iplotx 0.11.1__tar.gz → 0.12.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (252) hide show
  1. {iplotx-0.11.1 → iplotx-0.12.0}/PKG-INFO +10 -6
  2. {iplotx-0.11.1 → iplotx-0.12.0}/README.md +7 -4
  3. iplotx-0.12.0/docs/source/_static/custom-icons.js +30 -0
  4. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/api/complete_style_specification.md +6 -2
  5. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/conf.py +21 -1
  6. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/index.md +17 -14
  7. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/providers.md +1 -1
  8. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/sg_execution_times.rst +9 -3
  9. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_grouping.py +5 -0
  10. iplotx-0.12.0/gallery/style/plot_depthshade.py +46 -0
  11. iplotx-0.12.0/gallery/tree/plot_dendropy.py +50 -0
  12. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/art3d/edge/__init__.py +120 -1
  13. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/edge/__init__.py +1 -0
  14. iplotx-0.12.0/iplotx/ingest/providers/tree/dendropy.py +59 -0
  15. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/network.py +4 -1
  16. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/style/leaf_info.py +1 -0
  17. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/utils/matplotlib.py +78 -0
  18. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/version.py +1 -1
  19. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/vertex.py +1 -1
  20. {iplotx-0.11.1 → iplotx-0.12.0}/pyproject.toml +5 -2
  21. iplotx-0.12.0/tests/baseline_images/test_dendropy/cascades.png +1 -0
  22. iplotx-0.12.0/tests/baseline_images/test_dendropy/directed_child.png +1 -0
  23. iplotx-0.12.0/tests/baseline_images/test_dendropy/leaf_labels.png +1 -0
  24. iplotx-0.12.0/tests/baseline_images/test_dendropy/leaf_labels_hmargin.png +1 -0
  25. iplotx-0.12.0/tests/baseline_images/test_dendropy/leafedges.png +1 -0
  26. iplotx-0.12.0/tests/baseline_images/test_dendropy/tree_basic.png +1 -0
  27. iplotx-0.12.0/tests/baseline_images/test_dendropy/tree_radial.png +1 -0
  28. iplotx-0.12.0/tests/baseline_images/test_igraph_3d/directed.png +0 -0
  29. iplotx-0.12.0/tests/baseline_images/test_igraph_3d/undirected.png +0 -0
  30. iplotx-0.12.0/tests/baseline_images/test_igraph_3d/vertex_labels.png +0 -0
  31. iplotx-0.12.0/tests/test_dendropy.py +236 -0
  32. {iplotx-0.11.1 → iplotx-0.12.0}/uv.lock +81 -28
  33. iplotx-0.11.1/tests/baseline_images/test_igraph_3d/directed.png +0 -0
  34. iplotx-0.11.1/tests/baseline_images/test_igraph_3d/undirected.png +0 -0
  35. iplotx-0.11.1/tests/baseline_images/test_igraph_3d/vertex_labels.png +0 -0
  36. {iplotx-0.11.1 → iplotx-0.12.0}/.github/workflows/publish.yml +0 -0
  37. {iplotx-0.11.1 → iplotx-0.12.0}/.github/workflows/test.yml +0 -0
  38. {iplotx-0.11.1 → iplotx-0.12.0}/.gitignore +0 -0
  39. {iplotx-0.11.1 → iplotx-0.12.0}/.pre-commit-config.yaml +0 -0
  40. {iplotx-0.11.1 → iplotx-0.12.0}/.readthedocs.yaml +0 -0
  41. {iplotx-0.11.1 → iplotx-0.12.0}/LICENSE +0 -0
  42. {iplotx-0.11.1 → iplotx-0.12.0}/MANIFEST.in +0 -0
  43. {iplotx-0.11.1 → iplotx-0.12.0}/assets/pylint.svg +0 -0
  44. {iplotx-0.11.1 → iplotx-0.12.0}/docs/Makefile +0 -0
  45. {iplotx-0.11.1 → iplotx-0.12.0}/docs/make.bat +0 -0
  46. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/_static/banner.png +0 -0
  47. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/_static/graph_basic.png +0 -0
  48. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/_templates/layout.html +0 -0
  49. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/api/artists.md +0 -0
  50. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/api/plotting.md +0 -0
  51. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/api/providers.md +0 -0
  52. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/api/style.md +0 -0
  53. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/api.md +0 -0
  54. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/images/sphx_glr_plot_basic_001.png +0 -0
  55. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/images/thumb/sphx_glr_plot_basic_thumb.png +0 -0
  56. {iplotx-0.11.1 → iplotx-0.12.0}/docs/source/style.md +0 -0
  57. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/GALLERY_HEADER.rst +0 -0
  58. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/GALLERY_HEADER.rst +0 -0
  59. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_3d.py +0 -0
  60. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_basic.py +0 -0
  61. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_big_curves.py +0 -0
  62. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_dag.py +0 -0
  63. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_directed.py +0 -0
  64. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_house.py +0 -0
  65. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_loops.py +0 -0
  66. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/basic/plot_simple_path.py +0 -0
  67. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/GALLERY_HEADER.rst +0 -0
  68. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/data/80201010000000001.mst +0 -0
  69. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/data/GN-tree.json +0 -0
  70. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/data/breast_cancer_string_interactions_short.tsv +0 -0
  71. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/data/breast_cancer_string_network_coordinates.tsv +0 -0
  72. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/data/cell_cycle_arrest_string_interactions_short.tsv +0 -0
  73. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/data/cell_cycle_arrest_string_network_coordinates.tsv +0 -0
  74. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/data/fevo-08-588430_DataSheet1_S1.csv +0 -0
  75. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_animal_phylogeny.py +0 -0
  76. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_antibody_clone.py +0 -0
  77. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_breast_cancer_ppi.py +0 -0
  78. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_cell_cycle_arrest.py +0 -0
  79. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_food_network.py +0 -0
  80. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_foraging_table.py +0 -0
  81. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_pollinators.py +0 -0
  82. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_ppi.py +0 -0
  83. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/biology/plot_tca_cycle.py +0 -0
  84. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/GALLERY_HEADER.rst +0 -0
  85. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/data/chess_masters_WCC.pgn.bz2 +0 -0
  86. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/data/knuth_miles.txt.gz +0 -0
  87. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_arrowlawn.py +0 -0
  88. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_chess_masters.py +0 -0
  89. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_cliques.py +0 -0
  90. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_cluster_layout.py +0 -0
  91. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_company_structure.py +0 -0
  92. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_complex.py +0 -0
  93. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_financial_network.py +0 -0
  94. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_knuth_miles.py +0 -0
  95. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_labels_and_colors.py +0 -0
  96. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_max_bipartite_matching.py +0 -0
