iplotx 0.6.7__tar.gz → 0.7.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (229) hide show
  1. {iplotx-0.6.7 → iplotx-0.7.0}/PKG-INFO +1 -1
  2. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/api/complete_style_specification.md +8 -3
  3. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/sg_execution_times.rst +19 -16
  4. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_house.py +2 -1
  5. iplotx-0.7.0/gallery/biology/data/GN-tree.json +1 -0
  6. iplotx-0.7.0/gallery/biology/plot_animal_phylogeny.py +81 -0
  7. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_social_network_circles.py +1 -1
  8. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/other/plot_feedbacks.py +1 -1
  9. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_arrows.py +1 -1
  10. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_edgepadding.py +4 -4
  11. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/edge/__init__.py +5 -3
  12. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/edge/arrow.py +30 -5
  13. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/edge/geometry.py +15 -15
  14. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/style/__init__.py +22 -0
  15. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/style/leaf_info.py +3 -1
  16. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/style/library.py +1 -1
  17. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/tree.py +23 -5
  18. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/version.py +1 -1
  19. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/vertex.py +5 -1
  20. {iplotx-0.6.7 → iplotx-0.7.0}/pyproject.toml +3 -2
  21. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_networkx.py +3 -3
  22. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_style.py +46 -0
  23. iplotx-0.7.0/uv.lock +2111 -0
  24. iplotx-0.6.7/uv.lock +0 -1821
  25. {iplotx-0.6.7 → iplotx-0.7.0}/.github/workflows/publish.yml +0 -0
  26. {iplotx-0.6.7 → iplotx-0.7.0}/.github/workflows/test.yml +0 -0
  27. {iplotx-0.6.7 → iplotx-0.7.0}/.gitignore +0 -0
  28. {iplotx-0.6.7 → iplotx-0.7.0}/.pre-commit-config.yaml +0 -0
  29. {iplotx-0.6.7 → iplotx-0.7.0}/.readthedocs.yaml +0 -0
  30. {iplotx-0.6.7 → iplotx-0.7.0}/LICENSE +0 -0
  31. {iplotx-0.6.7 → iplotx-0.7.0}/MANIFEST.in +0 -0
  32. {iplotx-0.6.7 → iplotx-0.7.0}/README.md +0 -0
  33. {iplotx-0.6.7 → iplotx-0.7.0}/assets/pylint.svg +0 -0
  34. {iplotx-0.6.7 → iplotx-0.7.0}/docs/Makefile +0 -0
  35. {iplotx-0.6.7 → iplotx-0.7.0}/docs/make.bat +0 -0
  36. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/_static/banner.png +0 -0
  37. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/_static/graph_basic.png +0 -0
  38. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/_templates/layout.html +0 -0
  39. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/api/artists.md +0 -0
  40. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/api/plotting.md +0 -0
  41. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/api/providers.md +0 -0
  42. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/api/style.md +0 -0
  43. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/api.md +0 -0
  44. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/conf.py +0 -0
  45. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/images/sphx_glr_plot_basic_001.png +0 -0
  46. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/images/thumb/sphx_glr_plot_basic_thumb.png +0 -0
  47. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/index.md +0 -0
  48. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/providers.md +0 -0
  49. {iplotx-0.6.7 → iplotx-0.7.0}/docs/source/style.md +0 -0
  50. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/GALLERY_HEADER.rst +0 -0
  51. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/GALLERY_HEADER.rst +0 -0
  52. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_basic.py +0 -0
  53. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_big_curves.py +0 -0
  54. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_dag.py +0 -0
  55. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_directed.py +0 -0
  56. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_grouping.py +0 -0
  57. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_loops.py +0 -0
  58. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/basic/plot_simple_path.py +0 -0
  59. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/GALLERY_HEADER.rst +0 -0
  60. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/data/80201010000000001.mst +0 -0
  61. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/data/breast_cancer_string_interactions_short.tsv +0 -0
  62. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/data/breast_cancer_string_network_coordinates.tsv +0 -0
  63. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/data/cell_cycle_arrest_string_interactions_short.tsv +0 -0
  64. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/data/cell_cycle_arrest_string_network_coordinates.tsv +0 -0
  65. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/data/fevo-08-588430_DataSheet1_S1.csv +0 -0
  66. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_antibody_clone.py +0 -0
  67. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_breast_cancer_ppi.py +0 -0
  68. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_cell_cycle_arrest.py +0 -0
  69. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_food_network.py +0 -0
  70. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_foraging_table.py +0 -0
  71. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_pollinators.py +0 -0
  72. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_ppi.py +0 -0
  73. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/biology/plot_tca_cycle.py +0 -0
  74. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/GALLERY_HEADER.rst +0 -0
  75. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/data/chess_masters_WCC.pgn.bz2 +0 -0
  76. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/data/knuth_miles.txt.gz +0 -0
  77. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_arrowlawn.py +0 -0
  78. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_chess_masters.py +0 -0
  79. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_cliques.py +0 -0
  80. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_cluster_layout.py +0 -0
  81. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_company_structure.py +0 -0
  82. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_complex.py +0 -0
  83. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_financial_network.py +0 -0
  84. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_knuth_miles.py +0 -0
  85. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_labels_and_colors.py +0 -0
  86. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_max_bipartite_matching.py +0 -0
  87. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_minimum_spanning_trees.py +0 -0
  88. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_multipartite_layout.py +0 -0
  89. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_parallel_igraph_networkx.py +0 -0
  90. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_redblack.py +0 -0
  91. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_shortest_path.py +0 -0
  92. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_simple_networkx.py +0 -0
  93. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_traveling_salesman.py +0 -0
  94. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/network_science/plot_with_colorbar.py +0 -0
  95. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/other/GALLERY_HEADER.rst +0 -0
  96. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/other/plot_animation.py +0 -0
  97. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/other/plot_edit_artists.py +0 -0
  98. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/other/plot_graph.py +0 -0
  99. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/other/plot_mouse_hover.py +0 -0
  100. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/other/plot_train.py +0 -0
  101. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/GALLERY_HEADER.rst +0 -0
  102. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_elements.py +0 -0
  103. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_four_grids.py +0 -0
  104. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_halfarrows.py +0 -0
  105. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_multistyle.py +0 -0
  106. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_ports.py +0 -0
