ipex-llm 2.2.0b20250114__py3-none-win_amd64.whl → 2.2.0b20250116__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. ipex_llm/ggml/quantize.py +1 -0
  2. ipex_llm/libs/bloom-api.dll +0 -0
  3. ipex_llm/libs/bloom.dll +0 -0
  4. ipex_llm/libs/gptneox-api.dll +0 -0
  5. ipex_llm/libs/gptneox.dll +0 -0
  6. ipex_llm/libs/libbloom_avx.dll +0 -0
  7. ipex_llm/libs/libbloom_vnni.dll +0 -0
  8. ipex_llm/libs/libgptneox_avx.dll +0 -0
  9. ipex_llm/libs/libgptneox_vnni.dll +0 -0
  10. ipex_llm/libs/libllama_avx.dll +0 -0
  11. ipex_llm/libs/libllama_vnni.dll +0 -0
  12. ipex_llm/libs/libstarcoder_avx.dll +0 -0
  13. ipex_llm/libs/libstarcoder_vnni.dll +0 -0
  14. ipex_llm/libs/llama-api.dll +0 -0
  15. ipex_llm/libs/llama.dll +0 -0
  16. ipex_llm/libs/main-bloom.exe +0 -0
  17. ipex_llm/libs/main-gptneox.exe +0 -0
  18. ipex_llm/libs/main-llama.exe +0 -0
  19. ipex_llm/libs/main-starcoder.exe +0 -0
  20. ipex_llm/libs/pipeline.dll +0 -0
  21. ipex_llm/libs/quantize-bloom.exe +0 -0
  22. ipex_llm/libs/quantize-bloom_vnni.exe +0 -0
  23. ipex_llm/libs/quantize-gptneox.exe +0 -0
  24. ipex_llm/libs/quantize-gptneox_vnni.exe +0 -0
  25. ipex_llm/libs/quantize-llama.exe +0 -0
  26. ipex_llm/libs/quantize-llama_vnni.exe +0 -0
  27. ipex_llm/libs/quantize-starcoder.exe +0 -0
  28. ipex_llm/libs/quantize-starcoder_vnni.exe +0 -0
  29. ipex_llm/libs/starcoder-api.dll +0 -0
  30. ipex_llm/libs/starcoder.dll +0 -0
  31. ipex_llm/transformers/convert.py +29 -1
  32. ipex_llm/transformers/low_bit_linear.py +7 -6
  33. ipex_llm/transformers/models/llama.py +13 -2
  34. ipex_llm/transformers/models/utils.py +4 -4
  35. ipex_llm/transformers/models/whisper.py +103 -0
  36. {ipex_llm-2.2.0b20250114.dist-info → ipex_llm-2.2.0b20250116.dist-info}/METADATA +23 -20
  37. {ipex_llm-2.2.0b20250114.dist-info → ipex_llm-2.2.0b20250116.dist-info}/RECORD +43 -42
  38. {ipex_llm-2.2.0b20250114.data → ipex_llm-2.2.0b20250116.data}/scripts/ipex-llm-init.bat +0 -0
  39. {ipex_llm-2.2.0b20250114.data → ipex_llm-2.2.0b20250116.data}/scripts/llm-chat.ps1 +0 -0
  40. {ipex_llm-2.2.0b20250114.data → ipex_llm-2.2.0b20250116.data}/scripts/llm-cli.ps1 +0 -0
  41. {ipex_llm-2.2.0b20250114.dist-info → ipex_llm-2.2.0b20250116.dist-info}/WHEEL +0 -0
  42. {ipex_llm-2.2.0b20250114.dist-info → ipex_llm-2.2.0b20250116.dist-info}/entry_points.txt +0 -0
  43. {ipex_llm-2.2.0b20250114.dist-info → ipex_llm-2.2.0b20250116.dist-info}/top_level.txt +0 -0
ipex_llm/ggml/quantize.py CHANGED
@@ -53,6 +53,7 @@ ggml_tensor_qtype = {"sym_int4": 2, # q4_0 in ggml
53
53
  "sym_int4_rtn": 31,
54
54
  "sym_int8_rtn": 32,
55
55
  "asym_int4_rtn": 33,
56
+ "woq_int4": 34,
56
57
  }
57
58
 
58
59
  # mixed precison from llama.cpp
Binary file
ipex_llm/libs/bloom.dll CHANGED
Binary file
Binary file
ipex_llm/libs/gptneox.dll CHANGED
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
ipex_llm/libs/llama.dll CHANGED
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
@@ -995,8 +995,9 @@ def _optimize_pre(model, qtype=None):
995
995
  from ipex_llm.transformers.models.gemma2 import merge_qkv
996
996
  model.apply(merge_qkv)
997
997
  elif model.config.model_type == "llama":
998
- from ipex_llm.transformers.models.llama import merge_qkv
998
+ from ipex_llm.transformers.models.llama import merge_qkv, pre_compute_inv_freq
999
999
  model.apply(merge_qkv)
1000
+ model.apply(pre_compute_inv_freq)
1000
1001
  elif model.config.model_type == "mllama":
1001
1002
  from ipex_llm.transformers.models.mllama import merge_qkv
1002
1003
  model.apply(merge_qkv)
@@ -1027,6 +1028,15 @@ def _optimize_pre(model, qtype=None):
1027
1028
  model.llm.config.model_type = "minicpm"
1028
1029
  _optimize_pre(model.llm, qtype=qtype)
1029
1030
  model.llm.config.model_type = "minicpmv"
1031
+ elif model.config.model_type == "minicpmo":
1032