  97. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_minimum_spanning_trees.py +0 -0
  98. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_multipartite_layout.py +0 -0
  99. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_parallel_igraph_networkx.py +0 -0
  100. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_redblack.py +0 -0
  101. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_shortest_path.py +0 -0
  102. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_simple_networkx.py +0 -0
  103. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_social_network_circles.py +0 -0
  104. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_traveling_salesman.py +0 -0
  105. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/network_science/plot_with_colorbar.py +0 -0
  106. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/other/GALLERY_HEADER.rst +0 -0
  107. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/other/plot_animation.py +0 -0
  108. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/other/plot_edit_artists.py +0 -0
  109. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/other/plot_feedbacks.py +0 -0
  110. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/other/plot_graph.py +0 -0
  111. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/other/plot_mouse_hover.py +0 -0
  112. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/other/plot_train.py +0 -0
  113. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/GALLERY_HEADER.rst +0 -0
  114. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_arrows.py +0 -0
  115. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_edgepadding.py +0 -0
  116. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_elements.py +0 -0
  117. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_four_grids.py +0 -0
  118. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_halfarrows.py +0 -0
  119. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_multistyle.py +0 -0
  120. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_ports.py +0 -0
  121. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_style.py +0 -0
  122. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_tension.py +0 -0
  123. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_vertexmarkers.py +0 -0
  124. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_voronoi.py +0 -0
  125. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/style/plot_waypoints.py +0 -0
  126. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/GALLERY_HEADER.rst +0 -0
  127. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/data/tree-with-support.json +0 -0
  128. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_angular_waypoints.py +0 -0
  129. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_biopython_tree.py +0 -0
  130. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_cladeedges.py +0 -0
  131. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_cogent3_layouts.py +0 -0
  132. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_cogent3_tree.py +0 -0
  133. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_elements_tree.py +0 -0
  134. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_ete4.py +0 -0
  135. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_leafedges.py +0 -0
  136. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_leafedges_and_cascades.py +0 -0
  137. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_skbio_tree.py +0 -0
  138. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_split_edges.py +0 -0
  139. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_style_tree.py +0 -0
  140. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_support.py +0 -0
  141. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_tree_node_background.py +0 -0
  142. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_tree_style_clades.py +0 -0
  143. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/tree/plot_trees_of_trees.py +0 -0
  144. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/zero_dependency/GALLERY_HEADER.rst +0 -0
  145. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/zero_dependency/plot_simplenetworkdataprovider.py +0 -0
  146. {iplotx-0.11.1 → iplotx-0.12.0}/gallery/zero_dependency/plot_simpletreedataprovider.py +0 -0
  147. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/__init__.py +0 -0
  148. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/art3d/edge/arrow.py +0 -0
  149. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/art3d/edge/geometry.py +0 -0
  150. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/art3d/vertex.py +0 -0
  151. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/artists.py +0 -0
  152. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/cascades.py +0 -0
  153. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/edge/arrow.py +0 -0
  154. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/edge/geometry.py +0 -0
  155. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/edge/leaf.py +0 -0
  156. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/edge/ports.py +0 -0
  157. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/groups.py +0 -0
  158. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/__init__.py +0 -0
  159. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/heuristics.py +0 -0
  160. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/network/igraph.py +0 -0
  161. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/network/networkx.py +0 -0
  162. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/network/simple.py +0 -0
  163. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/tree/biopython.py +0 -0
  164. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/tree/cogent3.py +0 -0
  165. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/tree/ete4.py +0 -0
  166. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/tree/simple.py +0 -0
  167. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/providers/tree/skbio.py +0 -0
  168. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/ingest/typing.py +0 -0
  169. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/label.py +0 -0
  170. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/layout.py +0 -0
  171. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/plotting.py +0 -0
  172. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/style/__init__.py +0 -0
  173. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/style/library.py +0 -0
  174. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/tree.py +0 -0
  175. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/typing.py +0 -0
  176. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/utils/geometry.py +0 -0
  177. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/utils/internal.py +0 -0
  178. {iplotx-0.11.1 → iplotx-0.12.0}/iplotx/utils/style.py +0 -0
  179. {iplotx-0.11.1 → iplotx-0.12.0}/scripts/copy_github_release_into_version.sh +0 -0
  180. {iplotx-0.11.1 → iplotx-0.12.0}/scripts/make_banner.py +0 -0
  181. {iplotx-0.11.1 → iplotx-0.12.0}/scripts/update_pylint_badge.sh +0 -0
  182. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/cascades.png +0 -0
  183. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/directed_child.png +0 -0
  184. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/leaf_labels.png +0 -0
  185. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/leaf_labels_hmargin.png +0 -0
  186. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/leafedges.png +0 -0
  187. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/show_support.png +0 -0