  107. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_style.py +0 -0
  108. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_tension.py +0 -0
  109. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_vertexmarkers.py +0 -0
  110. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_voronoi.py +0 -0
  111. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/style/plot_waypoints.py +0 -0
  112. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/GALLERY_HEADER.rst +0 -0
  113. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/data/tree-with-support.json +0 -0
  114. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_angular_waypoints.py +0 -0
  115. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_biopython_tree.py +0 -0
  116. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_cladeedges.py +0 -0
  117. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_cogent3_layouts.py +0 -0
  118. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_cogent3_tree.py +0 -0
  119. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_elements_tree.py +0 -0
  120. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_ete4.py +0 -0
  121. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_leafedges.py +0 -0
  122. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_leafedges_and_cascades.py +0 -0
  123. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_skbio_tree.py +0 -0
  124. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_split_edges.py +0 -0
  125. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_style_tree.py +0 -0
  126. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_support.py +0 -0
  127. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_tree_node_background.py +0 -0
  128. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_tree_style_clades.py +0 -0
  129. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/tree/plot_trees_of_trees.py +0 -0
  130. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/zero_dependency/GALLERY_HEADER.rst +0 -0
  131. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/zero_dependency/plot_simplenetworkdataprovider.py +0 -0
  132. {iplotx-0.6.7 → iplotx-0.7.0}/gallery/zero_dependency/plot_simpletreedataprovider.py +0 -0
  133. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/__init__.py +0 -0
  134. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/artists.py +0 -0
  135. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/cascades.py +0 -0
  136. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/edge/leaf.py +0 -0
  137. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/edge/ports.py +0 -0
  138. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/groups.py +0 -0
  139. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/__init__.py +0 -0
  140. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/heuristics.py +0 -0
  141. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/network/igraph.py +0 -0
  142. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/network/networkx.py +0 -0
  143. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/network/simple.py +0 -0
  144. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/tree/biopython.py +0 -0
  145. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/tree/cogent3.py +0 -0
  146. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/tree/ete4.py +0 -0
  147. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/tree/simple.py +0 -0
  148. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/providers/tree/skbio.py +0 -0
  149. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/ingest/typing.py +0 -0
  150. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/label.py +0 -0
  151. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/layout.py +0 -0
  152. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/network.py +0 -0
  153. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/plotting.py +0 -0
  154. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/typing.py +0 -0
  155. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/utils/geometry.py +0 -0
  156. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/utils/internal.py +0 -0
  157. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/utils/matplotlib.py +0 -0
  158. {iplotx-0.6.7 → iplotx-0.7.0}/iplotx/utils/style.py +0 -0
  159. {iplotx-0.6.7 → iplotx-0.7.0}/scripts/copy_github_release_into_version.sh +0 -0
  160. {iplotx-0.6.7 → iplotx-0.7.0}/scripts/make_banner.py +0 -0
  161. {iplotx-0.6.7 → iplotx-0.7.0}/scripts/update_pylint_badge.sh +0 -0
  162. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/cascades.png +0 -0
  163. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/directed_child.png +0 -0
  164. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/leaf_labels.png +0 -0
  165. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/leaf_labels_hmargin.png +0 -0
  166. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/leafedges.png +0 -0
  167. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/show_support.png +0 -0
  168. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/tree_basic.png +0 -0
  169. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_biopython/tree_radial.png +0 -0
  170. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_cogent3/leaf_labels.png +0 -0
  171. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_cogent3/leaf_labels_hmargin.png +0 -0
  172. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_cogent3/tree_basic.png +0 -0
  173. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_cogent3/tree_radial.png +0 -0
  174. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_ete4/leaf_labels.png +0 -0
  175. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_ete4/leaf_labels_hmargin.png +0 -0
  176. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_ete4/split_edges.png +0 -0
  177. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_ete4/tree_basic.png +0 -0
  178. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_ete4/tree_radial.png +0 -0
  179. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/clustering_directed.png +0 -0
  180. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/clustering_directed_large.png +0 -0
  181. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_basic.png +0 -0
  182. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_directed.png +0 -0
  183. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_directed_curved_loops.png +0 -0
  184. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_edit_children.png +0 -0
  185. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_labels.png +0 -0
  186. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_layout_attribute.png +0 -0
  187. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_null.png +0 -0
  188. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_squares_directed.png +0 -0
  189. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_vertexsize.png +0 -0
  190. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/graph_with_curved_edges.png +0 -0
  191. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/igraph_layout_object.png +0 -0
  192. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_igraph/multigraph_with_curved_edges_undirected.png +0 -0
  193. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/cluster-layout.png +0 -0
  194. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/complex.png +0 -0
  195. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/complex_rotatelabels.png +0 -0
  196. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/directed_graph.png +0 -0
  197. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/directed_graph_with_colorbar.png +0 -0
  198. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/empty_graph.png +0 -0
  199. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/flat_style.png +0 -0
  200. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/house_with_colors.png +0 -0
  201. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/labels_and_colors.png +0 -0
  202. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/shortest_path.png +0 -0
  203. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_networkx/simple_graph.png +0 -0
  204. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_simple_network_provider/graph_basic.png +0 -0
  205. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_simple_network_provider/graph_directed.png +0 -0
  206. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_simple_network_provider/graph_labels.png +0 -0
  207. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_skbio/leaf_labels.png +0 -0