+ # vpm opt
1033
+ if hasattr(model, "vpm"):
1034
+ from ipex_llm.transformers.models.minicpmv import merge_qkv
1035
+ model.vpm.apply(merge_qkv)
1036
+ # llm opt
1037
+ model.llm.config.model_type = "qwen2"
1038
+ _optimize_pre(model.llm, qtype=qtype)
1039
+ model.llm.config.model_type = "minicpmo"
1030
1040
  elif model.config.model_type == "megrezo":
1031
1041
  from ipex_llm.transformers.models.minicpmv import merge_qkv
1032
1042
  model.vision.apply(merge_qkv)
@@ -1943,6 +1953,24 @@ def _optimize_post(model):
1943
1953
  convert_forward(model.vpm, vpm_module.Idefics2VisionAttention, siglip_attention_forward)
1944
1954
  minicpmv_chat = minicpmv_chat_wrapper(module.MiniCPMV.chat)
1945
1955
  model.chat = MethodType(minicpmv_chat, model)
1956
+ elif model.config.model_type == "minicpmo":
1957
+ # vpm opt
1958
+ if hasattr(model, "vpm"):
1959
+ vpm_modeling_module_name = model.vpm.__class__.__module__
1960
+ vpm_module = importlib.import_module(vpm_modeling_module_name)
1961
+ from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
1962
+ convert_forward(model.vpm, vpm_module.SiglipAttention, siglip_attention_forward)
1963
+ # apm opt
1964
+ if hasattr(model, "apm"):
1965
+ apm_modeling_module_name = model.apm.__class__.__module__
1966
+ apm_module = importlib.import_module(apm_modeling_module_name)
1967
+ from transformers.models.whisper.modeling_whisper import WhisperSdpaAttention
1968
+ from ipex_llm.transformers.models.whisper import whisper_attention_forward
1969
+ convert_forward(model.apm, WhisperSdpaAttention, whisper_attention_forward)
1970
+ # llm opt
1971
+ model.llm.config.model_type = "qwen2"
1972
+ _optimize_post(model.llm)
1973
+ model.llm.config.model_type = "minicpmo"
1946
1974
  elif model.config.model_type == "megrezo":
1947
1975
  modeling_module_name = model.__class__.__module__
1948
1976
  module = importlib.import_module(modeling_module_name)
@@ -84,6 +84,7 @@ FP6_K = ggml_tensor_qtype["fp6_k"]
84
84
  SYM_INT4_RTN = ggml_tensor_qtype["sym_int4_rtn"]
85
85
  SYM_INT8_RTN = ggml_tensor_qtype["sym_int8_rtn"]
86
86
  ASYM_INT4_RTN = ggml_tensor_qtype["asym_int4_rtn"]
87
+ WOQ_INT4 = ggml_tensor_qtype["woq_int4"]
87
88
  RTN_DTYPE = {
88
89
  SYM_INT4_RTN: torch.uint8,
89
90
  ASYM_INT4_RTN: torch.uint8,
@@ -187,7 +188,7 @@ def ggml_q_format_convet_cpu2xpu(tensor: torch.Tensor, num_elem: int, qtype: int
187
188
  src = ctypes.c_void_p(tensor.data.data_ptr())
188
189
 
189
190
  if qtype in [SYM_INT4, ASYM_INT4, SYM_INT8, NF4, NF3, FP4, FP6, FP8E4, FP8E5,
190
- Q4_K, Q6_K, FP6_K]:
191
+ Q4_K, Q6_K, FP6_K, WOQ_INT4]:
191
192
  dst_tensor = torch.empty_like(tensor)
192
193
  elif qtype == ggml_tensor_qtype["sym_int5"]:
193
194
  QK = ggml.ggml_qk_size(qtype)
@@ -213,7 +214,7 @@ def ggml_q_format_convet_xpu2cpu(tensor: torch.Tensor, num_elem: int, qtype: int
213
214
  src = ctypes.c_void_p(tensor.data.data_ptr())
214
215
 
215
216
  if qtype in [SYM_INT4, ASYM_INT4, SYM_INT8, NF4, NF3, FP4, FP6, FP8E4, FP8E5,
216
- Q4_K, Q6_K, FP6_K]:
217
+ Q4_K, Q6_K, FP6_K, WOQ_INT4]:
217
218
  dst_tensor = torch.empty_like(tensor)
218
219
  elif qtype == ggml_tensor_qtype["sym_int5"]:
219
220
  QK = ggml.ggml_qk_size(ggml_tensor_qtype["asym_int5"])
@@ -272,7 +273,7 @@ def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
272
273
  and x.shape[1] % 128 == 0
273
274
  and (
274
275
  (
275
- qtype in [SYM_INT4, ASYM_INT4, FP8E5, FP8E4]
276
+ qtype in [SYM_INT4, ASYM_INT4, FP8E5, FP8E4, WOQ_INT4]
276
277
  and (
277
278
  batch_size <= 48
278
279
  or (
@@ -283,7 +284,7 @@ def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
283
284
  )
284
285
  )
285
286
  or (
286
- qtype in [SYM_INT8, FP4, FP6, Q4_K, Q6_K]
287
+ qtype in [SYM_INT8, FP4, FP6, Q4_K, Q6_K, WOQ_INT4]
287
288
  and batch_size <= 48
288
289
  and device_name in ["arc", "pvc", "mtl", "arl"]
