrlyRJF28eDHP5iBJnA03b940jt3c3Ky+z93dPd0xCtv8KSIjI43kr7WSkpIUERFx13MDAAAAAAAA9igxMTHPxiZJnA2pN41zcrL+pUvdNz4+vtDOn8Lb21v+/v5W9T179qwRQ6lSpe567oImdbLc2tcEALKDzxkAeY3PGQB5ic8YAHnNHj5nLl68qMTExGwtGs0uksTZ4OHhYRzHxsZafV/qvp6enoV2/hQvvviiXnzxxbsepyhwdHRUUlKSHBwcFBYWZutwABRBfM4AyGt8zgDIS3zGAMhrfM7kDjauywYvLy/jOCYmxur7oqOj0x2jsM0PAAAAAAAAoOghSZwNfn5+xvG5c+esvu/8+fPGsa+vb67MHxUVpaioqHydHwAAAAAAAEDRQ5I4G2rWrGkcX7582WKFbmbOnDljHNeqVStX5pek0NDQfJ0fAAAAAAAAQNFDkjgb7r33Xov23r17s7wnPDxcly5dynCMvJ7/1q1bOnDgQK7MDwAAAAAAAKDoIUmcDU2bNpWrq6vR3rp1a5b3bNmyxTh2c3NT06ZNczx/1apVVb58+WzNv2vXLov6xW3atMnx/AAAAAAAAACKHpLE2eDl5aUOHToY7YULF2Z5T+o+HTp0kKen513F0KNHD+P4+++/V3x8vNXz16lTR9WqVbur+QEAAAAAAAAULSSJs2nYsGHG8V9//aVVq1Zl2Hf37t36+eef0703N+aPiIjQzJkzM+wbFhamuXPn5ur8AAAAAAAAAIoWksTZ1KdPH9WvX99oP/300zpy5EiafufOndOgQYOUmJgoSWrQoIF69+6d7pjBwcEymUzGY86cORnOHxgYaLGaeNy4cQoJCUnTLzIyUo899phu3LghSSpbtqyee+45q54jAAAAAAAAAPvhZOsAChuTyaSvv/5abdq0UUxMjM6dO6dmzZpp5MiRatOmjZycnPTnn3/qs88+04ULFyRJ7u7u+uqrr2QymXIlhk8++US///67Ll26pKioKHXo0EFPPPGEOnfuLC8vL/3111/69NNPdfLkSUmSg4ODZs6cKXd391yZHwAAAAAAAEDRQZI4B5o0aaKFCxdq4MCBiomJUWRkpN577z299957afq6u7tr4cKFatKkSa7NX7lyZf3444/q3r27rly5ori4OH3xxRf64osv0vR1dHTUJ598ou7du+fa/LitW7duun79uooXL27rUAAUUXzOAMhrfM4AyEt8xgDIa3zO5A6T2Ww22zqIwurw4cMaNWqUNmzYoDtfRpPJpA4dOujTTz9VrVq1Mh0nODhY7dq1M9qzZ8+2qn5weHi4XnjhBa1YsUIJCQlprjdt2lRTp05V8+bNrXtCAAAAAAAAAOwOSeJccObMGW3btk3h4eGSJH9/f7Vo0UIVKlTIl/kvXbqkzZs3KywsTPHx8SpXrpwCAwNVo0aNfJkfAAAAAAAAQOFFkhgAAAAAAAAA7JiDrQMAAAAAAAAAANgOSWIAAAAAAAAAsGMkiQEAAAAAAADAjpEkBgAAAAAAAAA7RpIYAAAAAAAAAOwYSWIAAAAAAAAAsGMkiQEAAAAAAADAjpEkBgAAAAAAAAA7RpIYAAAAAAAAAOwYSWIAAAAAAAAAsGMkiQErnD59WmPHjlX9+vVVvHhxOTo6ymQyyWQyycnJSaVLl1avXr108uRJW4cKoBCKjo7WN998o4cfflgBAQEqVqyYxeeMg4OD3N3dVbNmTb399ttKSEiwdcgAipitW7canzkpj6CgIFuHBaAQmTp1aprPEWsea9assXXoAAqxw4cPa8CAAfLz85Ozs7NFrsbX11cdO3bUzJkzFR8fb+tQCzyT2Ww22zoIoKBas2aNhg8frosXL1p9z8MPP6xly5bJwYHfwQCwTmBgoHbu3Gl1f3d3d33zzTcaMGBAHkYFwJ74+fnp8uXLFufatm2r4OBg2wQEoNCZOnWqxowZk+37Vq9era5du+ZBRACKsoSEBPXr108//PCDVf3nzp2rIUOG5HFUhZuTrQMACrLffvst3QSxi4uL3N3dlZSUpKioKKX+XcuPP/6oe++9V4cPHyZRDMAq6f2+1s3NTa6urjKZTIqOjrb4zXdMTIwee+wxXbt2TSNHjszPUAEUQSNHjkyTIAaAu+Xr62tVv5IlS+ZxJACKmtjYWFWrVk1nz561OO/k5CQPDw9Jyf9munXrli3CK7TIYAFWKlu2rF599VWdOXNGcXFxunbtmiIjI5WQkKBXX33VIiF89OhRDRw40IbRAihM3N3dVapUKQ0ePFhr1qyR2WxWTEyMrl27pqtXryouLk6HDh1Sy5YtLe4bNWpUtr7pAAB3+vvvvzVz5kxJyb8E5xfcAHKDo6OjIiIirHoEBgbaOlwAhUytWrUsEsSNGzfW1q1bdevWLV2/fl3Xr19XfHy8zpw5oxdffFGlSpWSs7OzDSMuHPhbIJAJV1dX1axZU9u2bdPZs2f1zjvvqHz58hZ9HBwc9M4772jbtm0W/7D67rvvFB0dnd8hAyiEtmzZogsXLmjevHl68MEH0+1z7733auvWrRZfkUpMTNQrr7ySX2ECKIIefPBB49sMH3zwgUwmk40jAgAAyNhzzz2n06dPG+33339fO3fuTLOgRpLKly+vDz/8UBcuXKBUnxVIEgOZeOedd3TkyBE1b948y77NmjWz+NAxm836/PPP8zI8AHZo7ty5cnK6XS1q06ZNNowGQGH27rvvGpvuBgQEaNSoUTaOCAAAIGPnz5/X9OnTjXb//v313//+14YRFS0kiYFc9NJLL1m0d+zYYaNIABRlZcqUMY6vX79uw0gAFFYREREaP368JMlkMmn16tU2jggAACBzL7/8svENKGdnZ82fP9/GERUtJImBXFS1alWLNskbAHkhMTHROHZzc7NhJAAKqy5duighIUGS9MQTTyggIMDGEQEAAGRu+fLlxnHr1q0tvmGJu0eSGMhFv//+u0W7bNmyNooEQFEVHR2tCxcuGO3GjRvbMBoAhdGCBQu0a9cuSVKJEiX01Vdf2TgiAACAzIWGhurmzZtGu0+fPjaMpmgiSQzkoo8//tii3atXLxtFAqCoCgoKUlJSkqTkr4h/9NFHNo4IQGESGxurp556ymgvXLjQhtEAKKoSExNVoUIFOTk5yWQyyWQyydnZWWXLllXfvn0VFhZm6xABFDKLFy+2aHfv3l2SNHPmTFWvXl3Ozs4ymUxycHCQu7u7GjZsqO+++84WoRZaJImBXBIaGqp169YZbTc3N/Xs2dOGEQEoCmJjY7V37169+uqr8vX1tah1/tZbb6latWo2jA5AYdOrVy/FxMRISv6aZteuXW0cEYCiKiwszKJEVkJCgs6fP6+lS5eqQoUKrAIEkC0hISEW7RIlSqh27dp65plndPz4caOMltlsNv4N1b9/f9WqVUtRUVG2CLnQoXgHkEs6depkrO6T0m5iBwDWcnBwMDZkSI+Pj49mzpzJP64AZMuGDRv0yy+/SEre7GXlypU2jghAUebk5CR3d3c5OTkpJiZGsbGxFteXLVumGjVq6OjRozaKEEBhEhERYRw7ODioXr16OnXqlHHO3d1drq6uunnzpm7dumWc//vvv1WpUiWdO3dOLi4u+RlyocNKYiAXDB8+3OIvNxUqVNBbb71lw4gAFFXe3t56+umn9cgjj9g6FACFTOpfLE2aNEklSpSwXTAAihxHR0f5+Pjo2Wef1bFjx3Tr1i1FRkbqypUriomJ0blz5zRgwACZTCbjnn/++UcPPvigDaMGUFjcuHHDOE5KSjISxJUqVdK+ffsUHR2tq1evKj4+Xt999508PDyM/leuXFGnTp3yO+RCx2TObKkSgCx99tlnGjVqlNF2cnLS8ePHVbFiRRtGBaAwq1ixoqKjoyUl1/SLjo5WfHy8RR9PT0/98ssvatWqlS1CBFDIPP7445o9e7YkqXLlyjp58mS6/ZycnIyvh7dt21bBwcH5FSIAO/HHH3+oVatWxlfDJWn//v2qW7euDaMCUNDVrFkzzTcPKlWqZLGaOLWzZ8+qatWqiouLM84dO3aMcn2ZYCUxcBeWLFlikSA2mUz66aefSBADuCuhoaGKiIhQRESErl69qri4OB07dsxipc3NmzcVFBSkgwcP2jBSAIXBwYMHNWfOHEm3/64CALbSrFkzzZgxw+Lciy++aKNoABQW7u7uac6l3hfqTuXKldObb75pce6NN97I9biKEpLEQA79/PPP6t+/v9E2mUxavHixHnjgARtGBaCoqlatmtasWaNFixYZ5xITE41dfQEgIw8++KBR5/yxxx5TnTp1bBwRAHv3xBNPWJS8Sb0xLwCkx9PT06Jdrlw5BQQEZHrP2LFjLUrcbNu2LU9iKypIEgM5sHnzZnXv3t1iY6mvvvpK/fr1s2FUAOzBgAED1LlzZ6N98uRJHT9+3IYRASjIvvzyS505c0aS5OXlpXnz5tk4IgBI1qBBA+M4MjLSdoEAKBRKlixp0a5du3aW9zg4OMjHx8dop978DmmRJAayaceOHerQoYNRr0+Spk6dqieeeMKGUQGwJ2PHjrVoL1myxEaRACjoUtcejoqKkqOjo0wmU4aP1H+/2bRpk8W1rVu32uIpACii/P39jeOkpCQbRgKgMGjSpIlF+86kcUa8vLyM4zv3eYElksRANhw4cCDNJgvvvPOOXnjhBRtGBcDeNG3a1KIdFhZmo0gAAABy5ubNm8Zx6q+DA0B6OnXqZNGOjY216r5bt24Zx46OjrkaU1HjZOsAgMLi+PHjCgwMtPjN07hx4/Tqq6/aMCoA9ijlq+MpSpUqZaNIABR07u7u2Uq+pC6lJVkmbpydnXMtLgA4cuSIcezkRGoCQOaaNWsmJycnY9Fe6m9LZebq1avGsYeHR57EVlSwkhiwQlhYmO677z6L31SNGTNGb7/9tg2jAmCvZs+ebdG+c2UxAKQYP368kpKSrH6kXmHTtm1bi2vNmjWz4TMBUJRcuXJFR48eNdqVKlWyYTQACov69esbx4cPH86y/4EDBxQTE2O02bw3cySJgSxERESoTp06io6ONs49/fTT+uijj2wYFQB7FRUVpc8++8xoOzk56cEHH7RhRAAAANnTuXNnizrEffv2tWE0AAqLN954wziOi4vTa6+9lmn/4cOHW7SfeuqpPImrqCBJDGQiMjJSNWvWtNhtd+jQoZoxY4YNowJQlEyePFmBgYHauXNnln337t2rypUrW/w2/LHHHsvL8AAAALL07rvvqkmTJtqxY0em/aKjo3X//fdr165dxjl3d3dNmjQpr0MEUAT07NlTVatWNdrvvvuuli5dmm7f0aNHW/wby9fXV4MGDcrzGAszCv8Amejfv7+uXLlitE0mk3766Sf5+flZdX/z5s21atWqvAoPQBFw/fp17dy5U4GBgSpWrJjq1KmjRo0aqUKFCipevLiuXLmiAwcO6Pfff9fp06ct7i1Tpkya0hMAAAD5LTIyUrt27VLTpk3l7e2t++67T40aNVL58uXl7u6uM2fOaPPmzdqxY4cSExON+0wmk5YtWyYHB9avAbDOypUr1aBBAyUkJMhsNqtv376qV6+eunfvrrJly+rw4cP64YcfdO7cOeMek8lEbsYKJImBTKQuMSElb+Zy+fJlq++3pkYOAKS4ceOGtm/fru3bt2fZNyAgQLt37+YfVQAAoECJjIzU1q1btXXr1kz7OTs7a+7cuZTNApAtderU0YoVK9SjRw/jl0779+/X/v370+3v4OCgefPmqXnz5vkZZqHEvywBALChRx55RI0bN5arq6tV/f39/TVt2jQdPXpUXl5eeRwdAABA1lq3bq2yZcvKZDJl2dfJyUldu3ZVWFiYBgwYkA/RAShqunbtqlOnTmW5EV3dunW1b98+DRw4MJ8iK9xMZrPZbOsgAACAdPr0af3444/at2+fLly4oLi4OHl5ecnPz0/NmzdX7969VaJECVuHCQAAkKENGzYoODhYx44d05UrV5SYmKjixYvL399fvXr1UlBQkK1DBFCERERE6IsvvtCRI0cUEREhHx8f1a9fX08//bR8fHxsHV6hQpIYAAAAAAAAAOwY5SYAAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAA2J1Tp07JZDIZD+S9qKgoffjhhwoKClLJkiXl7OxsvP5BQUG2Di9fBAUFGc95zpw5uTbuhAkTjHGHDRuWa+MCAAD7QZIYAACgkBk2bJhFgtNkMmnbtm1W3586UfXSSy/lYaRAsvDwcDVo0EAvvfSSNm3apIiICCUkJNg6LAAAAPzLydYBAAAA4O69/vrr2rBhg63DANL1zDPP6Pjx40a7Ro0aqlixohwdHSVJ9913n61CsyupV82fPHlSlStXtl0wAACgQCFJDAAAUARs3LhRv/32mzp06