  208. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_skbio/leaf_labels_hmargin.png +0 -0
  209. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_skbio/tree_basic.png +0 -0
  210. {iplotx-0.6.7 → iplotx-0.7.0}/tests/baseline_images/test_skbio/tree_radial.png +0 -0
  211. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_arrows.py +0 -0
  212. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_biopython.py +0 -0
  213. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_cascades.py +0 -0
  214. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_cogent3.py +0 -0
  215. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_edge.py +0 -0
  216. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_edge_geometry.py +0 -0
  217. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_ete4.py +0 -0
  218. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_geometry.py +0 -0
  219. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_heuristics.py +0 -0
  220. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_igraph.py +0 -0
  221. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_ingest_protocols.py +0 -0
  222. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_matplotlib_utils.py +0 -0
  223. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_network_hotload.py +0 -0
  224. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_ports.py +0 -0
  225. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_simple_network_provider.py +0 -0
  226. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_simple_tree_provider.py +0 -0
  227. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_skbio.py +0 -0
  228. {iplotx-0.6.7 → iplotx-0.7.0}/tests/test_vertex.py +0 -0
  229. {iplotx-0.6.7 → iplotx-0.7.0}/tests/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: iplotx
3
- Version: 0.6.7
3
+ Version: 0.7.0
4
4
  Summary: Plot networkx from igraph and networkx.
5
5
  Project-URL: Homepage, https://github.com/fabilab/iplotx
6
6
  Project-URL: Documentation, https://readthedocs.org/iplotx
@@ -7,8 +7,12 @@
7
7
 
8
8
  ```python
9
9
  {
10
- # Vertex style
11
- "vertex": {
10
+ # Vertex/node style
11
+ # NOTE: you can use "node" or "vertex" interchangeably. If both are specified
12
+ # at the SAME time, these styles are merged, with conflicts resolved in favour
13
+ # of "node". In other words, "vertex" is applied first, then "node" on top of it.
14
+
15
+ "vertex" | "node": {
12
16
  # Size of the vertex in points. If a pair, it indicates width and height
13
17
  # of the marker. If "label", set the size dynamically based on the vertex
14
18
  # label (a label is needed in this case)
@@ -74,7 +78,8 @@
74
78
 
75
79
  # Whether to leave any space between edge cap and vertex border. This is
76
80
  # in figure points and autoscales correctly with dpi.
77
- "padding": float,
81
+ # DEPRECATED: "padding" is a synonym for this option, but it is deprecated.
82
+ "shrink": float,
78
83
 
79
84
  # Matplotlib color map used to map floating numbers into RGBA colors. Only
80
85
  # used when the previous option "color" is set to floats.
@@ -6,7 +6,7 @@
6
6
 
7
7
  Computation times
8
8
  =================
9
- **00:00.109** total execution time for 71 files **from all galleries**:
9
+ **00:00.798** total execution time for 72 files **from all galleries**:
10
10
 
11
11
  .. container::
12
12
 
@@ -32,8 +32,23 @@ Computation times
32
32
  * - Example
33
33
  - Time
34
34
  - Mem (MB)
35
- * - :ref:`sphx_glr_gallery_basic_plot_loops.py` (``../../gallery/basic/plot_loops.py``)
36
- - 00:00.109
35
+ * - :ref:`sphx_glr_gallery_biology_plot_animal_phylogeny.py` (``../../gallery/biology/plot_animal_phylogeny.py``)
36
+ - 00:00.614
37
+ - 0.0
38
+ * - :ref:`sphx_glr_gallery_network_science_plot_social_network_circles.py` (``../../gallery/network_science/plot_social_network_circles.py``)
39
+ - 00:00.051
40
+ - 0.0
41
+ * - :ref:`sphx_glr_gallery_basic_plot_house.py` (``../../gallery/basic/plot_house.py``)
42
+ - 00:00.049
43
+ - 0.0
44
+ * - :ref:`sphx_glr_gallery_style_plot_arrows.py` (``../../gallery/style/plot_arrows.py``)
45
+ - 00:00.037
46
+ - 0.0
47
+ * - :ref:`sphx_glr_gallery_other_plot_feedbacks.py` (``../../gallery/other/plot_feedbacks.py``)
48
+ - 00:00.025
49
+ - 0.0
50
+ * - :ref:`sphx_glr_gallery_style_plot_edgepadding.py` (``../../gallery/style/plot_edgepadding.py``)
51
+ - 00:00.021
37
52
  - 0.0
38
53
  * - :ref:`sphx_glr_gallery_basic_plot_basic.py` (``../../gallery/basic/plot_basic.py``)
39
54
  - 00:00.000
@@ -50,7 +65,7 @@ Computation times
50
65
  * - :ref:`sphx_glr_gallery_basic_plot_grouping.py` (``../../gallery/basic/plot_grouping.py``)
51
66
  - 00:00.000
52
67
  - 0.0
53
- * - :ref:`sphx_glr_gallery_basic_plot_house.py` (``../../gallery/basic/plot_house.py``)
68
+ * - :ref:`sphx_glr_gallery_basic_plot_loops.py` (``../../gallery/basic/plot_loops.py``)
54
69
  - 00:00.000
55
70
  - 0.0
56
71
  * - :ref:`sphx_glr_gallery_basic_plot_simple_path.py` (``../../gallery/basic/plot_simple_path.py``)
@@ -128,9 +143,6 @@ Computation times
128
143
  * - :ref:`sphx_glr_gallery_network_science_plot_simple_networkx.py` (``../../gallery/network_science/plot_simple_networkx.py``)
129
144
  - 00:00.000
130
145
  - 0.0
131
- * - :ref:`sphx_glr_gallery_network_science_plot_social_network_circles.py` (``../../gallery/network_science/plot_social_network_circles.py``)
132
- - 00:00.000
133
- - 0.0
134
146
  * - :ref:`sphx_glr_gallery_network_science_plot_traveling_salesman.py` (``../../gallery/network_science/plot_traveling_salesman.py``)
135
147
  - 00:00.000
136
148
  - 0.0
@@ -143,9 +155,6 @@ Computation times
143
155
  * - :ref:`sphx_glr_gallery_other_plot_edit_artists.py` (``../../gallery/other/plot_edit_artists.py``)
144
156
  - 00:00.000
145
157
  - 0.0
146
- * - :ref:`sphx_glr_gallery_other_plot_feedbacks.py` (``../../gallery/other/plot_feedbacks.py``)
147
- - 00:00.000
148
- - 0.0
149
158
  * - :ref:`sphx_glr_gallery_other_plot_graph.py` (``../../gallery/other/plot_graph.py``)
150
159
  - 00:00.000
151
160
  - 0.0
@@ -155,12 +164,6 @@ Computation times
155
164
  * - :ref:`sphx_glr_gallery_other_plot_train.py` (``../../gallery/other/plot_train.py``)
156
165
  - 00:00.000
157
166
  - 0.0
158
- * - :ref:`sphx_glr_gallery_style_plot_arrows.py` (``../../gallery/style/plot_arrows.py``)
159
- - 00:00.000
160
- - 0.0
161
- * - :ref:`sphx_glr_gallery_style_plot_edgepadding.py` (``../../gallery/style/plot_edgepadding.py``)
162
- - 00:00.000
163
- - 0.0
164
167
  * - :ref:`sphx_glr_gallery_style_plot_elements.py` (``../../gallery/style/plot_elements.py``)
165
168
  - 00:00.000
166
169
  - 0.0
@@ -31,7 +31,8 @@ ipx.plot(
31
31
  "alpha": 0.5,
32
32
  "linewidth": 6,
33
33
  },
34
- "vertex": {
34
+ # You could use "vertex" instead of "node"
35
+ "node": {
35
36
  "size": G.nodes.data("size"),
36
37
  "facecolor": G.nodes.data("color"),
37
38
  "edgecolor": "k",
@@ -0,0 +1 @@
1
+ {"identifier": "GN-tree.json", "data": "{\"newick\": \"((((((((FlyingFox,DogFaced)edge.0,((FreeTaile,LittleBro)edge.1,(TombBat,RoundEare)edge.2)edge.3)edge.4,(FalseVamp,LeafNose)edge.5)edge.6,(((Horse,Rhino)edge.7,(Pangolin,(Cat,Dog)edge.8)edge.9)edge.10,(Llama,(Pig,(Cow,(Hippo,(SpermWhale,HumpbackW)edge.11)edge.12)edge.13)edge.14)edge.15)edge.16)edge.17,(Mole,Hedgehog)edge.18)edge.19,(((TreeShrew,FlyingLem)edge.20,(Galago,(HowlerMon,(Rhesus,(Orangutan,(Gorilla,(Human,Chimpanzee)edge.21)edge.22)edge.23)edge.24)edge.25)edge.26)edge.27,(Jackrabbit,(FlyingSqu,(OldWorld,(Mouse,Rat)edge.28)edge.29)edge.30)edge.31)edge.32)edge.33,((NineBande,HairyArma)edge.34,(Anteater,Sloth)edge.35)edge.36)edge.37,(((Dugong,Manatee)edge.38,((AfricanEl,AsianElep)edge.39,(RockHyrax,TreeHyrax)edge.40)edge.41)edge.42,(Aardvark,((GoldenMol,(Madagascar,Tenrec)edge.43)edge.44,(LesserEle,GiantElep)edge.45)edge.46)edge.47)edge.48,(Caenolest,(Phascogale,(Wombat,Bandicoot)edge.49)edge.50)edge.51)root\", \"edge_attributes\": {\"FlyingFox\": {\"ENS\": 0.017741273670248456, \"paralinear\": 0.07436068151499686, \"mprobs\": {\"T\": 0.2294585662184629, \"C\": 0.18571261063637373, \"A\": 0.3654713959371184, \"G\": 0.21935742720804552}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"DogFaced\": {\"ENS\": 0.036375233232148925, \"paralinear\": 0.15227833435933036, \"mprobs\": {\"T\": 0.22884598834630437, \"C\": 0.18693757218882817, \"A\": 0.3640014964856682, \"G\": 0.22021494297919972}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.0\": {\"ENS\": 0.04627655860256909, \"paralinear\": 0.19462330076127188, \"mprobs\": {\"T\": 0.23006527720414313, \"C\": 0.1845152231016569, \"A\": 0.3669109457718355, \"G\": 