289
290
  and x.shape[1] % 256 == 0
@@ -296,8 +297,8 @@ def use_batch_forward(x: torch.Tensor, qtype: int, output_len: int):
296
297
  batch_size > 1
297
298
  or (device_name in ["arc"] and qtype in [SYM_INT8, FP4])
298
299
  or (device_name in ["arc", "mtl"] and qtype in [FP8E4])
299
- or (device_name in ["lnl"] and qtype in [SYM_INT4] and x.shape[1] % 512 == 0)
300
- or (device_name in ["bmg"] and qtype in [SYM_INT4, FP8E5])
300
+ or (device_name in ["lnl"] and qtype in [SYM_INT4, WOQ_INT4] and x.shape[1] % 512 == 0)
301
+ or (device_name in ["bmg"] and qtype in [SYM_INT4, WOQ_INT4, FP8E5])
301
302
  )
302
303
  return False
303
304
 
@@ -119,6 +119,13 @@ def merge_qkv(module: torch.nn.Module):
119
119
  merge_qkv_base(module, LlamaAttention)
120
120
 
121
121
 
122
+ def pre_compute_inv_freq(module: torch.nn.Module):
123
+ if module.__class__.__name__ == "LlamaLinearScalingRotaryEmbedding":
124
+ if hasattr(module, "scaling_factor"):
125
+ module.register_buffer("inv_freq_scaled", None, persistent=False)
126
+ module.inv_freq_scaled = module.inv_freq / module.scaling_factor
127
+
128
+
122
129
  def llama_attention_forward(
123
130
  self,
124
131
  hidden_states: torch.Tensor,
@@ -147,8 +154,12 @@ def llama_attention_forward(
147
154
  import xe_addons
148
155
  if hasattr(self, "rotary_emb"):
149
156
  # transformers < 4.46
150
- xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
151
- query_states, key_states)
157
+ if hasattr(self.rotary_emb, "inv_freq_scaled"):
158
+ xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq_scaled, position_ids,
159
+ query_states, key_states)
160
+ else:
161
+ xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
162
+ query_states, key_states)
152
163
  else:
153
164
  # transformers >= 4.46
154
165
  cos, sin = position_embeddings
@@ -21,7 +21,7 @@ from ipex_llm.utils.common import invalidInputError
21
21
  from ipex_llm.ggml.quantize import ggml_tensor_qtype
22
22
  from ipex_llm.transformers.utils import get_xpu_device_name
23
23
  from ipex_llm.transformers.low_bit_linear import SYM_INT4, SYM_INT8, FP8E5, IQ2_XXS, FP4, FP8E4,\
24
- FP6, ASYM_INT4
24
+ FP6, ASYM_INT4, WOQ_INT4
25
25
 
26
26
  FP8_KV_ALLOC_LENGTH = 512
27
27
  KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
@@ -33,7 +33,7 @@ GELU = 1
33
33
 
34
34
  def decoding_fast_path_qtype_check(proj):
35
35
  qtype = getattr(proj, "qtype", None)
36
- return qtype in [SYM_INT4, FP8E5, FP4]
36
+ return qtype in [SYM_INT4, FP8E5, FP4, WOQ_INT4]
37
37
 
38
38
 
39
39
  def init_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
@@ -248,7 +248,7 @@ def mlp_fusion_check(x, qtype, training):
248
248
  return False
249
249
  if x.device.type != 'xpu':
250
250
  return False
251
- if qtype not in [SYM_INT4, FP8E5, FP4, IQ2_XXS, FP6]:
251
+ if qtype not in [SYM_INT4, FP8E5, FP4, IQ2_XXS, FP6, WOQ_INT4]:
252
252
  return False
253
253
  if training or x.requires_grad:
254
254
  return False
@@ -263,7 +263,7 @@ def use_xmx(x: torch.Tensor, qtype: int):
263
263
  device = get_xpu_device_name(x.device)
264
264
  return (
265
265
  device in ["arc", "pvc"]
266
- and qtype in [SYM_INT4, SYM_INT8, FP8E4, FP8E5]
266
+ and qtype in [SYM_INT4, SYM_INT8, FP8E4, FP8E5, WOQ_INT4]
267
267
  and (
268
268
  (device == "pvc" and 1 < x.size(0) <= 16)
269
269
  or
@@ -0,0 +1,103 @@
1
+ #
2
+ # Copyright 2016 The BigDL Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ # Some parts of this file is adapted from
17
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
18
+ # which is licensed under Apache License 2.0:
19
+ #
20
+ # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
21
+ #
22
+ # Licensed under the Apache License, Version 2.0 (the "License");
23
+ # you may not use this file except in compliance with the License.