GDrUAALFy5c0OrVq432woUL9dhjj9kwIgAAANyJchMAAABFxGuvvWbrEIA0du/eLbPZLEmqVKkSCeI8MGHCBJnNZpnN5lytdQwAAOwHSWIAAIBCrHr16sbxH3/8oVWrVtkwGiCtK1euGMcVKlSwYSQAAADICEliAACAQqx+/frq1auX0R4/fryxahMoCG7dumUcp9QgBgAAQMFCkhgAAKCQe+utt+TgkPzXur179+r777/PlXFNJpPxOHXqVJb9g4ODjf6ZbYhVuXJlo19wcLAkKTIyUp9++qlatmypMmXKyNXVVZUqVdKTTz6pY8eOpRkjKSlJ3333nbp27arSpUvLxcVFZcqUUc+ePbVu3bocPmPpxIkTeuWVV3TffffpnnvukZeXl2rXrq0XX3xR//zzT7bHi4+P14IFC/Too48qICBA3t7e8vDwUJUqVdS/f38tXbrUqqT+sGHDjNdswoQJkpJfgxUrVqhv374KCAiQl5eXxfW7FRwcrGeeeUa1a9fWPffcI3d3d1WqVEldu3bV9OnTdfPmzQzvnTNnjhHv8OHDjfObNm2yeF9l9V7Jjr1792rkyJEKCAiQh4eHSpYsqSZNmmjSpEk6f/68JOnUqVMWc2ckvfdoZqwdNz0xMTH65ptv1L59e5UvX15ubm6qUKGCevXqpR9//NGqMSZMmGDMPWzYMItrqf9cplalSpU0P4v07k9x6NAh/fe//9X9998vPz8/ubi4yN3dXaVLl1bTpk315JNPas6cORYrxwEAQOHBxnUAAACFXJ06ddS/f38tWrRIkvTmm2+qd+/ehWbV5r59+9S7d28dP37c4nxoaKi++eYbLVq0SGvWrFFQUJAkKSIiQr1799bmzZst+l+4cEErV67UypUrNW7cOL399tvZimPBggV66qmnFBMTY3H+8OHDOnz4sKZPn64pU6bo+eeft2q8tWvX6tlnn03zvKTkpOKpU6f03XffqUmTJlqyZImqVKlidawXLlzQwIED9dtvv1l9j7UiIiI0fPhw/fTTT2muhYaGKjQ0VD///LPefvttffnll+ratWuux5Bdb775pt5++20lJiYa52JiYhQREaFdu3Zp6tSp+vbbbxUQEGDDKNM6ceKEevXqpb/++svifFhYmMLCwvTjjz+qa9euWrRokYoXL26TGM1ms8aOHasPP/xQSUlJFtdu3bql2NhYXbx4UTt27NA333yje++9V4cOHbJJrAAAIOdIEgMAABQBEydO1JIlS5SQkKAjR45o/vz5Ga4ILEjOnDmjvn37KiIiQg4ODqpbt658fX0VGhpqJFdjYmLUvXt37dmzR+XKlVOnTp20d+9eScmrIStVqqTr169r3759RhLrnXfeUd26dTVgwACr4vjpp580ePBgScklEerVq6fixYvr5MmTCg0NlSTFxsZq1KhRSkxM1AsvvJDpeHPmzNGIESOUkJBgnCtXrpyqVq0qBwcHHT161FjdunPnTrVo0UJbtmyxqDGdkbi4OHXt2lW7d++WJJUuXVoBAQFKSEjQ33//bdXzzciFCxfUvn17iySfq6ur6tatK09PT/3zzz86d+6cJCk8PFw9e/bU/Pnz1b9/f4tx/P399cADDxj9Dhw4IEm655571LRpU4u+pUuXvquYX3nlFb333nsW56pVq6YKFSro0qVLOnTokC5fvqxu3bpp8eLFdzVXboqMjFSnTp104sQJSVLFihVVpUoVXb9+Xfv37zcS3mvWrNFDDz2kdevWyd3dPdvz+Pj4GD+LX3/91Tjfpk2bdMerV6+eRfu1117TlClTjLbJZFJAQIDKlSsnBwcHXb16Vf/884+ioqIkKU0iGQAAFBJmAAAAFCpDhw41SzJLMvfu3ds4/+STTxrnK1eubI6Pj0/3/rZt2xr9/vOf/2Q4T0ofSeaTJ09mGdfGjRuN/pUqVcqwX6VKlYx+Pj4+ZknmgQMHms+ePWvRb/369ebixYsbfYcMGWJ+7rnnzJLMTZo0Me/cudOi/7Fjx8z16tUz+leoUMGcmJiYbgwnT560eH5+fn5mSeYBAwaYz507l+Z5Va1a1ejr5ORk3rdvX4bPb+vWrWZHR0ejf5cuXcy7d+9O02/t2rUW4wYGBppv3bqV7pipf+bFihUzSzJXq1bN/Ouvv5qTkpKMfvHx8ebQ0NAMY8vKQw89ZMxjMpnML730kvnq1avG9aSkJPOqVavM5cqVM/q5u7ub//777wzHnD17ttG3bdu2OY4tPevXr7f4Od53331p3hfHjx83d+rUyeLnnPLISOr36MaNG7OM4873U0ZS/9lLiaVq1armDRs2WPQ7d+6c+bHHHrMY87///W+G47755ptGv6FDh2bYL7t/ps+dO2d2dnY27hkxYkSaPx9mc/L7Ys+ePebXXnvN3KpVqyzHBQAABQ81iQEAAIqI8ePHy9XVVVJyOYOvv/7axhFl7cqVK3ryySe1YMEClS1b1uJahw4dNG3aNKO9cOFCTZ8+XQ0aNNDGjRvVuHFji/7VqlXTsmXL5OSU/GW5M2fOaNOmTVbFERERocGDB2vRokUqU6aMxbWgoCBt2rTJOJ+QkKAxY8akO05CQoKGDBlirAIdOXKk1qxZo4YNG6bp26lTJ23btk3ly5eXJO3YsUPffvttlrHeuHFDFSpU0NatW9W5c2eLWrPOzs6qUKGCVc/5TitXrtTq1auN9jvvvKMpU6aoRIkSxjmTyaRu3bpp48aN8vHxkZS80jurldV5JfW8NWrUUHBwcJr3RdWqVbV69Wq1a9dOERER+R1ihiIiIlSmTBlt2rRJ7dq1s7hWpkwZLVy4UIMGDTLOffzxxzp58mS+xrhu3Tpj48FWrVrpyy+/TPPnQ0p+XzRo0ECTJk2yqoYzAAAoeEgSAwAAFBEVKlTQ008/bbQnTZqk2NhYG0aUNV9fX02dOjXD6/3795e3t7ckKTExUUlJSZoxY4a8vLzS7R8QEKD27dsb7ZCQEKvjSJ2QvlP58uUtShps2LAh3Y3sli1bZpQPqFmzpqZNm5bpRmalS5fWhx9+aLS/+OILq+L96KOP0k3W3Y3PP//cOG7cuLHGjh2bYd8aNWpo0qRJRvvXX3/N0cZ+dyMkJEQHDx402p9++qnuueeedPs6Ozvrq6++krOzc36FZ5X333/f+CVBej799FMjGZ+QkJDvv/gJCwszjlu2bGnVPYWlFjoAALBEkhgAAKAIGTdunDw8PCRJZ8+etUj8FUT9+/eXp6dnhtddXFxUv359o12nTh01a9Ys0zFTXz98+LBVcQwaNMhixWx6BgwYYCTsJOnHH39M02f+/PnG8XPPPWesas5Mr169jJ/Zjh07jNquGSlZsqQefvjhLMfNjqioKK1fv95ojxo1KtPktiQNHz7c2EzNbDZr5cqVuRpTVlK//gEBAercuXOm/atVq6YuXbrkcVTW8/Pzy7JmdokSJTRw4ECjnd57Li+5ubkZx3durgcAAIoWksQAAABFSOnSpTVq1CijPXny5CyTjraUVcJXksWK2fvvvz9b/a9du2ZVHNYkD52dndWxY0ejvWPHDovrZrPZYuVy6hXNWY1bo0YNScmrpfft25dp//vvv9+q5HN27Ny502LDsQcffDDLe9zc3Cxejz/++CNXY8pK6tc/qwRxCmueV37p0KGDVT/H1DEfOXIkX/88py7d8fPPP2vcuHG6fv16vs0PAADyT+7+7RIAAAA29/LLL2v69OmKjIxURESEpk6dqtdff93WYaWrdOnSWfZJWWUrSaVKlcpW/+joaKviqFu3rlX96tSpYxzfWV4hLCzMIin9wgsvWJ3MPX36tHGcVd3catWqWTVmdhw7dsw4LlWqlFWvsyTVq1dPy5YtSzNGfkg9X05+fraWk5iTkpJ0/Phxi9X1eal169Zq1KiRdu/eLUl699139fHHH6tDhw5q3769WrVqpcaNG1NiAgCAIoAkMQAAQBHj4+Oj//znP3rzzTclSR988IGee+65DOu12pKLi0ue9jebzVb18/X1zXa/O1cpX7582aL922+/WTXmnbJaqVmsWLEcjZuZ1M/F2tdCSi6ZkOLq1au5GVKWUs+Xk5+freU0ZmtXx+cGk8mkZcuWqWvXrkbpltjYWK1evdrY5NDb21udO3fWsGHD9NBDD+VbbAAAIHdRbgIAAKAIGjNmjJFcun79uqZMmWLjiAo2a5PPrq6uxnFcXJzFtZs3b+ZKLKnLPqTHwSH3/wqf+rlkJxGfuu+dr0dei4+PTzeOzKT++dlaTmPO79e5cuXK2rNnj6ZNm6b77rsvzfXIyEgtXbpU3bp1U/PmzXXy5Ml8jQ8AAOQOksQAAABFULFixTR27FijPW3aNF28eDFP50xMTMzT8fPSjRs3st3P29vb4lrKJm4pLl26JLPZnO3HsGHD7vr5ZFfq2K19Le7sm9XGf7kt9eufk59fbsrJez+nMd/5vssPrq6uGjVqlPbt26fw8HAtWLBAI0aMSFP6ZPv27WrXrl2+ryoHAAB3jyQxAABAEfX888+rbNmykpJXub7zzjvZut/Z2dk4vnXrVpb98/Nr8LnN2tWPqfvdWbf3zvrKeZ2Uz00lS5Y0jsPCwpSQkGDVfcePH093jPyQ+vU/deqUVfdY+3NOvco3r977OXnPSdbV5c5L5cqV08CBA/Xll1/q2LFj2rNnjx555BHj+unTp/XZZ5/ZMEIAAJATJIkBAACKKHd3d7322mtGe8aMGQoLC7P6/tS1b61ZGXjgwIHsBViA/Pnnn9nu16hRI4trJUuWVNWqVY329u3bcye4fJD6ucTHx2vv3r1W3ffHH3+kO0Z+aNiwoXGck59fZvLjvZ+TmEuUKKEqVapke64UJpPJOLa2XndWGjRooKVLl6pdu3bGubVr1+bK2AAAIP+QJAYAACjCRowYoUqVKklKrmX61ltvWX1vxYoVjeO//vory/4rVqzIfoAFxHfffZdln5MnT1ok7Fq1apWmzwMPPGAcz507N3eCywcBAQEqU6aM0f7222+zvOfIkSPatWuX0W7dunWexJaR1POtW7cuy9W8SUlJ+v77760aOz/e+3/88YdVK6AXL15sHLds2dIi0Ztdnp6exnFMTEyOx7mTyWRSjx49jPaFCxdybWwAAJA/SBIDAAAUYS4uLho/frzRnjVrlk6fPm3VvalXamaVXFu2bJn27NmTsyALgI0bN2r9+vWZ9nn99deN1Zc+Pj7q3r17mj6jR482NpbbvHmzFixYkPvB5pHhw4cbxzNmzFBoaGim/V9++WXjuFSpUurWrVuexZaefv36GWUhYmNjs/wFyDfffKMTJ05YNXbq9/7y5csz3Uzwzz//1MqVK60aNzWz2azXX3890z7r1q3Tpk2bjPbd1qtO/YuAY8eOZdk/O6uNU9dO9vHxyV5gAADA5kgSAwAAFHFDhw5VjRo1JEkJCQlW12/t1auXcbx27VotWbIk3X5btmzRE088cddx2tpjjz2WYdmA999/X4sWLTLaY8aMkaura5p+tWrV0lNPPWW0n3jiCc2YMSPLZNv58+f11ltvadSoUTmM/u49//zzxgZ20dHR6tatm86fP5+mn9ls1quvvqpVq1YZ515++WWLOr75wdfXVyNGjDDaH3/8cYart4ODg/XCCy9YPXbq9/7hw4f1wQcfpNvv0KFD6t27d443bVy4cKHef//9dK8dOHBAAwcONNr33nuvevbsmaN5UqQuCTJ9+nTFxcVl2n/MmDEaN26czpw5k2m/kydP6osvvjDabdq0uas4AQBA/nOydQAAAADIW46Ojpo4caIGDBiQrfsefPBB1a5dW4cOHZKUnERdt26devTooeLFiys8PFyrVq3Sd999p6SkJA0aNKhQrZxNrV+/flqyZIkCAwP15JNPqlOnTipevLhOnjypefPmaePGjUbfunXrWqyivdPUqVO1d+9ebd++XfHx8Ro5cqSmTZumvn37qlGjRvLx8VFcXJwiIiL0119/aevWrQoJCVFSUpIeffTR/Hi66SpXrpymTZumoUOHSpL279+vOnXq6Omnn1arVq3k4eGho0ePatasWRa1iFu1aqUxY8bYJOa3335bK1eu1JkzZ2Q2mzVs2DAtW7ZM/fv3V/ny5XXp0iX99NNPmj9/vhITE/Xoo49aVVqkXr166ty5s1Fbd+zYsdq5c6ceffRRlSpVShcvXtTatWs1Z84cxcfH5+i937dvX33//fcaO3asfv75Zw0dOlRVqlTR9evXtX79en311VeKjY2VlPxneObMmRabSebEY489Zvyy55dfflHZsmXVoEEDeXt7G33at2+v0aNHS0rekO+TTz7R5MmT1aJFC7Vt21b169dXyZIl5ezsrPPnz2vz5s2aM2eOsZLY29vbuB8AABQeJIkBAADswKOPPqp3333XqvqqKZycnDRnzhy1b99eUVFRSkxM1Ndff62vv/46Td+XXnpJDz30UKFNEs+cOVOHDh3SgQMH9Nlnn+mzzz5Lt1+VKlX0yy+/ZLpq1tXVVevXr9eQIUO0fPlyScmrUf/3v//lSey5aciQIbp27Zr+7//+T2azWVeuXNG7776bYf+WLVvqp59+Mkps5LfixYvr119/Vdu2bXXp0iVJ0qpVqyxWOado37693nrrLauSxFJyyY0WLVoYq6m///77dMuu9OvXTxMnTsz2e79r166qWbOmJk2apODgYAUHB6fbz8HBQXPmzMmVms89e/a0SGhfvXrV4hcgUvLmeHcym80KCQlRSEhIpuN7enpq6dKlKl++/F3HCgAA8hflJgAAAOyAyWTK1qZ1KQIDAxUcHGzxNfXUypcvr3nz5mnKlCl3G6JNlShRQr///rsef/zxdMtIODk5adiwYdq1a5f8/f2zHM/T01PLli3TypUr1bx580w3G3N0dFSLFi300Ucf6dNPP72r55EbRo8erW3btmWalCxdurQ+/PBDbdy40ShRYSv33nuv9u7dq169eqWbrPby8tJ///tf/frrr9laiVulShVt3bpVHTp0SPe6r6+vpkyZosWLF+c4Sf7WW29p7ty5GSZV77vvPm3ZskWDBg3K0fjpmT9/vpYvX64+ffqoatWq8vT0zPD9+dRTT+nxxx/PMunr5uZmlGvp1KlTrsUKAADyj8mcnd0IAAAAYLf27t2rP//8U5cvX5aPj49q1KihNm3ayNHR0dah5aorV65o48aNOnPmjG7duqUKFSqoY8eO8vPzy/GYly5dUkhIiM6ePaurV6/KxcVFvr6+CggIUP369S2+7l+QhIeHa8uWLTp37pzi4uJUsmRJ1alTR02bNrXZ6uHMhIeHa+PGjQoPD5enp6cqVqyo9u3by8vLS5J06tQpValSxehv7T+F/v77b4WEhOjChQvy9vZW1apV1aFDh1yrw5yUlKTNmzfr6NGjunz5skqWLKnGjRtbbKBna6Ghodq/f79Onz6ta9euyWQyqXjx4qpZs6YCAwML7HsYAABYhyQxAAAAALuQ0yQxAABAUVfwfv0PAAAAAAAAAMg3JIkBAAAAAAAAwI6RJAYAAAAAAAAAO0aSGAAAAAAAAADsGEliAAAAAAAAALBjJjNb+gIAAAAAAACA3WIlMQAAAAAAAADYMZLEAAAAAAAAAGDHSBIDAAAAAAAAgB0jSQwAAAAAAAAAdowkMQAAAAAAAADYMZLEAAAAAAAAAGDHSBIDAAAAAAAAgB0jSQwAAAAAAAAAdowkMQAAAAAAAADYMZLEAAAAAAAAAGDHSBIDAAAAAAAAgB0jSQwAAAAAAAAAdowkMQAAAAAAAADYMZLEAAAAAAAAAGDHSBIDAAAAAAAAgB0jSQwAAAAAAAAAdowkMQAAAAAAAADYMZLEAAAAAAAAAGDHSBIDAAAAAAAAgB0jSQwAAAAAAAAAdowkMQAAAAAAAADYMZLEAAAAAAAAAGDHSBIDAAAAAAAAgB37f0RZBjhwB8tyAAAAAElFTkSuQmCC",
|
|
193
|
+
"text/plain": [
|
|
194
|
+
"<Figure size 1600x1200 with 1 Axes>"
|
|
195
|
+
]
|
|
196
|
+
},
|
|
197
|
+
"metadata": {},
|
|
198
|
+
"output_type": "display_data"
|
|
199
|
+
}
|
|
200
|
+
],
|
|
201
|
+
"source": [
|
|
202
|
+
"result = benchmark_ghz.analyze()\n",
|
|
203
|
+
"result.plot_all()"
|
|
204
|
+
]
|
|
205
|
+
},
|
|
206
|
+
{
|
|
207
|
+
"cell_type": "markdown",
|
|
208
|
+
"id": "e44b953d7899adb1",
|
|
209
|
+
"metadata": {},
|
|
210
|
+
"source": []
|
|
211
|
+
},
|
|
212
|
+
{
|
|
213
|
+
"cell_type": "markdown",
|
|
214
|
+
"id": "11f39392-7350-4010-bec4-08ca4c6ed908",