0.21850855392236493}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"FreeTaile\": {\"ENS\": 0.03763092526433395, \"paralinear\": 0.15788329109893162, \"mprobs\": {\"T\": 0.22948751306202508, \"C\": 0.18565513331595296, \"A\": 0.3655404359298829, \"G\": 0.2193169176921396}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"LittleBro\": {\"ENS\": 0.05478868222706951, \"paralinear\": 0.22961008387365833, \"mprobs\": {\"T\": 0.22892175536424017, \"C\": 0.18678514872135854, \"A\": 0.36418424276465355, \"G\": 0.2201088531497482}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.1\": {\"ENS\": 0.01108010605652313, \"paralinear\": 0.04663571108304687, \"mprobs\": {\"T\": 0.23080439371141534, \"C\": 0.1830762081326193, \"A\": 0.3686445398145315, \"G\": 0.21747485834143432}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"TombBat\": {\"ENS\": 0.0553127072328518, \"paralinear\": 0.23196047985095802, \"mprobs\": {\"T\": 0.22910905614436547, \"C\": 0.1864094715297279, \"A\": 0.3646348449365286, \"G\": 0.2198466273893786}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"RoundEare\": {\"ENS\": 0.17376260163391286, \"paralinear\": 0.7237517149903363, \"mprobs\": {\"T\": 0.2256919789733846, \"C\": 0.19355645998884158, \"A\": 0.3561090882006716, \"G\": 0.22464247283710262}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.2\": {\"ENS\": 0.004811085287800328, \"paralinear\": 0.02025912455111545, \"mprobs\": {\"T\": 0.23103426430362306, \"C\": 0.18263281004323695, \"A\": 0.3691794806561247, \"G\": 0.2171534449970157}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.3\": {\"ENS\": 0.014436026647335837, \"paralinear\": 0.06085550867423439, \"mprobs\": {\"T\": 0.2312127826172678, \"C\": 0.18228976513037484, \"A\": 0.36959359892636984, \"G\": 0.21690385332598786}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.4\": {\"ENS\": 0.0021773549055771587, \"paralinear\": 0.009190069946234836, \"mprobs\": {\"T\": 0.2317593900310787, \"C\": 0.18124621685396122, \"A\": 0.3708546844115163, \"G\": 0.21613970870344407}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"FalseVamp\": {\"ENS\": 0.06711224149743963, \"paralinear\": 0.28168167564406854, \"mprobs\": {\"T\": 0.22919098081352, \"C\": 0.18624564705990546, \"A\": 0.3648314263847765, \"G\": 0.21973194574179847}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"LeafNose\": {\"ENS\": 0.060568286302822724, \"paralinear\": 0.2543271411159447, \"mprobs\": {\"T\": 0.22940803584617275, \"C\": 0.1858130305530024, \"A\": 0.36535078958449824, \"G\": 0.21942814401632713}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.5\": {\"ENS\": 0.007149151015846594, \"paralinear\": 0.030162955388957968, \"mprobs\": {\"T\": 0.23156924310093277, \"C\": 0.18160808844723372, \"A\": 0.3704171510457669, \"G\": 0.216405517406067}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.6\": {\"ENS\": 0.016175811942560764, \"paralinear\": 0.06834503475823173, \"mprobs\": {\"T\": 0.23184330017751098, \"C\": 0.1810869059919486, \"A\": 0.3710473806715025, \"G\": 0.2160224131590382}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Horse\": {\"ENS\": 0.0437020774610027, \"paralinear\": 0.1838954517375564, \"mprobs\": {\"T\": 0.23025816317707373, \"C\": 0.18413766604925938, \"A\": 0.3673654185180298, \"G\": 0.21823875225563757}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Rhino\": {\"ENS\": 0.03421064062929262, \"paralinear\": 0.144055546967075, \"mprobs\": {\"T\": 0.23059601077124287, \"C\": 0.18347982427740878, \"A\": 0.3681579109380394, \"G\": 0.21776625401330946}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.7\": {\"ENS\": 0.015423667902144758, \"paralinear\": 0.0651710633502276, \"mprobs\": {\"T\": 0.23187236401552025, \"C\": 0.1810317793785293, \"A\": 0.3711140704901398, \"G\": 0.21598178611581104}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Pangolin\": {\"ENS\": 0.07724919751648576, \"paralinear\": 0.32469288999178314, \"mprobs\": {\"T\": 0.2294530047779447, \"C\": 0.18572365762428303, \"A\": 0.365458127348844, \"G\": 0.2193652102489287}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Cat\": {\"ENS\": 0.054278226867084195, \"paralinear\": 0.22779005769141758, \"mprobs\": {\"T\": 0.22933742336539742, \"C\": 0.18595354431695846, \"A\": 0.36518206169056455, \"G\": 0.21952697062708013}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Dog\": {\"ENS\": 0.08124577241175945, \"paralinear\": 0.34036904405984014, \"mprobs\": {\"T\": 0.22846632425890043, \"C\": 0.18770541074363414, \"A\": 0.3630815790975214, \"G\": 0.22074668589994453}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.8\": {\"ENS\": 0.02640201982933406, \"paralinear\": 0.11138360841979278, \"mprobs\": {\"T\": 0.23125254918347143, \"C\": 0.18221350099051475, \"A\": 0.3696856932445127, \"G\": 0.21684825658150159}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.9\": {\"ENS\": 0.00532539297142259, \"paralinear\": 0.022520397690083627, \"mprobs\": {\"T\": 0.23226711158566116, \"C\": 0.18028573173178133, \"A\": 0.37201715170514804, \"G\": 0.21543000497740986}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.10\": {\"ENS\": 1.4916235222169097e-12, \"paralinear\": 6.31139585038909e-12, \"mprobs\": {\"T\": 0.23247872110393952, \"C\": 0.17988781977121335, \"A\": 0.3724992326632997, \"G\": 0.2151342264615478}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Llama\": {\"ENS\": 0.05751778972284968, \"paralinear\": 0.241568866423159, \"mprobs\": {\"T\": 0.22951127041733904, \"C\": 0.1856079870237301, \"A\": 0.3655970712630473, \"G\": 0.21928367129588386}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Pig\": {\"ENS\": 0.07739856946657771, \"paralinear\": 0.3244154254067304, \"mprobs\": {\"T\": 0.2286624983167575, \"C\": 0.18730781178174716, \"A\": 0.3635577864417663, \"G\": 0.22047190345972942}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Cow\": {\"ENS\": 0.08777639231499659, \"paralinear\": 0.36731518449508194, \"mprobs\": {\"T\": 0.22805816016294847, \"C\": 0.18853872358453036, \"A\": 0.3620844958673792, \"G\": 0.22131862038514244}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Hippo\": {\"ENS\": 0.05237103842803992, \"paralinear\": 0.21960366207862236, \"mprobs\": {\"T\": 0.2291217703697097, \"C\": 0.18638402734460643, \"A\": 0.3646653733914768, \"G\": 0.2198288288942075}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"SpermWhale\": {\"ENS\": 0.015086414806001838, \"paralinear\": 0.06325382429261239, \"mprobs\": {\"T\": 0.22959353313929914, \"C\": 0.1854449221939592, \"A\": 0.36579298815276845, \"G\": 0.21916855651397366}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"HumpbackW\": {\"ENS\": 0.011148378728088007, \"paralinear\": 0.046754978707086, \"mprobs\": {\"T\": 0.2297273516296439, \"C\": 0.1851802683244666, \"A\": 0.3661110674750709, \"G\": 0.21898131257081913}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.11\": {\"ENS\": 0.02311129371016991, \"paralinear\": 0.09710385558700718, \"mprobs\": {\"T\": 0.230112429368195, \"C\": 0.18442279166206288, \"A\": 0.3670221826437141, \"G\": 0.21844259632602844}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.12\": {\"ENS\": 0.0017671228722700198, \"paralinear\": 0.007437764996452323, \"mprobs\": {\"T\": 0.23094035222043086, \"C\": 0.1828137274508958, \"A\": 0.3689611676094936, \"G\": 0.21728475271918016}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.13\": {\"ENS\": 0.009021829241666193, \"paralinear\": 0.0379944803885639, \"mprobs\": {\"T\": 0.23100536174271205, \"C\": 0.18268845594761174, \"A\": 0.36911232629771007, \"G\": 0.2171938560119665}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.14\": {\"ENS\": 0.006065726212199961, \"paralinear\": 0.025570503924198462, \"mprobs\": {\"T\": 0.23134104439125547, \"C\": 0.18204398210842482, \"A\": 0.36989043758688755, \"G\": 0.21672453591343244}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.15\": {\"ENS\": 0.0232983945107026, \"paralinear\": 0.09838310463964905, \"mprobs\": {\"T\": 0.2315703698286189, \"C\": 0.1816059406023972, \"A\": 0.3704197472641796, \"G\": 0.21640394230480456}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.16\": {\"ENS\": 4.0910086032102326e-12, \"paralinear\": 1.730793286469634e-11, \"mprobs\": {\"T\": 0.23247872110399914, \"C\": 0.1798878197711014, \"A\": 0.3724992326634352, \"G\": 0.2151342264614645}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.17\": {\"ENS\": 0.004462299380591719, \"paralinear\": 0.018883520245207563, \"mprobs\": {\"T\": 0.2324787211041626, \"C\": 0.17988781977079452, \"A\": 0.3724992326638071, \"G\": 