24
+ # You may obtain a copy of the License at
25
+ #
26
+ # http://www.apache.org/licenses/LICENSE-2.0
27
+ #
28
+ # Unless required by applicable law or agreed to in writing, software
29
+ # distributed under the License is distributed on an "AS IS" BASIS,
30
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
31
+ # See the License for the specific language governing permissions and
32
+ # limitations under the License.
33
+ #
34
+
35
+ import torch
36
+
37
+ from typing import Optional, Tuple
38
+ from transformers.cache_utils import EncoderDecoderCache
39
+
40
+ from ipex_llm.transformers.utils import invalidInputError
41
+ from ipex_llm.transformers.models.common import scaled_dot_product_attention
42
+
43
+
44
+ def whisper_attention_forward(
45
+ self,
46
+ hidden_states: torch.Tensor,
47
+ key_value_states: Optional[torch.Tensor] = None,
48
+ past_key_value: Optional[EncoderDecoderCache] = None,
49
+ attention_mask: Optional[torch.Tensor] = None,
50
+ layer_head_mask: Optional[torch.Tensor] = None,
51
+ output_attentions: bool = False,
52
+ cache_position: Optional[torch.LongTensor] = None,
53
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
54
+ invalidInputError(not output_attentions and layer_head_mask is None,
55
+ "`output_attentions` and `layer_head_mask` are not supported")
56
+
57
+ # if key_value_states are provided this layer is used as a cross-attention layer
58
+ # for the decoder
59
+ is_cross_attention = key_value_states is not None
60
+ bsz, tgt_len, _ = hidden_states.size()
61
+
62
+ # get query proj
63
+ query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)
64
+
65
+ if past_key_value is not None:
66
+ is_updated = past_key_value.is_updated.get(self.layer_idx)
67
+ if is_cross_attention:
68
+ past_key_value.is_updated[self.layer_idx] = True
69
+ past_key_value = past_key_value.cross_attention_cache
70
+ else:
71
+ past_key_value = past_key_value.self_attention_cache
72
+
73
+ # use key_value_states if cross attention
74
+ current_states = key_value_states if key_value_states is not None else hidden_states
75
+ if is_cross_attention and past_key_value and is_updated:
76
+ # reuse k,v, cross_attentions
77
+ key_states = past_key_value.key_cache[self.layer_idx]
78
+ value_states = past_key_value.value_cache[self.layer_idx]
79
+ else:
80
+ key_states = self._shape(self.k_proj(current_states), -1, bsz)
81
+ value_states = self._shape(self.v_proj(current_states), -1, bsz)
82
+ if past_key_value is not None:
83
+ cache_position = cache_position if not is_cross_attention else None
84
+ key_states, value_states = past_key_value.update(
85
+ key_states, value_states, self.layer_idx, {"cache_position": cache_position}
86
+ )
87
+
88
+ # IPEX-LLM OPT: sdpa
89
+ is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
90
+ attn_output = scaled_dot_product_attention(
91
+ query_states,
92
+ key_states.contiguous(),
93
+ value_states.contiguous(),
94
+ attention_mask,
95
+ is_causal
96
+ )
97
+
98
+ attn_output = attn_output.transpose(1, 2)
99
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
100
+
101
+ attn_output = self.out_proj(attn_output)
102
+
103
+ return attn_output, None, past_key_value
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ipex-llm
3
- Version: 2.2.0b20250114
3
+ Version: 2.2.0b20250116
4
4
  Summary: Large Language Model Develop Toolkit
5
5