  188. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/tree_basic.png +0 -0
  189. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_biopython/tree_radial.png +0 -0
  190. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_cogent3/leaf_labels.png +0 -0
  191. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_cogent3/leaf_labels_hmargin.png +0 -0
  192. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_cogent3/tree_basic.png +0 -0
  193. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_cogent3/tree_radial.png +0 -0
  194. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_ete4/leaf_labels.png +0 -0
  195. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_ete4/leaf_labels_hmargin.png +0 -0
  196. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_ete4/split_edges.png +0 -0
  197. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_ete4/tree_basic.png +0 -0
  198. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_ete4/tree_radial.png +0 -0
  199. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/clustering_directed.png +0 -0
  200. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/clustering_directed_large.png +0 -0
  201. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_basic.png +0 -0
  202. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_directed.png +0 -0
  203. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_directed_curved_loops.png +0 -0
  204. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_edit_children.png +0 -0
  205. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_labels.png +0 -0
  206. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_layout_attribute.png +0 -0
  207. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_null.png +0 -0
  208. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_squares_directed.png +0 -0
  209. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_vertexsize.png +0 -0
  210. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/graph_with_curved_edges.png +0 -0
  211. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/igraph_layout_object.png +0 -0
  212. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_igraph/multigraph_with_curved_edges_undirected.png +0 -0
  213. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/cluster-layout.png +0 -0
  214. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/complex.png +0 -0
  215. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/complex_rotatelabels.png +0 -0
  216. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/directed_graph.png +0 -0
  217. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/directed_graph_with_colorbar.png +0 -0
  218. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/empty_graph.png +0 -0
  219. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/flat_style.png +0 -0
  220. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/house_with_colors.png +0 -0
  221. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/labels_and_colors.png +0 -0
  222. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/shortest_path.png +0 -0
  223. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_networkx/simple_graph.png +0 -0
  224. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_simple_network_provider/graph_basic.png +0 -0
  225. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_simple_network_provider/graph_directed.png +0 -0
  226. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_simple_network_provider/graph_labels.png +0 -0
  227. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_skbio/leaf_labels.png +0 -0
  228. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_skbio/leaf_labels_hmargin.png +0 -0
  229. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_skbio/tree_basic.png +0 -0
  230. {iplotx-0.11.1 → iplotx-0.12.0}/tests/baseline_images/test_skbio/tree_radial.png +0 -0
  231. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_arrows.py +0 -0
  232. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_biopython.py +0 -0
  233. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_cascades.py +0 -0
  234. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_cogent3.py +0 -0
  235. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_edge.py +0 -0
  236. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_edge_geometry.py +0 -0
  237. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_ete4.py +0 -0
  238. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_geometry.py +0 -0
  239. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_heuristics.py +0 -0
  240. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_igraph.py +0 -0
  241. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_igraph_3d.py +0 -0
  242. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_ingest_protocols.py +0 -0
  243. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_matplotlib_utils.py +0 -0
  244. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_network_hotload.py +0 -0
  245. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_networkx.py +0 -0
  246. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_ports.py +0 -0
  247. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_simple_network_provider.py +0 -0
  248. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_simple_tree_provider.py +0 -0
  249. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_skbio.py +0 -0
  250. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_style.py +0 -0
  251. {iplotx-0.11.1 → iplotx-0.12.0}/tests/test_vertex.py +0 -0
  252. {iplotx-0.11.1 → iplotx-0.12.0}/tests/utils.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: iplotx
3
- Version: 0.11.1
3
+ Version: 0.12.0
4
4
  Summary: Plot networkx from igraph and networkx.
5
5
  Project-URL: Homepage, https://github.com/fabilab/iplotx
6
6
  Project-URL: Documentation, https://readthedocs.org/iplotx
@@ -10,8 +10,9 @@ Project-URL: Changelog, https://github.com/fabilab/iplotx/blob/main/CHANGELOG.md
10
10
  Author-email: Fabio Zanini <fabio.zanini@unsw.edu.au>
11
11
  Maintainer-email: Fabio Zanini <fabio.zanini@unsw.edu.au>
12
12
  License: MIT
13
- Keywords: graph,network,plotting,visualisation
13
+ Keywords: graph,network,phylogeny,plotting,tree,visualisation
14
14
  Classifier: Development Status :: 5 - Production/Stable
15
+ Classifier: Framework :: Matplotlib
15
16
  Classifier: Intended Audience :: Developers
16
17
  Classifier: Intended Audience :: Education
17
18
  Classifier: Intended Audience :: Science/Research
@@ -52,13 +53,14 @@ Supports:
52
53
  - **networks**:
53
54
  - [networkx](https://networkx.org/)
54
55
  - [igraph](igraph.readthedocs.io/)
55
- - [minimal network data structure](https://iplotx.readthedocs.io/en/latest/gallery/plot_simplenetworkdataprovider.html#sphx-glr-gallery-plot-simplenetworkdataprovider-py) (for educational purposes)
56
+ - [minimal network data structure](https://iplotx.readthedocs.io/en/latest/gallery/plot_simplenetworkdataprovider.html#sphx-glr-gallery-plot-simplenetworkdataprovider-py) (zero dependency)
56
57
  - **trees**:
57
58
  - [ETE4](https://etetoolkit.github.io/ete/)
58
59
  - [cogent3](https://cogent3.org/)
59
60
  - [Biopython](https://biopython.org/)
60
61
  - [scikit-bio](https://scikit.bio)
61
- - [minimal tree data structure](https://iplotx.readthedocs.io/en/latest/gallery/tree/plot_simpletreedataprovider.html#sphx-glr-gallery-tree-plot-simpletreedataprovider-py) (for educational purposes)
62
+ - [dendropy](https://jeetsukumaran.github.io/DendroPy/index.html)
63
+ - [minimal tree data structure](https://iplotx.readthedocs.io/en/latest/gallery/tree/plot_simpletreedataprovider.html#sphx-glr-gallery-tree-plot-simpletreedataprovider-py) (zero dependency)
62
64
 