0.215134226461236}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Mole\": {\"ENS\": 0.10667843328437873, \"paralinear\": 0.447127980855913, \"mprobs\": {\"T\": 0.22825738715687835, \"C\": 0.18813093782419124, \"A\": 0.36257225706412194, \"G\": 0.22103941795480875}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Hedgehog\": {\"ENS\": 0.15203511050694332, \"paralinear\": 0.63552005103959, \"mprobs\": {\"T\": 0.22692363144200672, \"C\": 0.19090167961277726, \"A\": 0.35926443414827586, \"G\": 0.22291025479694043}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.18\": {\"ENS\": 0.017502977063435274, \"paralinear\": 0.0739893967517693, \"mprobs\": {\"T\": 0.23196481552071077, \"C\": 0.18085660499182812, \"A\": 0.3713260257852114, \"G\": 0.2158525537022499}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.19\": {\"ENS\": 0.012295342065535626, \"paralinear\": 0.05208742731280758, \"mprobs\": {\"T\": 0.23265786316453865, \"C\": 0.17955203113532311, \"A\": 0.37290627257182535, \"G\": 0.21488383312831302}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"TreeShrew\": {\"ENS\": 0.12124168041750151, \"paralinear\": 0.5087343089001282, \"mprobs\": {\"T\": 0.22836315814060493, \"C\": 0.1879152524899149, \"A\": 0.36283037188743855, \"G\": 0.2208912174820421}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"FlyingLem\": {\"ENS\": 0.05958767876443372, \"paralinear\": 0.2510888866436565, \"mprobs\": {\"T\": 0.23041578156957773, \"C\": 0.18383021705742686, \"A\": 0.36773569749728857, \"G\": 0.2180183038757072}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.20\": {\"ENS\": 0.0025361270506288514, \"paralinear\": 0.010738580599361391, \"mprobs\": {\"T\": 0.23267521390741092, \"C\": 0.17951955991410576, \"A\": 0.37294564469234653, \"G\": 0.2148595814861371}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Galago\": {\"ENS\": 0.13046860680133676, \"paralinear\": 0.5465921176135069, \"mprobs\": {\"T\": 0.22781157006076422, \"C\": 0.18904628927131145, \"A\": 0.3614778325964718, \"G\": 0.22166430807145288}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"HowlerMon\": {\"ENS\": 0.04226893142237102, \"paralinear\": 0.17723343527737434, \"mprobs\": {\"T\": 0.2292427015313899, \"C\": 0.186142374451018, \"A\": 0.3649553746603244, \"G\": 0.21965954935726809}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Rhesus\": {\"ENS\": 0.02203638164824187, \"paralinear\": 0.09241341030482975, \"mprobs\": {\"T\": 0.22956514270513084, \"C\": 0.1855011666511004, \"A\": 0.3657254066720673, \"G\": 0.21920828397170183}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Orangutan\": {\"ENS\": 0.007756254235291462, \"paralinear\": 0.03251687426549399, \"mprobs\": {\"T\": 0.22966104697690143, \"C\": 0.18531130614049982, \"A\": 0.36595356068421697, \"G\": 0.21907408619838228}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Gorilla\": {\"ENS\": 0.0024749249271206865, \"paralinear\": 0.010375635651607595, \"mprobs\": {\"T\": 0.22972882809586187, \"C\": 0.18517735246265987, \"A\": 0.3661145726936398, \"G\": 0.21897924674783895}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Human\": {\"ENS\": 0.0063856384285867485, \"paralinear\": 0.026763494585504866, \"mprobs\": {\"T\": 0.22959589451632126, \"C\": 0.1854402455854068, \"A\": 0.36579860767950145, \"G\": 0.21916525221877103}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Chimpanzee\": {\"ENS\": 0.002829346930370289, \"paralinear\": 0.011861196296365506, \"mprobs\": {\"T\": 0.2297167340352699, \"C\": 0.18520123958894227, \"A\": 0.36608585794981846, \"G\": 0.21899616842596992}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.21\": {\"ENS\": 3.0288845470928904e-12, \"paralinear\": 1.269917504487239e-11, \"mprobs\": {\"T\": 0.22981354014339195, \"C\": 0.18501020587491998, \"A\": 0.3663155298317103, \"G\": 0.2188607241499783}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.22\": {\"ENS\": 0.0032910959449209067, \"paralinear\": 0.013801571936750356, \"mprobs\": {\"T\": 0.2298135401434959, \"C\": 0.18501020587471503, \"A\": 0.36631552983195664, \"G\": 0.21886072414983285}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.23\": {\"ENS\": 0.011446772659536697, \"paralinear\": 0.048038653206883275, \"mprobs\": {\"T\": 0.22992688466060246, \"C\": 0.1847870234301247, \"A\": 0.36658393962954483, \"G\": 0.21870215227972842}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.24\": {\"ENS\": 0.010576268400132443, \"paralinear\": 0.04444271718386439, \"mprobs\": {\"T\": 0.23032733436405256, \"C\": 0.1840026235381622, \"A\": 0.3675280364749682, \"G\": 0.2181420056228174}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.25\": {\"ENS\": 0.04265551239205802, \"paralinear\": 0.1797636243876699, \"mprobs\": {\"T\": 0.23070611697838206, \"C\": 0.18326636018067133, \"A\": 0.36841524105860013, \"G\": 0.2176122817823468}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.26\": {\"ENS\": 0.011364290022017151, \"paralinear\": 0.04808353525012876, \"mprobs\": {\"T\": 0.2323221420386022, \"C\": 0.18018211874052867, \"A\": 0.37214265396241897, \"G\": 0.21535308525845046}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.27\": {\"ENS\": 0.0007791077607150512, \"paralinear\": 0.0032997904300557934, \"mprobs\": {\"T\": 0.23277787117893478, \"C\": 0.17932762510599626, \"A\": 0.37317840902684096, \"G\": 0.21471609468822822}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Jackrabbit\": {\"ENS\": 0.13159844503570856, \"paralinear\": 0.5517222005560898, \"mprobs\": {\"T\": 0.22799090260057048, \"C\": 0.1886768474027259, \"A\": 0.36191935549960874, \"G\": 0.22141289449709523}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"FlyingSqu\": {\"ENS\": 0.08768424057786249, \"paralinear\": 0.3680001076469823, \"mprobs\": {\"T\": 0.22888493581233837, \"C\": 0.1868591870473064, \"A\": 0.3640954698857915, \"G\": 0.22016040725456412}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"OldWorld\": {\"ENS\": 0.2441999414569413, \"paralinear\": 1.0151820778108638, \"mprobs\": {\"T\": 0.22439460867743996, \"C\": 0.19647680942724247, \"A\": 0.35265418784607977, \"G\": 0.2264743940492382}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Mouse\": {\"ENS\": 0.06897933728712956, \"paralinear\": 0.28484591236095813, \"mprobs\": {\"T\": 0.2242000824426721, \"C\": 0.19692764674172328, \"A\": 0.3521223415266915, \"G\": 0.22674992928891355}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Rat\": {\"ENS\": 0.05491541685407963, \"paralinear\": 0.22689916154305223, \"mprobs\": {\"T\": 0.22451233134120877, \"C\": 0.19620574717557243, \"A\": 0.3529741515575329, \"G\": 0.2263077699256863}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.28\": {\"ENS\": 0.18388363230548743, \"paralinear\": 0.766650971764121, \"mprobs\": {\"T\": 0.22583338606071415, \"C\": 0.19324633417602813, \"A\": 0.35647697393152883, \"G\": 0.22444330583172925}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.29\": {\"ENS\": 0.009794937976471138, \"paralinear\": 0.041338934863303756, \"mprobs\": {\"T\": 0.23162142489516707, \"C\": 0.18150866061347967, \"A\": 0.37053734381236164, \"G\": 0.21633257067899192}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.30\": {\"ENS\": 0.015292210767004136, \"paralinear\": 0.06464379418024535, \"mprobs\": {\"T\": 0.23199902960891236, \"C\": 0.1807918470931312, \"A\": 0.3714043948995165, \"G\": 0.21580472839844025}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.31\": {\"ENS\": 0.005076122245415853, \"paralinear\": 0.02149128475507922, \"mprobs\": {\"T\": 0.2326042644128079, \"C\": 0.17965239622964158, \"A\": 0.3727845895691689, \"G\": 0.2149587497883819}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.32\": {\"ENS\": 0.008549142959653054, \"paralinear\": 0.03622880500057235, \"mprobs\": {\"T\": 0.23280951808255787, \"C\": 0.1792685191900254, \"A\": 0.3732501016859302, \"G\": 0.2146718610414867}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.33\": {\"ENS\": 0.011774296515826487, \"paralinear\": 0.04996810789469386, \"mprobs\": {\"T\": 0.23316014252650505, \"C\": 0.17861563162562502, \"A\": 0.37404244132019626, \"G\": 0.2141817845276738}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"NineBande\": {\"ENS\": 0.04106652871082478, \"paralinear\": 0.1727516681577992, \"mprobs\": {\"T\": 0.23020726588031085, \"C\": 0.184237151201087, \"A\": 0.3672456404536162, \"G\": 0.21830994246498625}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"HairyArma\": {\"ENS\": 0.02411886492701163, \"paralinear\": 0.10158472923999451, \"mprobs\": {\"T\": 0.23081356137548054, \"C\": 0.18305848799411706, \"A\": 0.3686659114224172, \"G\": 