|
|
215
|
+
"metadata": {},
|
|
216
|
+
"source": [
|
|
217
|
+
"## Accessing the results\n",
|
|
218
|
+
"To see individual fidelitiy and uncertainty values of a given qubit layout, one can filter the ``result.observations``-list by layout as shown below. \n",
|
|
219
|
+
"\n",
|
|
220
|
+
"The plot allows a comparison of all layout results with and without REM, where the data point description labels \"L0\", \"L1\", ... enumerate the layouts in the order defined in the configuration."
|
|
221
|
+
]
|
|
222
|
+
},
|
|
223
|
+
{
|
|
224
|
+
"cell_type": "code",
|
|
225
|
+
"execution_count": 6,
|
|
226
|
+
"id": "93df7e17-4eda-4ab4-95de-8b0e7fbfed30",
|
|
227
|
+
"metadata": {
|
|
228
|
+
"ExecuteTime": {
|
|
229
|
+
"end_time": "2025-02-03T16:57:53.430346Z",
|
|
230
|
+
"start_time": "2025-02-03T16:57:53.428216Z"
|
|
231
|
+
}
|
|
232
|
+
},
|
|
233
|
+
"outputs": [
|
|
234
|
+
{
|
|
235
|
+
"name": "stdout",
|
|
236
|
+
"output_type": "stream",
|
|
237
|
+
"text": [
|
|
238
|
+
"fidelity: 0.9430881954317198 +/- None\n",
|
|
239
|
+
"fidelity_rem: 0.9742741960417851 +/- None\n"
|
|
240
|
+
]
|
|
241
|
+
}
|
|
242
|
+
],
|
|
243
|
+
"source": [
|
|
244
|
+
"qubit_layout = [1,2,3]\n",
|
|
245
|
+
"for observation in result.observations:\n",
|
|
246
|
+
" if observation.identifier.string_identifier == str(qubit_layout):\n",
|
|
247
|
+
" print(f\"{observation.name}: {observation.value} +/- {observation.uncertainty}\")\n"
|
|
248
|
+
]
|
|
249
|
+
}
|
|
250
|
+
],
|
|
251
|
+
"metadata": {
|
|
252
|
+
"kernelspec": {
|
|
253
|
+
"display_name": "env-iqm-benchmarks",
|
|
254
|
+
"language": "python",
|
|
255
|
+
"name": "python3"
|
|
256
|
+
},
|
|
257
|
+
"language_info": {
|
|
258
|
+
"codemirror_mode": {
|
|
259
|
+
"name": "ipython",
|
|
260
|
+
"version": 3
|
|
261
|
+
},
|
|
262
|
+
"file_extension": ".py",
|
|
263
|
+
"mimetype": "text/x-python",
|
|
264
|
+
"name": "python",
|
|
265
|
+
"nbconvert_exporter": "python",
|
|
266
|
+
"pygments_lexer": "ipython3",
|
|
267
|
+
"version": "3.11.11"
|
|
268
|
+
}
|
|
269
|
+
},
|
|
270
|
+
"nbformat": 4,
|
|
271
|
+
"nbformat_minor": 5
|
|
272
|
+
}
|