63
65
  In addition to the above, *any* network or tree analysis library can register an [entry point](https://iplotx.readthedocs.io/en/latest/providers.html#creating-a-custom-data-provider) to gain compatibility with `iplotx` with no intervention from our side.
64
66
 
@@ -89,15 +91,17 @@ See [gallery](https://iplotx.readthedocs.io/en/latest/gallery/index.html).
89
91
 
90
92
  ## Features
91
93
  - Plot networks from multiple libraries including networkx and igraph, using matplotlib as a backend. ✅
92
- - Plot trees from multiple libraries such as cogent3, ETE4, skbio, and biopython. ✅
94
+ - Plot trees from multiple libraries such as cogent3, ETE4, skbio, biopython, and dendropy. ✅
93
95
  - Flexible yet easy styling, including an internal library of styles ✅
94
96
  - Interactive plotting, e.g. zooming and panning after the plot is created. ✅
95
97
  - Store the plot to disk thanks to the many matplotlib backends (SVG, PNG, PDF, etc.). ✅
96
- - Efficient plotting of large graphs using matplotlib's collection functionality. ✅
98
+ - 3D network visualisation with depth shading. ✅
99
+ - Efficient plotting of large graphs (up to ~1 million nodes on a laptop). ✅
97
100
  - Edit plotting elements after the plot is created, e.g. changing node colors, labels, etc. ✅
98
101
  - Animations, e.g. showing the evolution of a network over time. ✅
99
102
  - Mouse and keyboard interaction, e.g. hovering over nodes/edges to get information about them. ✅
100
103
  - Node clustering and covers, e.g. showing communities in a network. ✅
104
+ - Edge tension, edge waypoints, and edge ports. ✅
101
105
  - Choice of tree layouts and orientations. ✅
102
106
  - Tree-specific options: cascades, subtree styling, split edges, etc. ✅
103
107
  - (WIP) Support uni- and bi-directional communication between graph object and plot object.🏗️
@@ -15,13 +15,14 @@ Supports:
15
15
  - **networks**:
16
16
  - [networkx](https://networkx.org/)
17
17
  - [igraph](igraph.readthedocs.io/)
18
- - [minimal network data structure](https://iplotx.readthedocs.io/en/latest/gallery/plot_simplenetworkdataprovider.html#sphx-glr-gallery-plot-simplenetworkdataprovider-py) (for educational purposes)
18
+ - [minimal network data structure](https://iplotx.readthedocs.io/en/latest/gallery/plot_simplenetworkdataprovider.html#sphx-glr-gallery-plot-simplenetworkdataprovider-py) (zero dependency)
19
19
  - **trees**:
20
20
  - [ETE4](https://etetoolkit.github.io/ete/)
21
21
  - [cogent3](https://cogent3.org/)
22
22
  - [Biopython](https://biopython.org/)
23
23
  - [scikit-bio](https://scikit.bio)
24
- - [minimal tree data structure](https://iplotx.readthedocs.io/en/latest/gallery/tree/plot_simpletreedataprovider.html#sphx-glr-gallery-tree-plot-simpletreedataprovider-py) (for educational purposes)
24
+ - [dendropy](https://jeetsukumaran.github.io/DendroPy/index.html)
25
+ - [minimal tree data structure](https://iplotx.readthedocs.io/en/latest/gallery/tree/plot_simpletreedataprovider.html#sphx-glr-gallery-tree-plot-simpletreedataprovider-py) (zero dependency)
25
26
 
26
27
  In addition to the above, *any* network or tree analysis library can register an [entry point](https://iplotx.readthedocs.io/en/latest/providers.html#creating-a-custom-data-provider) to gain compatibility with `iplotx` with no intervention from our side.
27
28
 
@@ -52,15 +53,17 @@ See [gallery](https://iplotx.readthedocs.io/en/latest/gallery/index.html).
52
53
 
53
54
  ## Features
54
55
  - Plot networks from multiple libraries including networkx and igraph, using matplotlib as a backend. ✅
55
- - Plot trees from multiple libraries such as cogent3, ETE4, skbio, and biopython. ✅
56
+ - Plot trees from multiple libraries such as cogent3, ETE4, skbio, biopython, and dendropy. ✅
56
57
  - Flexible yet easy styling, including an internal library of styles ✅
57
58
  - Interactive plotting, e.g. zooming and panning after the plot is created. ✅
58
59
  - Store the plot to disk thanks to the many matplotlib backends (SVG, PNG, PDF, etc.). ✅
59
- - Efficient plotting of large graphs using matplotlib's collection functionality. ✅
60
+ - 3D network visualisation with depth shading. ✅
61
+ - Efficient plotting of large graphs (up to ~1 million nodes on a laptop). ✅
60
62
  - Edit plotting elements after the plot is created, e.g. changing node colors, labels, etc. ✅
61
63
  - Animations, e.g. showing the evolution of a network over time. ✅
62
64
  - Mouse and keyboard interaction, e.g. hovering over nodes/edges to get information about them. ✅
63
65
  - Node clustering and covers, e.g. showing communities in a network. ✅
66
+ - Edge tension, edge waypoints, and edge ports. ✅
64
67
  - Choice of tree layouts and orientations. ✅
65
68
  - Tree-specific options: cascades, subtree styling, split edges, etc. ✅
66
69
  - (WIP) Support uni- and bi-directional communication between graph object and plot object.🏗️
@@ -0,0 +1,30 @@
1
+ FontAwesome.library.add(
2
+ /**
3
+ * Custom icon definitions
4
+ *
5
+ * see https://pydata-sphinx-theme.readthedocs.io/en/latest/user_guide/header-links.html#svg-image-icons
6
+ */
7
+ {
8
+ prefix: "fa-custom",
9
+ iconName: "pypi",
10
+ icon: [
11
+ 17.313,
12
+ 19.807,
13
+ [],
14
+ "e001",
15
+ // https://simpleicons.org/icons/pypi.svg
16
+ "m10.383 0.2-3.239 1.1769 3.1883 1.1614 3.239-1.1798zm-3.4152 1.2411-3.2362 1.1769 3.1855 1.1614 3.2369-1.1769zm6.7177 0.00281-3.2947 1.2009v3.8254l3.2947-1.1988zm-3.4145 1.2439-3.2926 1.1981v3.8254l0.17548-0.064132 3.1171-1.1347zm-6.6564 0.018325v3.8247l3.244 1.1805v-3.8254zm10.191 0.20931v2.3137l3.1777-1.1558zm3.2947 1.2425-3.2947 1.1988v3.8254l3.2947-1.1988zm-8.7058 0.45739c0.00929-1.931e-4 0.018327-2.977e-4 0.027485 0 0.25633 0.00851 0.4263 0.20713 0.42638 0.49826 1.953e-4 0.38532-0.29327 0.80469-0.65542 0.93662-0.36226 0.13215-0.65608-0.073306-0.65613-0.4588-6.28e-5 -0.38556 0.2938-0.80504 0.65613-0.93662 0.068422-0.024919 0.13655-0.038114 0.20156-0.039466zm5.2913 0.78369-3.2947 1.1988v3.8247l3.2947-1.1981zm-10.132 1.239-3.2362 1.1769 3.1883 1.1614 3.2362-1.1769zm6.7177 0.00213-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4124 1.2439-3.2947 1.1988v3.8254l3.2947-1.1988zm-6.6585 0.016195v3.8275l3.244 1.1805v-3.8254zm16.9 0.21143-3.2947 1.1988v3.8247l3.2947-1.1981zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm-3.4124 1.2432-3.2947 1.1988v3.8254l3.2947-1.1988zm-6.6585 0.019027v3.8247l3.244 1.1805v-3.8254zm13.485 1.4497-3.2947 1.1988v3.8247l3.2947-1.1981zm-3.4145 1.2411-3.2926 1.2016v3.8247l3.2926-1.2009zm2.4018 0.38127c0.0093-1.83e-4 0.01833-3.16e-4 0.02749 0 0.25633 0.0085 0.4263 0.20713 0.42638 0.49826 1.97e-4 0.38532-0.29327 0.80469-0.65542 0.93662-0.36188 0.1316-0.65525-0.07375-0.65542-0.4588-1.95e-4 -0.38532 0.29328-0.80469 0.65542-0.93662 0.06842-0.02494 0.13655-0.03819 0.20156-0.03947zm-5.8142 0.86403-3.244 1.1805v1.4201l3.244 1.1805z",
17
+ ],
18
+ },
19
+ {
20
+ prefix: "fa-custom",
21
+ iconName: "pydata",
22
+ icon: [
23
+ 24,
24
+ 24,
25
+ [],
26
+ "e002",
27
+ "M12.1,17.8v5.8l-5-2.9v-5.8L12.1,17.8z M12.1,12v5.8l-5-2.9V9.1L12.1,12z M17,9.1L12.1,12v5.8l4.9-2.9V9.1z M12.1,6.2L7,9.1l5,2.9L17,9.1L12.1,6.2z M17,9.1V3.3l-4.9-2.8v5.8L17,9.1z",
28
+ ],
29
+ },
30
+ );
@@ -37,6 +37,8 @@
37
37
  "edgecolor": str | Any, # Color of the vertex edge (e.g. 'black', '#000000')
38
38
  "alpha": float, # Opacity of the vertex (0.0 for fully transparent, 1.0 for fully opaque)
39
39
 