  Home-page: https://github.com/intel-analytics/ipex-llm
6
6
  Author: BigDL Authors
@@ -27,10 +27,10 @@ Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine
27
27
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'all'
28
28
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'all'
29
29
  Provides-Extra: cpp
30
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250114 ; extra == 'cpp'
30
+ Requires-Dist: bigdl-core-cpp ==2.6.0b20250116 ; extra == 'cpp'
31
31
  Requires-Dist: setuptools ; extra == 'cpp'
32
32
  Provides-Extra: cpp-arl
33
- Requires-Dist: bigdl-core-cpp ==2.6.0b20250114 ; extra == 'cpp-arl'
33
+ Requires-Dist: bigdl-core-cpp ==2.6.0b20250116 ; extra == 'cpp-arl'
34
34
  Requires-Dist: setuptools ; extra == 'cpp-arl'
35
35
  Requires-Dist: onednn-devel ==2024.1.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
36
36
  Requires-Dist: onednn ==2024.1.1 ; (platform_system == "Windows") and extra == 'cpp-arl'
@@ -67,7 +67,7 @@ Requires-Dist: transformers ==4.40.0 ; extra == 'npu'
67
67
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'npu'
68
68
  Requires-Dist: torch ==2.1.2+cpu ; (platform_system == "Linux") and extra == 'npu'
69
69
  Requires-Dist: torch ==2.1.2 ; (platform_system == "Windows") and extra == 'npu'
70
- Requires-Dist: bigdl-core-npu ==2.6.0b20250114 ; (platform_system == "Windows") and extra == 'npu'
70
+ Requires-Dist: bigdl-core-npu ==2.6.0b20250116 ; (platform_system == "Windows") and extra == 'npu'
71
71
  Provides-Extra: serving
72
72
  Requires-Dist: py-cpuinfo ; extra == 'serving'
73
73
  Requires-Dist: fschat[model_worker,webui] ==0.2.36 ; extra == 'serving'
@@ -87,9 +87,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu'
87
87
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu'
88
88
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu'
89
89
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu'
90
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250114 ; extra == 'xpu'
91
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250114 ; extra == 'xpu'
92
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250114 ; extra == 'xpu'
90
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250116 ; extra == 'xpu'
91
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250116 ; extra == 'xpu'
92
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250116 ; extra == 'xpu'
93
93
  Provides-Extra: xpu-2-1
94
94
  Requires-Dist: py-cpuinfo ; extra == 'xpu-2-1'
95
95
  Requires-Dist: protobuf ; extra == 'xpu-2-1'
@@ -104,9 +104,9 @@ Requires-Dist: setuptools <70.0.0 ; extra == 'xpu-2-1'
104
104
  Requires-Dist: torch ==2.1.0a0 ; extra == 'xpu-2-1'
105
105
  Requires-Dist: torchvision ==0.16.0a0 ; extra == 'xpu-2-1'
106
106
  Requires-Dist: intel-extension-for-pytorch ==2.1.10+xpu ; extra == 'xpu-2-1'
107
- Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250114 ; extra == 'xpu-2-1'
108
- Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250114 ; extra == 'xpu-2-1'
109
- Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250114 ; extra == 'xpu-2-1'
107
+ Requires-Dist: bigdl-core-xe-21 ==2.6.0b20250116 ; extra == 'xpu-2-1'
108
+ Requires-Dist: bigdl-core-xe-batch-21 ==2.6.0b20250116 ; extra == 'xpu-2-1'
109
+ Requires-Dist: bigdl-core-xe-addons-21 ==2.6.0b20250116 ; extra == 'xpu-2-1'
110
110
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-1'
111
111