0.2174620392079854}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.34\": {\"ENS\": 0.020341174156229366, \"paralinear\": 0.08592531406626325, \"mprobs\": {\"T\": 0.23171526860172775, \"C\": 0.18133007813512297, \"A\": 0.37075326768935374, \"G\": 0.21620138557379578}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Anteater\": {\"ENS\": 0.060441339704554335, \"paralinear\": 0.25425659961542735, \"mprobs\": {\"T\": 0.2299285573632672, \"C\": 0.18478373367868525, \"A\": 0.3665878967398653, \"G\": 0.21869981221818252}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Sloth\": {\"ENS\": 0.04154194955535044, \"paralinear\": 0.17499179176771484, \"mprobs\": {\"T\": 0.23059436908165884, \"C\": 0.183483010452963, \"A\": 0.3681540706572293, \"G\": 0.2177685498081491}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.35\": {\"ENS\": 0.008980091291957981, \"paralinear\": 0.037968603395156286, \"mprobs\": {\"T\": 0.23215612636686614, \"C\": 0.18049498632157057, \"A\": 0.3717637494671717, \"G\": 0.21558513784439173}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.36\": {\"ENS\": 0.027701154320570187, \"paralinear\": 0.11739703904059695, \"mprobs\": {\"T\": 0.23251220423090743, \"C\": 0.1798249840776598, \"A\": 0.37257538600788626, \"G\": 0.21508742568354663}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.37\": {\"ENS\": 0.003949441717156716, \"paralinear\": 0.01678249167947854, \"mprobs\": {\"T\": 0.23365335330451203, \"C\": 0.17770316401779063, \"A\": 0.3751510849351948, \"G\": 0.21349239774250264}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Dugong\": {\"ENS\": 0.008023138779536174, \"paralinear\": 0.03379230884053808, \"mprobs\": {\"T\": 0.2310524307822447, \"C\": 0.18259784946412067, \"A\": 0.36922167456245575, \"G\": 0.2171280451911792}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Manatee\": {\"ENS\": 0.007449617092641844, \"paralinear\": 0.031378074172629944, \"mprobs\": {\"T\": 0.23107363549225787, \"C\": 0.1825570567656806, \"A\": 0.3692709101042984, \"G\": 0.21709839763776348}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.38\": {\"ENS\": 0.025616406556216657, \"paralinear\": 0.10810211546702675, \"mprobs\": {\"T\": 0.2313514477894188, \"C\": 0.1820240714094907, \"A\": 0.36991448913291786, \"G\": 0.21670999166817287}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"AfricanEl\": {\"ENS\": 0.0017346458044374493, \"paralinear\": 0.007290615871206718, \"mprobs\": {\"T\": 0.23051091213074207, \"C\": 0.1836451160652059, \"A\": 0.36795871051705903, \"G\": 0.21788526128699334}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"AsianElep\": {\"ENS\": 0.002584417728248381, \"paralinear\": 0.010861494482697687, \"mprobs\": {\"T\": 0.23048051230466962, \"C\": 0.18370422944114106, \"A\": 0.36788748272045957, \"G\": 0.21792777553373008}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.39\": {\"ENS\": 0.04178294591089507, \"paralinear\": 0.17599608581474158, \"mprobs\": {\"T\": 0.23057314040073668, \"C\": 0.18352421995638457, \"A\": 0.3681044027576477, \"G\": 0.21779823688523128}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"RockHyrax\": {\"ENS\": 0.006790858356137325, \"paralinear\": 0.028323980989024555, \"mprobs\": {\"T\": 0.22807092860573303, \"C\": 0.18851252796828744, \"A\": 0.3621158193969185, \"G\": 0.2213007240290614}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"TreeHyrax\": {\"ENS\": 0.0067932248278529195, \"paralinear\": 0.02833384737510425, \"mprobs\": {\"T\": 0.2280708563104968, \"C\": 0.18851267626492046, \"A\": 0.3621156420668184, \"G\": 0.22130082535776452}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.40\": {\"ENS\": 0.11050523736329819, \"paralinear\": 0.46329234982014356, \"mprobs\": {\"T\": 0.2282799470890036, \"C\": 0.1880848875101933, \"A\": 0.3626273588803317, \"G\": 0.22100780652047167}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.41\": {\"ENS\": 0.005019872861390538, \"paralinear\": 0.021218836663513763, \"mprobs\": {\"T\": 0.23214240062301628, \"C\": 0.18052089216311085, \"A\": 0.3717323836571286, \"G\": 0.21560432355674453}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.42\": {\"ENS\": 0.012480902726092386, \"paralinear\": 0.05281477846588789, \"mprobs\": {\"T\": 0.23234048743835342, \"C\": 0.18014759840068303, \"A\": 0.37218447139048083, \"G\": 0.21532744277048288}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Aardvark\": {\"ENS\": 0.07884116968290134, \"paralinear\": 0.33172020149888937, \"mprobs\": {\"T\": 0.22971225068457282, \"C\": 0.18521009624930684, \"A\": 0.3660752116202953, \"G\": 0.21900244144582526}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"GoldenMol\": {\"ENS\": 0.08673799739540111, \"paralinear\": 0.36420049648705444, \"mprobs\": {\"T\": 0.22903006345329985, \"C\": 0.18656771708350994, \"A\": 0.36444500625255694, \"G\": 0.21995721321063355}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Madagascar\": {\"ENS\": 0.053317056406054004, \"paralinear\": 0.22086414170898383, \"mprobs\": {\"T\": 0.22536902330065264, \"C\": 0.19427041194690595, \"A\": 0.35526288785881005, \"G\": 0.2250976768936319}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Tenrec\": {\"ENS\": 0.09500008597600096, \"paralinear\": 0.3928242911494042, \"mprobs\": {\"T\": 0.22439410425551798, \"C\": 0.19647797372232134, \"A\": 0.35265281382077146, \"G\": 0.22647510820138964}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.43\": {\"ENS\": 0.1623790434112199, \"paralinear\": 0.6786748747474185, \"mprobs\": {\"T\": 0.22675900135731225, \"C\": 0.19125076684091694, \"A\": 0.3588487367253257, \"G\": 0.22314149507644554}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.44\": {\"ENS\": 0.010471300968225242, \"paralinear\": 0.04427422027258121, \"mprobs\": {\"T\": 0.2321367869068622, \"C\": 0.1805314891554777, \"A\": 0.37171955357258424, \"G\": 0.2156121703650761}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"LesserEle\": {\"ENS\": 0.11302469657727374, \"paralinear\": 0.472393845396053, \"mprobs\": {\"T\": 0.2273856337812687, \"C\": 0.1899307105082313, \"A\": 0.36042192447661753, \"G\": 0.22226173123388282}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"GiantElep\": {\"ENS\": 0.1361486451967194, \"paralinear\": 0.5683021660861813, \"mprobs\": {\"T\": 0.22673211244128383, \"C\": 0.19130794264004666, \"A\": 0.3587806737494973, \"G\": 0.22317927116917252}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.45\": {\"ENS\": 0.037611999311299646, \"paralinear\": 0.15868741643852324, \"mprobs\": {\"T\": 0.231102164315073, \"C\": 0.18250219938457946, \"A\": 0.36933712613244174, \"G\": 0.21705851016790606}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.46\": {\"ENS\": 0.002092017352092417, \"paralinear\": 0.008854079244977164, \"mprobs\": {\"T\": 0.23255220762505271, \"C\": 0.17974995698507912, \"A\": 0.37266632400277505, \"G\": 0.2150315113870933}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.47\": {\"ENS\": 0.005079900667538481, \"paralinear\": 0.021509707169305337, \"mprobs\": {\"T\": 0.23263631007260377, \"C\": 0.17959237947804618, \"A\": 0.37285735190851826, \"G\": 0.21491395854083195}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.48\": {\"ENS\": 0.023477688198102677, \"paralinear\": 0.09959156409280379, \"mprobs\": {\"T\": 0.2328420594123956, \"C\": 0.17920777368365945, \"A\": 0.37332378964859664, \"G\": 0.21462637725534842}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Caenolest\": {\"ENS\": 0.1267199502010649, \"paralinear\": 0.5173224611656027, \"mprobs\": {\"T\": 0.22003659655879024, \"C\": 0.20791225300887667, \"A\": 0.3392894202840382, \"G\": 0.23276173014829507}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Phascogale\": {\"ENS\": 0.09821104059366854, \"paralinear\": 0.4009206352196264, \"mprobs\": {\"T\": 0.22015688115995305, \"C\": 0.20753895948805964, \"A\": 0.3397216247822709, \"G\": 0.23258253456971648}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Wombat\": {\"ENS\": 0.05341483216623319, \"paralinear\": 0.21825024546720062, \"mprobs\": {\"T\": 0.22068836088594349, \"C\": 0.20594850711460674, \"A\": 0.34156607462177296, \"G\": 0.23179705737767692}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"Bandicoot\": {\"ENS\": 0.11802583598875109, \"paralinear\": 0.48157335693097103, \"mprobs\": {\"T\": 0.21990267870766467, \"C\": 0.20833443879699598, \"A\": 0.33880092648026205, \"G\": 0.2329619560150774}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.49\": {\"ENS\": 0.0023513667862750656, \"paralinear\": 0.009620615296157098, \"mprobs\": {\"T\": 0.2214474526120714, \"C\": 0.20381293871996006, \"A\": 