40
+ "depthshade": bool, # Whether to shade the color based on depth (3D only)
41
+
40
42
  # Vertex label style
41
43
  "label": {
42
44
  "color": str | Any, # Color of the vertex label (e.g. 'white', '#FFFFFF')
@@ -91,11 +93,13 @@
91
93
  # onto what color.
92
94
  "norm": tuple[float, float] | matplotlib.colors.Normalize,
93
95
 
94
- # Opacity of the vertex (0.0 for fully transparent, 1.0 for fully opaque).
96
+ # Opacity of the edge (0.0 for fully transparent, 1.0 for fully opaque).
95
97
  # If a colormap is used and this option is also set, this opacity takes
96
98
  # priority and finally determines the transparency of the edges.
97
99
  "alpha": float,
98
100
 
101
+ "depthshade": bool, # Whether to shade the color based on depth (3D only)
102
+
99
103
  "curved": bool, # Whether the edge is curved (True) or straight (False)
100
104
 
101
105
  # Tension for curved edges (0.0 for straight, higher values position the
@@ -189,7 +193,7 @@
189
193
  # unintuitive and interpret it the other way around, so think carefully.
190
194
  "rotate": bool,
191
195
 
192
- "color": str | Any, # Color of the vertex label (e.g. 'white', '#FFFFFF')
196
+ "color": str | Any, # Color of the edge label (e.g. 'white', '#FFFFFF')
193
197
  "horizontalalignment": str, # Horizontal alignment of the label ('left', 'center', 'right')
194
198
  "verticalalignment": str, # Vertical alignment of the label ('top', 'center', 'bottom', 'baseline', 'center_baseline')
195
199
  "hpadding": float, # Horizontal padding around the label
@@ -67,8 +67,28 @@ exclude_patterns = []
67
67
  # -- Options for HTML output -------------------------------------------------
68
68
  # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output
69
69
 
70
- html_theme = "sphinx_rtd_theme"
70
+ html_theme = "pydata_sphinx_theme"
71
71
  html_static_path = ["_static"]
72
+ html_js_files = [
73
+ ("custom-icons.js", {"defer": "defer"}),
74
+ ]
75
+
76
+ html_theme_options = {
77
+ "header_links_before_dropdown": 4,
78
+ "icon_links": [
79
+ {
80
+ "name": "GitHub",
81
+ "url": "https://github.com/fabilab/iplotx",
82
+ "icon": "fa-brands fa-github",
83
+ "type": "fontawesome",
84
+ },
85
+ {
86
+ "name": "PyPI",
87
+ "url": "https://pypi.org/project/iplotx",
88
+ "icon": "fa-custom fa-pypi",
89
+ },
90
+ ],
91
+ }
72
92
 
73
93
  # -----------------------------------------------------------------------------
74
94
  # Source code links (credit to the matplotlib project for this part)
@@ -1,6 +1,6 @@
1
1
  # iplotx documentation
2
2
 
3
- `iplotx` is a Python library to display graphs, networks and trees using `matplotlib` as a backend. It supports multiple network analysis libraries including `networkx` and `igraph` for networks and `biopython`, `scikit-bio`, `cogent3`, and `ete4` for trees.
3
+ [iplotx](https://github.com/fabilab/iplotx) is a Python library to display graphs/networks and trees with [matplotlib](https://matplotlib.org/). It natively supports [networkx](https://networkx.org/) and [igraph](https://python.igraph.org/) networks and [biopython](https://biopython.org/), [scikit-bio](https://scikit.bio/), [cogent3](https://cogent3.org/), [ETE4](https://etetoolkit.github.io/ete/), and [dendropy](https://jeetsukumaran.github.io/DendroPy/index.html) trees.
4
4
 
5
5
  `iplotx` guarantees the **exact same visual appearance** independently of what library you used to construct the network/tree.
6
6
 
@@ -54,12 +54,6 @@ Either way, the result is the same:
54
54
  See <project:gallery/index.rst> for examples of plots made with `iplotx`. Feel free to suggest new examples on GitHub by opening a new issue or pull request!
55
55
 