  Requires-Dist: dpcpp-cpp-rt ==2024.0.2 ; (platform_system == "Windows") and extra == 'xpu-2-1'
112
112
  Requires-Dist: mkl-dpcpp ==2024.0.0 ; (platform_system == "Windows") and extra == 'xpu-2-1'
@@ -124,7 +124,10 @@ Requires-Dist: setuptools ; extra == 'xpu-2-6'
124
124
  Requires-Dist: torch ==2.6.0+xpu ; extra == 'xpu-2-6'
125
125
  Requires-Dist: torchvision ==0.21.0+xpu ; extra == 'xpu-2-6'
126
126
  Requires-Dist: torchaudio ==2.6.0+xpu ; extra == 'xpu-2-6'
127
- Requires-Dist: bigdl-core-xe-all ==2.6.0b20250114 ; extra == 'xpu-2-6'
127
+ Requires-Dist: bigdl-core-xe-all ==2.6.0b20250116 ; extra == 'xpu-2-6'
128
+ Requires-Dist: onednn-devel ==2025.0.1 ; extra == 'xpu-2-6'
129
+ Requires-Dist: onednn ==2025.0.1 ; extra == 'xpu-2-6'
130
+ Requires-Dist: dpcpp-cpp-rt ==2025.0.2 ; extra == 'xpu-2-6'
128
131
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-2-6'
129
132
  Provides-Extra: xpu-arc
130
133
  Requires-Dist: py-cpuinfo ; extra == 'xpu-arc'
@@ -137,9 +140,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arc'
137
140
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arc'
138
141
  Requires-Dist: tabulate ; extra == 'xpu-arc'
139
142
  Requires-Dist: setuptools ; extra == 'xpu-arc'
140
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250114 ; extra == 'xpu-arc'
141
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250114 ; extra == 'xpu-arc'
142
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250114 ; extra == 'xpu-arc'
143
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250116 ; extra == 'xpu-arc'
144
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250116 ; extra == 'xpu-arc'
145
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250116 ; extra == 'xpu-arc'
143
146
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arc'
144
147
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
145
148
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arc'
@@ -160,9 +163,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-arl'
160
163
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-arl'
161
164
  Requires-Dist: tabulate ; extra == 'xpu-arl'
162
165
  Requires-Dist: setuptools ; extra == 'xpu-arl'
163
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250114 ; extra == 'xpu-arl'
164
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250114 ; extra == 'xpu-arl'
165
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250114 ; extra == 'xpu-arl'
166
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250116 ; extra == 'xpu-arl'
167
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250116 ; extra == 'xpu-arl'
168
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250116 ; extra == 'xpu-arl'
166
169
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-arl'
167
170
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
168
171
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-arl'
@@ -183,9 +186,9 @@ Requires-Dist: tokenizers ==0.15.2 ; extra == 'xpu-lnl'
183
186
  Requires-Dist: accelerate ==0.23.0 ; extra == 'xpu-lnl'
184
187
  Requires-Dist: tabulate ; extra == 'xpu-lnl'
185
188
  Requires-Dist: setuptools ; extra == 'xpu-lnl'
186
- Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250114 ; extra == 'xpu-lnl'
187
- Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250114 ; extra == 'xpu-lnl'
188
- Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250114 ; extra == 'xpu-lnl'