0.34405046854094873, \"G\": 0.23068914012701983}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.50\": {\"ENS\": 0.018168822909575597, \"paralinear\": 0.07436246315938799, \"mprobs\": {\"T\": 0.22148332633799156, \"C\": 0.20371532109063575, \"A\": 0.3441642465169451, \"G\": 0.23063710605442758}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"edge.51\": {\"ENS\": 0.437404074913319, \"paralinear\": 1.8127156513621356, \"mprobs\": {\"T\": 0.22176778200217562, \"C\": 0.20295053627457427, \"A\": 0.3450562954133852, \"G\": 0.230225386309865}, \"G>T\": 0.5210606837133107, \"G>C\": 0.7751010590349916, \"G>A\": 4.592225166516715, \"T>C\": 3.047228461372764, \"T>A\": 0.8301683237233797, \"C>G\": 0.874076821592714, \"C>T\": 3.330613467509294, \"C>A\": 0.70891762217141, \"A>G\": 3.112164460742973, \"A>T\": 0.5926442300672324, \"A>C\": 1.0408659281719779}, \"root\": {\"mprobs\": {\"T\": 0.2338215316192115, \"C\": 0.17739355857203987, \"A\": 0.3755275913395219, \"G\": 0.21325731846922674}}}, \"length_and_support\": {\"FlyingFox\": {\"length\": 0.017741273670248456, \"support\": null}, \"DogFaced\": {\"length\": 0.036375233232148925, \"support\": null}, \"edge.0\": {\"length\": 0.04627655860256909, \"support\": null}, \"FreeTaile\": {\"length\": 0.03763092526433395, \"support\": null}, \"LittleBro\": {\"length\": 0.05478868222706951, \"support\": null}, \"edge.1\": {\"length\": 0.01108010605652313, \"support\": null}, \"TombBat\": {\"length\": 0.0553127072328518, \"support\": null}, \"RoundEare\": {\"length\": 0.17376260163391286, \"support\": null}, \"edge.2\": {\"length\": 0.004811085287800328, \"support\": null}, \"edge.3\": {\"length\": 0.014436026647335837, \"support\": null}, \"edge.4\": {\"length\": 0.0021773549055771587, \"support\": null}, \"FalseVamp\": {\"length\": 0.06711224149743963, \"support\": null}, \"LeafNose\": {\"length\": 0.060568286302822724, \"support\": null}, \"edge.5\": {\"length\": 0.007149151015846594, \"support\": null}, \"edge.6\": {\"length\": 0.016175811942560764, \"support\": null}, \"Horse\": {\"length\": 0.0437020774610027, \"support\": null}, \"Rhino\": {\"length\": 0.03421064062929262, \"support\": null}, \"edge.7\": {\"length\": 0.015423667902144758, \"support\": null}, \"Pangolin\": {\"length\": 0.07724919751648576, \"support\": null}, \"Cat\": {\"length\": 0.054278226867084195, \"support\": null}, \"Dog\": {\"length\": 0.08124577241175945, \"support\": null}, \"edge.8\": {\"length\": 0.02640201982933406, \"support\": null}, \"edge.9\": {\"length\": 0.00532539297142259, \"support\": null}, \"edge.10\": {\"length\": 1.4916235222169097e-12, \"support\": null}, \"Llama\": {\"length\": 0.05751778972284968, \"support\": null}, \"Pig\": {\"length\": 0.07739856946657771, \"support\": null}, \"Cow\": {\"length\": 0.08777639231499659, \"support\": null}, \"Hippo\": {\"length\": 0.05237103842803992, \"support\": null}, \"SpermWhale\": {\"length\": 0.015086414806001838, \"support\": null}, \"HumpbackW\": {\"length\": 0.011148378728088007, \"support\": null}, \"edge.11\": {\"length\": 0.02311129371016991, \"support\": null}, \"edge.12\": {\"length\": 0.0017671228722700198, \"support\": null}, \"edge.13\": {\"length\": 0.009021829241666193, \"support\": null}, \"edge.14\": {\"length\": 0.006065726212199961, \"support\": null}, \"edge.15\": {\"length\": 0.0232983945107026, \"support\": null}, \"edge.16\": {\"length\": 4.0910086032102326e-12, \"support\": null}, \"edge.17\": {\"length\": 0.004462299380591719, \"support\": null}, \"Mole\": {\"length\": 0.10667843328437873, \"support\": null}, \"Hedgehog\": {\"length\": 0.15203511050694332, \"support\": null}, \"edge.18\": {\"length\": 0.017502977063435274, \"support\": null}, \"edge.19\": {\"length\": 0.012295342065535626, \"support\": null}, \"TreeShrew\": {\"length\": 0.12124168041750151, \"support\": null}, \"FlyingLem\": {\"length\": 0.05958767876443372, \"support\": null}, \"edge.20\": {\"length\": 0.0025361270506288514, \"support\": null}, \"Galago\": {\"length\": 0.13046860680133676, \"support\": null}, \"HowlerMon\": {\"length\": 0.04226893142237102, \"support\": null}, \"Rhesus\": {\"length\": 0.02203638164824187, \"support\": null}, \"Orangutan\": {\"length\": 0.007756254235291462, \"support\": null}, \"Gorilla\": {\"length\": 0.0024749249271206865, \"support\": null}, \"Human\": {\"length\": 0.0063856384285867485, \"support\": null}, \"Chimpanzee\": {\"length\": 0.002829346930370289, \"support\": null}, \"edge.21\": {\"length\": 3.0288845470928904e-12, \"support\": null}, \"edge.22\": {\"length\": 0.0032910959449209067, \"support\": null}, \"edge.23\": {\"length\": 0.011446772659536697, \"support\": null}, \"edge.24\": {\"length\": 0.010576268400132443, \"support\": null}, \"edge.25\": {\"length\": 0.04265551239205802, \"support\": null}, \"edge.26\": {\"length\": 0.011364290022017151, \"support\": null}, \"edge.27\": {\"length\": 0.0007791077607150512, \"support\": null}, \"Jackrabbit\": {\"length\": 0.13159844503570856, \"support\": null}, \"FlyingSqu\": {\"length\": 0.08768424057786249, \"support\": null}, \"OldWorld\": {\"length\": 0.2441999414569413, \"support\": null}, \"Mouse\": {\"length\": 0.06897933728712956, \"support\": null}, \"Rat\": {\"length\": 0.05491541685407963, \"support\": null}, \"edge.28\": {\"length\": 0.18388363230548743, \"support\": null}, \"edge.29\": {\"length\": 0.009794937976471138, \"support\": null}, \"edge.30\": {\"length\": 0.015292210767004136, \"support\": null}, \"edge.31\": {\"length\": 0.005076122245415853, \"support\": null}, \"edge.32\": {\"length\": 0.008549142959653054, \"support\": null}, \"edge.33\": {\"length\": 0.011774296515826487, \"support\": null}, \"NineBande\": {\"length\": 0.04106652871082478, \"support\": null}, \"HairyArma\": {\"length\": 0.02411886492701163, \"support\": null}, \"edge.34\": {\"length\": 0.020341174156229366, \"support\": null}, \"Anteater\": {\"length\": 0.060441339704554335, \"support\": null}, \"Sloth\": {\"length\": 0.04154194955535044, \"support\": null}, \"edge.35\": {\"length\": 0.008980091291957981, \"support\": null}, \"edge.36\": {\"length\": 0.027701154320570187, \"support\": null}, \"edge.37\": {\"length\": 0.003949441717156716, \"support\": null}, \"Dugong\": {\"length\": 0.008023138779536174, \"support\": null}, \"Manatee\": {\"length\": 0.007449617092641844, \"support\": null}, \"edge.38\": {\"length\": 0.025616406556216657, \"support\": null}, \"AfricanEl\": {\"length\": 0.0017346458044374493, \"support\": null}, \"AsianElep\": {\"length\": 0.002584417728248381, \"support\": null}, \"edge.39\": {\"length\": 0.04178294591089507, \"support\": null}, \"RockHyrax\": {\"length\": 0.006790858356137325, \"support\": null}, \"TreeHyrax\": {\"length\": 0.0067932248278529195, \"support\": null}, \"edge.40\": {\"length\": 0.11050523736329819, \"support\": null}, \"edge.41\": {\"length\": 0.005019872861390538, \"support\": null}, \"edge.42\": {\"length\": 0.012480902726092386, \"support\": null}, \"Aardvark\": {\"length\": 0.07884116968290134, \"support\": null}, \"GoldenMol\": {\"length\": 0.08673799739540111, \"support\": null}, \"Madagascar\": {\"length\": 0.053317056406054004, \"support\": null}, \"Tenrec\": {\"length\": 0.09500008597600096, \"support\": null}, \"edge.43\": {\"length\": 0.1623790434112199, \"support\": null}, \"edge.44\": {\"length\": 0.010471300968225242, \"support\": null}, \"LesserEle\": {\"length\": 0.11302469657727374, \"support\": null}, \"GiantElep\": {\"length\": 0.1361486451967194, \"support\": null}, \"edge.45\": {\"length\": 0.037611999311299646, \"support\": null}, \"edge.46\": {\"length\": 0.002092017352092417, \"support\": null}, \"edge.47\": {\"length\": 0.005079900667538481, \"support\": null}, \"edge.48\": {\"length\": 0.023477688198102677, \"support\": null}, \"Caenolest\": {\"length\": 0.1267199502010649, \"support\": null}, \"Phascogale\": {\"length\": 0.09821104059366854, \"support\": null}, \"Wombat\": {\"length\": 0.05341483216623319, \"support\": null}, \"Bandicoot\": {\"length\": 0.11802583598875109, \"support\": null}, \"edge.49\": {\"length\": 0.0023513667862750656, \"support\": null}, \"edge.50\": {\"length\": 0.018168822909575597, \"support\": null}, \"edge.51\": {\"length\": 0.437404074913319, \"support\": null}, \"root\": {\"length\": null, \"support\": null}}, \"type\": \"cogent3.core.tree.PhyloNode\", \"version\": \"2025.7.10a5\"}", "completed": true}
@@ -0,0 +1,81 @@
1
+ """
2
+ Animal phylogeny
3
+ ================
4
+
5
+ This example from ``cogent3`` shows how to use ``iplotx`` to visualise a phylogenetic tree of many animals.