56
56
  ## Features
57
- ```{important}
58
- If you are the maintainer of a network/graph/tree analysis library and would like
59
- to propose improvements or see support for it, please reach out with an issue/PR
60
- on GitHub!
61
- ```
62
-
63
57
  `iplotx`'s features' include:
64
58
  - per-edge and per-vertex styling using sequences or dictionaries
65
59
  - labels
@@ -77,12 +71,13 @@ See <project:gallery/index.rst> for examples of plots made with `iplotx`. Feel f
77
71
  - correct HiDPI scaling (e.g. retina screens) including for vertex sizes, arrow sizes, and edge offsets
78
72
  - a consistent `matplotlib` artist hierarchy
79
73
  - post-plot editability (e.g. for animations)
80
- - plays well with other charting tools (e.g. `seaborn`)
74
+ - interoperability with other charting tools (e.g. `seaborn`)
81
75
  - chainable style contexts
82
76
  - vertex clusterings and covers with convex hulls and rounding
83
- - a plugin mechanism for additional libraries (WIP)
84
- - animations (see <project:gallery/plot_animation.rst>)
85
- - mouse/keyboard interaction and events (e.g. hover, click, see <project:gallery/plot_mouse_hover.rst>)
77
+ - a plugin mechanism for additional libraries
78
+ - animations (see <project:gallery/other/plot_animation.rst>)
79
+ - 3D visualisations
80
+ - mouse/keyboard interaction and events (e.g. hover, click, see <project:gallery/other/plot_mouse_hover.rst>)
86
81
  - ... and probably more by the time you read this.
87
82
 
88
83
  ## Styles
@@ -110,17 +105,25 @@ See <project:api.md> for reference documentation of all functions and classes in
110
105
  ## Rationale
111
106
  We believe graph **analysis**, graph **layouting**, and graph **visualisation** to be three separate tasks. `iplotx` currently focuses on visualisation. It can also compute simple tree layouts and might expand towards network layouts in the future.
112
107
 
108
+ ## Contributing
109
+ Open an [issue on GitHub](https://github.com/fabilab/iplotx/issues) to request features, report bugs, or show intention in contributing. Pull requests are very welcome.
110
+
111
+ ```{important}
112
+ If you are the maintainer of a network/graph/tree analysis library and would like
113
+ to propose improvements or see support for it, please reach out with an issue/PR
114
+ on GitHub!
115
+ ```
116
+
117
+ ## Sitemap
113
118
  ```{toctree}
114
119
  :maxdepth: 2
115
120
  :caption: Contents
116
121
 
117
122
  gallery/index
118
123
  style
119
- Data providers <providers>
120
124
  API <api>
121
- Plotting API <api/plotting>
122
- Styling API <api/style>
123
125
  Complete style specification <api/complete_style_specification>
126
+ Data providers <providers>
124
127
  Artist hierarchy <api/artists>
125
128
  Data provider protocols <api/providers>
126
129
  ```
@@ -51,7 +51,7 @@ A straightforward `NetworkDataProvider` implementation for this network data str
51
51
  )
52
52
  ```
53
53
 
54
- See <project:gallery/plot_simpledataprovider.md> for the full gallery example including vertex labels and styling.
54
+ See <project:gallery/zero_dependencies/plot_simpledataprovider.md> for the full gallery example including vertex labels and styling.
55
55
 
56
56
  ```{tip}
57
57
  This example also shows how to use `iplotx` without installing any network analysis
@@ -6,7 +6,7 @@
6
6
 
7
7
  Computation times
8
8
  =================
9
- **00:00.095** total execution time for 73 files **from all galleries**:
9
+ **00:00.525** total execution time for 75 files **from all galleries**:
10
10
 
11
11
  .. container::
12
12
 
@@ -32,8 +32,8 @@ Computation times
32
32
  * - Example
33
33
  - Time
34
34
  - Mem (MB)
35
- * - :ref:`sphx_glr_gallery_basic_plot_grouping.py` (``../../gallery/basic/plot_grouping.py``)
36
- - 00:00.095
35
+ * - :ref:`sphx_glr_gallery_tree_plot_dendropy.py` (``../../gallery/tree/plot_dendropy.py``)
36
+ - 00:00.525
37
37
  - 0.0
38
38
  * - :ref:`sphx_glr_gallery_basic_plot_3d.py` (``../../gallery/basic/plot_3d.py``)
39
39
  - 00:00.000
@@ -50,6 +50,9 @@ Computation times
50
50
  * - :ref:`sphx_glr_gallery_basic_plot_directed.py` (``../../gallery/basic/plot_directed.py``)
51
51
  - 00:00.000
52
52
  - 0.0
53
+ * - :ref:`sphx_glr_gallery_basic_plot_grouping.py` (``../../gallery/basic/plot_grouping.py``)
54
+ - 00:00.000
55
+ - 0.0
53
56
  * - :ref:`sphx_glr_gallery_basic_plot_house.py` (``../../gallery/basic/plot_house.py``)
54
57
  - 00:00.000
55
58
  - 0.0
@@ -164,6 +167,9 @@ Computation times
164
167
  * - :ref:`sphx_glr_gallery_style_plot_arrows.py` (``../../gallery/style/plot_arrows.py``)
165
168
  - 00:00.000
166
169
  - 0.0
170
+ * - :ref:`sphx_glr_gallery_style_plot_depthshade.py` (``../../gallery/style/plot_depthshade.py``)
171
+ - 00:00.000
172
+ - 0.0
167
173
  * - :ref:`sphx_glr_gallery_style_plot_edgepadding.py` (``../../gallery/style/plot_edgepadding.py``)
168
174
  - 00:00.000
169
175
  - 0.0
@@ -63,6 +63,11 @@ plt.gca().set_aspect(1.0)
63
63
  #
64
64
  # This can also be achieved with two separate calls, the first one to draw the network and the second to draw the grouping.
65
65
 