189
+ Requires-Dist: bigdl-core-xe-23 ==2.6.0b20250116 ; extra == 'xpu-lnl'
190
+ Requires-Dist: bigdl-core-xe-batch-23 ==2.6.0b20250116 ; extra == 'xpu-lnl'
191
+ Requires-Dist: bigdl-core-xe-addons-23 ==2.6.0b20250116 ; extra == 'xpu-lnl'
189
192
  Requires-Dist: intel-openmp ; (platform_machine == "x86_64" or platform_machine == "AMD64") and extra == 'xpu-lnl'
190
193
  Requires-Dist: torch ==2.3.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
191
194
  Requires-Dist: torchvision ==0.18.1+cxx11.abi ; (platform_system == "Linux") and extra == 'xpu-lnl'
@@ -9,7 +9,7 @@ ipex_llm/cli/prompts/chat-with-llm.txt,sha256=PpSyd4FQQd-T7ptfXL9jZp7dgstevu1fsx
9
9
  ipex_llm/ggml/__init__.py,sha256=FzapYBUiTdZf0LzlN9hfJI-HE1OTi_2dzaYELJ9Mw8s,1272
10
10
  ipex_llm/ggml/convert.py,sha256=xfWH1E_hivbsxVo8h00STjH1Rlu9-dZQkCLLeIs1TWA,5286
11
11
  ipex_llm/ggml/convert_model.py,sha256=t-tGK9w8ZRi9dlDLTutput3ZBKj3ji94WUJi2KG8hkA,5955
12
- ipex_llm/ggml/quantize.py,sha256=TOoSe1w7tqAoV_fuqQhXIYb1S02A6udeud6IX0kLSic,6330
12
+ ipex_llm/ggml/quantize.py,sha256=Cvk1R771rRDhSW7BRWcmb4ImY6TWDl_u9Vkdh7rYSuM,6367
13
13
  ipex_llm/ggml/model/__init__.py,sha256=T-EbRT6GJ_8RCu-iLmSzcftOimXSPQf2d5X72AUAy2Y,874
14
14
  ipex_llm/ggml/model/bloom/__init__.py,sha256=291QHI19FMw7Z1oaKBAf2YJ0M51iYqWC4IT1ejI-OGg,900
15
15
  ipex_llm/ggml/model/bloom/bloom.py,sha256=fUxgZd_Uc4RXaMC_naYdjekwNprM1TpURmQ8VbocShc,17975
@@ -41,35 +41,35 @@ ipex_llm/langchain/llms/transformerspipelinellm.py,sha256=vm522YPPwWxxAPVvQBtxRf
41
41
  ipex_llm/langchain/vllm/__init__.py,sha256=T-EbRT6GJ_8RCu-iLmSzcftOimXSPQf2d5X72AUAy2Y,874
42
42
  ipex_llm/langchain/vllm/vllm.py,sha256=6dxc-ZISZQrJilEa_HA827l75Dv9rcHpY_G6FdJ8BVs,7793
43
43
  ipex_llm/libs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
- ipex_llm/libs/bloom-api.dll,sha256=_INZo-YdawiFT4W8ycNSvfZGX7PyacE1FdWqdZ8ACBs,36352
45
- ipex_llm/libs/bloom.dll,sha256=rJwoSwgB6yXZBD98zjINiMMriV_HrsGtV-qUE7Lvfko,506880
46
- ipex_llm/libs/gptneox-api.dll,sha256=s5DlqOac9kaIpVCHI2R2y_GMz3ywntM2Z5JxC8CdByc,24576
47
- ipex_llm/libs/gptneox.dll,sha256=QH5m60fW8LZ6eDe-e66TIajdVNvh0KBjgFVlkJ-Hg_8,567296
48
- ipex_llm/libs/libbloom_avx.dll,sha256=3pTsql6-EovdJ4V7_RhYPHFNA2sNmdd3o6JiX_ZRB8A,535040
49
- ipex_llm/libs/libbloom_vnni.dll,sha256=_s9QDl8PwDk2i0HlAXAc4zNPSD-QP8CYuGlFNlW3kqw,506880
50
- ipex_llm/libs/libgptneox_avx.dll,sha256=5OFhG019GnKBSunLFj8Hdl3y74vYN9U166yH5jzq02o,595456
51
- ipex_llm/libs/libgptneox_vnni.dll,sha256=cO_uJK9ryOZCq1Mkis0JeeoXL7ELO4_5wwR2CsnLduM,567808
52
- ipex_llm/libs/libllama_avx.dll,sha256=rnzeKhvjPsR9yAqA2iGzeyTzJHsGqkzUhlWsLTKO-L0,589824
53
- ipex_llm/libs/libllama_vnni.dll,sha256=MpFGU7izhp3cjAV3dilxSawboR4h8YToQs-zLmVp09U,561664
54
- ipex_llm/libs/libstarcoder_avx.dll,sha256=_2mioTJ9PKfBnE7ePf_DXbf1nnv0kQvPWfH6Em8F2Dc,626688
55
- ipex_llm/libs/libstarcoder_vnni.dll,sha256=uCzy3zuwkJ9kpMsfjASte0AEAfANfMfy2QPO2_sU7iA,598528
56
- ipex_llm/libs/llama-api.dll,sha256=G9AOyrQqXM0sNyvuenC2AsltfyOGu7PUVP49Cd51Alw,25600
57
- ipex_llm/libs/llama.dll,sha256=2RsqXu5FuTFYV0-xfAT6p4W0rTpn_CLgPfY7_FOf6H0,561152
58
- ipex_llm/libs/main-bloom.exe,sha256=Oip9lCr0Z9E9JtNmmSfcpeIpa9u8QqljDoA6J26iyOs,103424
59
- ipex_llm/libs/main-gptneox.exe,sha256=HPSbPmvCZG7hsC6Cl5Aq2KIXwJ9x1C1rQKy-bXfsPvI,98816
60
- ipex_llm/libs/main-llama.exe,sha256=Ae1q1zudFru-aw8scEAByyfTNJysBJ8ok4gPM9QHgeg,99840