6
+
7
+ It also shows how to combine ``iplotx`` trees with other ``matplotlib`` artists such as annotations and
8
+ scatter plots.
9
+ """
10
+
11
+ from collections import defaultdict
12
+ import cogent3
13
+ import matplotlib.pyplot as plt
14
+ import iplotx as ipx
15
+
16
+ reader = cogent3.get_app("load_json")
17
+
18
+ ens_tree = reader("data/GN-tree.json")
19
+
20
+ # Customise the figure as you like
21
+ fig, ax = plt.subplots(figsize=(8, 14))
22
+
23
+ # Inject plot into the figure/axes
24
+ tree_artist = ipx.tree(
25
+ ens_tree,
26
+ layout="horizontal",
27
+ ax=ax,
28
+ leaf_labels=True,
29
+ # Style options
30
+ layout_angular=False,
31
+ leaf_deep=True,
32
+ margins=(0.2, 0),
33
+ leafedge_color=defaultdict(lambda: "black", {
34
+ "Human": "tomato",
35
+ "Chimpanzee": "orange",
36
+ "Orangutan": "gold",
37
+ "Gorilla": "gold",
38
+ "Rhesus": "yellow",
39
+ "HowlerMon": "yellow",
40
+ }),
41
+ leafedge_linewidth=2,
42
+ )
43
+
44
+ # Add an annotation with an arrow towards the root
45
+ layout = tree_artist.get_layout().values
46
+ root_coords = layout[layout[:, 0] == 0][0]
47
+ ax.annotate(
48
+ "Tree root",
49
+ root_coords,
50
+ (-0.1, 55),
51
+ xycoords="data",
52
+ textcoords="data",
53
+ arrowprops=dict(
54
+ color="grey",
55
+ arrowstyle="-|>",
56
+ shrinkA=4,
57
+ shrinkB=12,
58
+ linewidth=2,
59
+ connectionstyle="angle",
60
+ ),
61
+ bbox=dict(
62
+ boxstyle="round,rounding_size=0.2,pad=0.5",
63
+ facecolor="white",
64
+ edgecolor="grey",
65
+ linewidth=2,
66
+ ),
67
+ fontsize=12,
68
+ )
69
+
70
+ # Also add concentric circles at the root
71
+ ax.scatter(
72
+ [root_coords[0]] * 3,
73
+ [root_coords[1]] * 3,
74
+ s=[50, 200, 500],
75
+ facecolor="none",
76
+ edgecolor="orchid",
77
+ linewidth=2,
78
+ )
79
+
80
+ # Ensure tight layout for minimal whitespace
81
+ fig.tight_layout()
@@ -62,7 +62,7 @@ ipx.network(
62
62
  ax=ax,
63
63
  vertex_marker="s",
64
64
  vertex_facecolor="red",
65
- edge_padding=3,
65
+ edge_shrink=3,
66
66
  edge_zorder=2,
67
67
  vertex_zorder=3,
68
68
  vertex_label_color="black",
@@ -34,7 +34,7 @@ ipx.network(
34
34
  edge_arrow_width=30,
35
35
  edge_arrow_height=40,
36
36
  edge_arrow_marker=[")>", "|", "|"],
37
- edge_padding=15,
37
+ edge_shrink=15,
38
38
  edge_curved=True,
39
39
  edge_tension=[2, 2, 2],
40
40
  vertex_facecolor=["#26677FFF", "#635C72FF", "#89374FFF"],
@@ -25,7 +25,7 @@ ipx.network(
25
25
  vertex_size=12,
26
26
  edge_arrow_marker=arrow_markers,
27
27
  edge_arrow_height="width",
28
- edge_padding=8,
28
+ edge_shrink=8,
29
29
  edge_color="steelblue",
30
30
  title="Arrow markers",
31
31
  )
@@ -1,8 +1,8 @@
1
1
  """
2
- Edge padding
3
- ============
2
+ Edge shrink
3
+ ===========
4
4
 
5
- This example illustrates how to pad edges, i.e. leave a bit of empty space between
5
+ This example illustrates how to shrink edges, i.e. leave a bit of empty space between
6
6
  edge cap (end) and the border of its source/target vertices.
7
7
  """
8
8
 
@@ -31,7 +31,7 @@ ipx.network(
31
31
  graph,
32
32
  layout,
33
33
  style="rededge",
34
- edge_padding=5,
34
+ edge_shrink=5,
35
35
  vertex_labels=True,
36
36
  vertex_size={"A": 20, "B": 20, "C": 20, "D": 20, "E": 20, "Bingo": 50},
37
37
  )
@@ -352,9 +352,9 @@ class EdgeCollection(mpl.collections.PatchCollection):
352
352
  tension = 0
353
353
  ports = None
354
354
 
355
- # Scale padding by dpi
355
+ # Scale shrink by dpi
356
356
  dpi = self.figure.dpi if hasattr(self, "figure") else 72.0
357
- padding = dpi / 72.0 * edge_stylei.pop("padding", 0)
357
+ shrink = dpi / 72.0 * edge_stylei.pop("shrink", 0)
358
358
 
359
359
  # False is a synonym for "none"
360
360
  waypoints = edge_stylei.get("waypoints", "none")
@@ -380,7 +380,7 @@ class EdgeCollection(mpl.collections.PatchCollection):
380
380
  waypoints=waypoints,
381
381
  ports=ports,
382
382
  layout_coordinate_system=self._vertex_collection.get_layout_coordinate_system(),
383
- padding=padding,
383
+ shrink=shrink,
384
384
  )
385
385
 
386
386
  offset = edge_stylei.get("offset", 0)
@@ -720,6 +720,8 @@ def make_stub_patch(**kwargs):
720
720
  "cmap",
721
721
  "norm",
722
722
  "split",
723
+ "shrink",
724
+ # DEPRECATED
723
725
  "padding",
724
726
  ]
725
727
  for prop in forbidden_props:
@@ -2,7 +2,7 @@
2
2
  Module for edge arrows in iplotx.
3
3
  """
4
4
 
5
- from typing import Never
5
+ from typing import Never, Optional
6
6
 
7
7
  import numpy as np
8
8
  import matplotlib as mpl
@@ -149,10 +149,35 @@ class EdgeArrowCollection(mpl.collections.PatchCollection):
149
149
  super().draw(renderer)
150
150
 
151
151
 
152
- def make_arrow_patch(marker: str = "|>", width: float = 8, **kwargs):
153
- """Make a patch of the given marker shape and size."""
154
- height = kwargs.pop("height", width * 1.3)
155
- if height == "width":
152
+ def make_arrow_patch(
153
+ marker: str = "|>",
154
+ width: float = 8,
155
+ height: Optional[float | str] = None,
156
+ **kwargs,
157
+ ):
158
+ """Make a patch of the given marker shape and size.
159
+
160
+ Parameters:
161
+ marker: The marker shape to use. Supported markers are:
162
+ "|>", "|/", "|\\", ">", "<", ">>", ")>", ")", "(", "]", "[", "|",
163
+ "x", "s", "d", "p", "q". Dashes at the start of this string will
164
+ be ignored, so "->" is equivalent to ">".
165
+ width: The width of the marker in points. Height is by default 1.3 the
166
+ width, unless specified separately.
167
+ height: The height of the marker in points. If not specified, it is
168
+ 1.3 times the width. This can also be the string "width", in which
169
+ case the height will be equal to the width.
170
+ **kwargs: Additional keyword arguments passed to the PathPatch.
171
+
172
+ Returns:
173
+ A pair with the patch and the max size of the patch in points.
174
+ """
175
+ # Forget any leading dashes
176
+ marker = marker.lstrip("-")
177
+
178
+ if height is None:
179
+ height = width * 1.3
180
+ elif height == "width":
156
181
  height = width
157
182
 
158
183
  # Normalise by the max size, this is taken care of in _transforms