66
+ import igraph as ig
67
+ import matplotlib.pyplot as plt
68
+ import iplotx as ipx
69
+
70
+ g = ig.Graph.Ring(8)
66
71
  layout = g.layout("circle")
67
72
  fig, ax = plt.subplots(figsize=(5, 5))
68
73
  ipx.network(
@@ -0,0 +1,46 @@
1
+ """
2
+ 3D depth shading
3
+ ================
4
+
5
+ This example shows to to use depth shading in 3D plots to reduce the opacity (increase transparency) of
6
+ vertices and edges that are further away from the viewer. This gives a better sense of depth but can be
7
+ confusing in some cases, so there are style options to turn it off.
8
+ """
9
+
10
+ import igraph as ig
11
+ import iplotx as ipx
12
+
13
+ g = ig.Graph.Erdos_Renyi(15, m=20)
14
+
15
+ layout = g.layout_fruchterman_reingold_3d()
16
+
17
+ ipx.network(
18
+ g,
19
+ layout,
20
+ vertex_alpha=0.9,
21
+ figsize=(8, 8),
22
+ )
23
+
24
+ # %%
25
+ # Notice that depth shading is a 0-1 multiplier on top of the existing alpha value, so no vertex will have
26
+ # alpha (opacity) greater than 0.9 in this example, but vertices that are further back will have values
27
+ # below 0.9 (the minimum is usually 0.1).
28
+ #
29
+ # .. tip::
30
+ # To get a better sense of depth shading, use Matplotlib with an interactive backend and rotate the
31
+ # plot using the mouse.
32
+ #
33
+ # You can turn off depth shading by setting ``depthshade=False`` for vertices and/or edges:
34
+
35
+ ipx.network(
36
+ g,
37
+ layout,
38
+ vertex_alpha=0.9,
39
+ figsize=(8, 8),
40
+ vertex_depthshade=False,
41
+ edge_depthshade=False,
42
+ )
43
+
44
+ # %%
45
+ # In this case all vertices have the same opacity (0.9) regardless of their depth, and all edges have an
46
+ # opacity of 1.0 (no transparency).
@@ -0,0 +1,50 @@
1
+ """
2
+ Dendropy tree
3
+ =============
4
+
5
+ This example shows how to use ``iplotx`` to plot trees from ``dendropy``.
6
+ """
7
+
8
+ from dendropy import Tree
9
+ import iplotx as ipx
10
+
11
+ tree = Tree.get(data="((,(,((,),(,)))));", schema="newick")
12
+
13
+ ipx.plotting.tree(
14
+ tree,
15
+ aspect=1,
16
+ edge_color="grey",
17
+ edge_linestyle=["--", "-"],
18
+ )
19
+
20
+ # %%
21
+ # `iplotx` can compute a radial tree layout as well, and usual style modifications
22
+ # work for trees same as networks.
23
+
24
+ # sphinx_gallery_thumbnail_number = 2
25
+ ipx.plotting.tree(
26
+ tree,
27
+ layout="radial",
28
+ layout_orientation="right",
29
+ style=[
30
+ "tree",
31
+ {
32
+ "edge": {
33
+ "color": "navy",
34
+ "linewidth": 4,
35
+ },
36
+ "leaf": {
37
+ "label": {
38
+ "hmargin": 15,
39
+ }
40
+ },
41
+ "leafedge": {
42
+ "color": "steelblue",
43
+ "linewidth": 2,
44
+ },
45
+ },
46
+ ],
47
+ leaf_labels={leaf: str(i + 1) for i, leaf in enumerate(tree.leaf_nodes())},
48
+ aspect=1,
49
+ margin=(0.3, 0.1),
50
+ )
@@ -2,13 +2,26 @@
2
2
  Module containing code to manipulate edge visualisations in 3D, especially the Edge3DCollection class.
3
3
  """
4
4
 
5
- from mpl_toolkits.mplot3d import Axes3D
5
+ import numpy as np
6
+ from matplotlib import (
7
+ colors as mcolors,
8
+ )
9
+ from matplotlib.collections import (
10
+ LineCollection,
11
+ )
12
+ from mpl_toolkits.mplot3d import (
13
+ Axes3D,
14
+ )
6
15
  from mpl_toolkits.mplot3d.art3d import (
7
16
  Line3DCollection,
17
+ _viewlim_mask,
8
18
  )
9
19
 
10
20
  from ...utils.matplotlib import (
11
21
  _forwarder,
22
+ _proj_transform_vectors,
23
+ _zalpha,
24
+ _get_data_scale,
12
25
  )
13
26
  from ...edge import (
14
27
  EdgeCollection,
@@ -73,11 +86,113 @@ class Edge3DCollection(Line3DCollection):
73
86
  segments3d.append(segment)
74
87
  self.set_segments(segments3d)
75
88
 
89
+ def do_3d_projection(self):
90
+ """
91
+ Project the points according to renderer matrix.
92
+ """
93
+ segments = np.asanyarray(self._segments3d)
94
+
95
+ mask = False
96
+ if np.ma.isMA(segments):
97
+ mask = segments.mask
98
+
99
+ if self._axlim_clip:
100
+ viewlim_mask = _viewlim_mask(
101
+ segments[..., 0], segments[..., 1], segments[..., 2], self.axes
102
+ )
103
+ if np.any(viewlim_mask):
104
+ # broadcast mask to 3D
105
+ viewlim_mask = np.broadcast_to(
106
+ viewlim_mask[..., np.newaxis], (*viewlim_mask.shape, 3)
107
+ )
108
+ mask = mask | viewlim_mask
109
+ xyzs = np.ma.array(_proj_transform_vectors(segments, self.axes.M), mask=mask)
110
+ segments_2d = xyzs[..., 0:2]
111
+ LineCollection.set_segments(self, segments_2d)
112
+
113
+ # Use the average projected z value of each line for depthshade
114
+ xyzs_mean = xyzs.mean(axis=1)
115
+ self._data_scale = _get_data_scale(*(xyzs_mean.T))
116
+ self._vzs = xyzs_mean[..., 2]
117
+
118
+ # FIXME
119
+ if len(xyzs) > 0:
120
+ minz = min(xyzs[..., 2].min(), 1e9)
121
+ else:
122
+ minz = np.nan
123
+ return minz
124
+
125
+ def _maybe_depth_shade_and_sort_colors(self, color_array):
126
+ color_array = (
127
+ _zalpha(
128
+ color_array,
129
+ self._vzs,
130
+ min_alpha=self._depthshade_minalpha,
131
+ _data_scale=self._data_scale,
132
+ )
133
+ if self._vzs is not None and self._depthshade
134
+ else color_array
135
+ )
136
+ return mcolors.to_rgba_array(color_array, self._alpha)
137
+
138
+ def set_edgecolor(self, color):
139
+ """Set the edge color of the collection."""
140
+ self._edgecolors = mcolors.to_rgba_array(color, self._alpha)
141
+ self._edgecolors_noshade = self._edgecolors.copy()
142
+
143
+ def get_edgecolor(self):
144
+ """Set the edge color of the collection, including depth shading."""
145
+ # We need this check here to make sure we do not double-apply the depth
146
+ # based alpha shading when the edge color is "face" which means the
147
+ # edge colour should be identical to the face colour.
148
+ if not hasattr(self, "_edgecolors_noshade"):
149
+ self._edgecolors_noshade = self._edgecolors.copy()
150
+ return self._maybe_depth_shade_and_sort_colors(self._edgecolors_noshade)
151
+
152
+ set_edgecolors = set_edgecolor
153
+ get_edgecolors = get_edgecolor
154
+
155
+ def get_depthshade(self):
156
+ """Get whether depth shading is performed on collection members."""
157
+ return self._depthshade
158
+
159
+ def get_depthshade_minalpha(self):
160
+ """The minimum alpha value used by depth-shading."""
161
+ return self._depthshade_minalpha
162
+
163
+ def set_depthshade(
164
+ self,
165
+ depthshade,
166
+ depthshade_minalpha=0.1,
167
+ ):
168
+ """
169
+ Set whether depth shading is performed on collection members.
170
+
171
+ Parameters
172
+ ----------
173
+ depthshade : bool
174
+ Whether to shade the patches in order to give the appearance of
175
+ depth.
176
+ depthshade_minalpha : float
177
+ Sets the minimum alpha value used by depth-shading.
178
+
179
+ .. versionadded:: 3.11
180
+ """
181
+ self._depthshade = depthshade
182
+ self._depthshade_minalpha = depthshade_minalpha
183
+ self.stale = True
184
+
76
185
  def _update_before_draw(self) -> None:
77
186
  """Update the collection before drawing."""
78
187
  if isinstance(self.axes, Axes3D) and hasattr(self, "do_3d_projection"):
79
188
  self.do_3d_projection()
80
189
 
190
+ if not hasattr(self, "_edgecolors_noshade"):
191
+ self._edgecolors_noshade = self._edgecolors.copy()
192
+ self._edgecolors = self._maybe_depth_shade_and_sort_colors(
193
+ self._edgecolors_noshade,
194
+ )
195
+
81
196
  # TODO: Here's where we would shorten the edges to fit the vertex
82
197
  # projections from 3D onto 2D, if we wanted to do that. Because edges
83
198
  # in 3D are chains of segments rathen than splines, the shortening
@@ -111,6 +226,7 @@ def edge_collection_2d_to_3d(
111
226
  col: EdgeCollection,
112
227
  zdir: str = "z",
113
228
  axlim_clip: bool = False,
229
+ depthshade: bool = True,
114
230
  ):
115
231
  """Convert a 2D EdgeCollection to a 3D Edge3DCollection.
116
232
 
@@ -127,6 +243,9 @@ def edge_collection_2d_to_3d(
127
243
  # NOTE: after this line, none of the EdgeCollection methods will work
128
244
  # It's become a static drawer now. It uses segments instead of paths.
129
245
  col.__class__ = Edge3DCollection
246
+ col._depthshade = depthshade
247
+ col._depthshade_minalpha = 0.1
248
+
130
249
  col._compute_edge_segments()
131
250
 
132
251
  col._axlim_clip = axlim_clip
@@ -705,6 +705,7 @@ def make_stub_patch(**kwargs):
705
705
  "norm",
706
706
  "split",
707
707
  "shrink",
708
+ "depthshade",
708
709
  # DEPRECATED
709
710
  "padding",
710
711
  ]
@@ -0,0 +1,59 @@
1
+ from typing import (
2
+ Any,
3
+ Optional,
4
+ Sequence,
5
+ )
6
+ import importlib
7
+
8
+ from ...typing import (
9
+ TreeDataProvider,
10
+ )
11
+
12
+
13
+ class DendropyDataProvider(TreeDataProvider):
14
+ def is_rooted(self) -> bool:
15
+ return True
16
+
17
+ def get_root(self) -> Any:
18
+ """Get the root of the tree."""
19
+ return next(self.preorder())
20
+
21
+ def preorder(self) -> Any:
22
+ """Preorder traversal of the tree.
23
+
24
+ NOTE: This will work on both entire Trees and Nodes (which means a subtree including self).
25
+ """
26
+ if hasattr(self.tree, "preorder_node_iter"):
27
+ return self.tree.preorder_node_iter()
28
+ return self.tree.preorder_iter()
29
+
30
+ def postorder(self) -> Any:
31
+ """Preorder traversal of the tree.
32
+
33
+ NOTE: This will work on both entire Trees and Nodes (which means a subtree including self).
34
+ """
35
+ if hasattr(self.tree, "postorder_node_iter"):
36
+ return self.tree.postorder_node_iter()
37
+ return self.tree.postorder_iter()
38
+
39
+ def get_leaves(self) -> Sequence[Any]:
40
+ """Get a list of leaves."""
41
+ return self.tree.leaf_nodes()
42
+
43
+ @staticmethod
44
+ def get_children(node: Any) -> Sequence[Any]:
45
+ return node.child_nodes()
46
+
47
+ @staticmethod
48
+ def get_branch_length(node: Any) -> Optional[float]:
49
+ return node.edge.length
50
+
51
+ @staticmethod
52
+ def check_dependencies() -> bool:
53
+ return importlib.util.find_spec("dendropy") is not None
54
+
55
+ @staticmethod
56
+ def tree_type():
57
+ import dendropy
58
+
59
+ return dendropy.Tree