61
- ipex_llm/libs/main-starcoder.exe,sha256=_aCei2KKCjkY4eN8M-4uNBnmjSPCRCV4l5HzPuXKVyg,157696
62
- ipex_llm/libs/pipeline.dll,sha256=YNiP5VgCJurVeo7w-Ry3rfSW5a7XiXu_auJP6iPRNsE,72704
63
- ipex_llm/libs/quantize-bloom.exe,sha256=-BPVLMa469h23MFGald10g70gCzuAxsxYORFaov3iRs,126464
64
- ipex_llm/libs/quantize-bloom_vnni.exe,sha256=zOw0ZBktkMBZT1XuDrbmoAdNr1MgD-Sv7_0SjROSqUc,127488
65
- ipex_llm/libs/quantize-gptneox.exe,sha256=8-ZWZMSejey3NZYEgICAGB1_Ypb0g_sSSE7oEVRJBqU,104448
66
- ipex_llm/libs/quantize-gptneox_vnni.exe,sha256=6q4jDAT4eRgVmlb-bTA2N2HUmtWv1X2D6CjzYxtayCI,104960
67
- ipex_llm/libs/quantize-llama.exe,sha256=0lKm4Iq-CfHORbiQHcANIzsthrDt5PovjMYMIeRTk9I,109568
68
- ipex_llm/libs/quantize-llama_vnni.exe,sha256=wMP_pOkyNOPvHSAuWFr5f07SRLKbrkgbGo41O3hv5a4,110592
69
- ipex_llm/libs/quantize-starcoder.exe,sha256=mbh4bLwkWbtddyPdCz0jYNUf8vMFPZxFShOxtCqMzV4,127488
70
- ipex_llm/libs/quantize-starcoder_vnni.exe,sha256=AxO1y6ERwky9UJpjylpQ43U_xgxdX8PAdKXbyx1xsYI,128512
71
- ipex_llm/libs/starcoder-api.dll,sha256=_6xipNB_cWOy0iF7YmC10akPFNIpV_ymVDc5HcdUZtg,21504
72
- ipex_llm/libs/starcoder.dll,sha256=d3a-7_HMs7Mivq2719k7Unc5TEvLg2GwVIr7FgwiO7U,598016
44
+ ipex_llm/libs/bloom-api.dll,sha256=KZO8E1UaDCnft7K0TDoh_3zTx42ISTU4D2bSqoPEV2s,36352
45
+ ipex_llm/libs/bloom.dll,sha256=svReLrk8rOmuItKNyhldKdx-DoMPMO642_h_Ug5UxD0,507904
46
+ ipex_llm/libs/gptneox-api.dll,sha256=O-N2Ia1UysaymHfImedI_WjOeJ2NTbxNn9q6yGXOQAI,24576
47
+ ipex_llm/libs/gptneox.dll,sha256=fcBWhf3KmAqkmyf_F7NKa5lT0gO57-9BcC_rfeT-LwU,568320
48
+ ipex_llm/libs/libbloom_avx.dll,sha256=zPvCrNZlhMXpWarLFBhmhybT54is_iiolIPrIwDWw2c,536576
49
+ ipex_llm/libs/libbloom_vnni.dll,sha256=zJNPHctPT5i42tPNOSLeeMpllG30GGqI9v8iD1BYi4k,508416
50
+ ipex_llm/libs/libgptneox_avx.dll,sha256=aM2pIFvj3JR3UtH_jaOfR7voUuPS3uxvmOEnplOBdbc,596992
51
+ ipex_llm/libs/libgptneox_vnni.dll,sha256=SaC4qbKMRIqV_3NUcIYLV1gRZNsduV90DzovwmNY1UE,568832
52
+ ipex_llm/libs/libllama_avx.dll,sha256=X-RoQ1vnzW0HEFDYJ8OyrMq9Nw080zXmM4RCOtNyx_E,591360
53
+ ipex_llm/libs/libllama_vnni.dll,sha256=Is1ykadevzNjGRZTZtExJk8iAIXGjq-GJ7zHOpuNtzI,563200
54
+ ipex_llm/libs/libstarcoder_avx.dll,sha256=kDSsXFnvGc0tqkv9uU3sO-JWYLYdeqq5mVe4aA_KB30,627712
55
+ ipex_llm/libs/libstarcoder_vnni.dll,sha256=srj1INioPm8WX8WqsW1m5CrtvXfuySliylZH2bpCF08,599552
56
+ ipex_llm/libs/llama-api.dll,sha256=LdTvWWTBx5z6a9WPJPLIuJ_y6KpjrSfq0weehc3VdwU,25600
57
+ ipex_llm/libs/llama.dll,sha256=wYzQK-oATn1zwBuNu57FWSgVEOdNabU4PgU5O9SVm_Y,562688
58
+ ipex_llm/libs/main-bloom.exe,sha256=_iCwL1VqzrOWnBDuilurts1prZwopIxPwqcMPUwuPIw,103424
59
+ ipex_llm/libs/main-gptneox.exe,sha256=TQ4SKDSTZ811jn2ZlAcDj9uksjYbL9DQVKdo3_94NRQ,98816
60
+ ipex_llm/libs/main-llama.exe,sha256=bQGz9gMIjKMMH5zTqpj3M8Mh_FCWdeyFUcK66usqqlI,99840
61
+ ipex_llm/libs/main-starcoder.exe,sha256=siUfDQYwB9zmcsaqgccks4-_ylIeN4RIAcJdIFgfOSU,157696
62
+ ipex_llm/libs/pipeline.dll,sha256=2WR7LimvR1WHIgoetcO2RO3uXmng752cZ9L9hr6iGoE,72704
63
+ ipex_llm/libs/quantize-bloom.exe,sha256=2-S0X9dnWH1WYvTV0bWlZKTwC5PfMC5fLNWouC-UiPw,126464
64
+ ipex_llm/libs/quantize-bloom_vnni.exe,sha256=5Oy_AOS8K7FDGXqUQj1aoAZ-NpZj5rDx4oXkYJU9zfs,128000
65
+ ipex_llm/libs/quantize-gptneox.exe,sha256=3OXhZHW7T6x0JTT7R6mu9EmLZDmyymKK7SbLV4IW0L0,104448
66
+ ipex_llm/libs/quantize-gptneox_vnni.exe,sha256=8u0qGmF64EqIBZcYKFve3LzF94r-ag1-gp1poZ-UqTQ,104960
67
+ ipex_llm/libs/quantize-llama.exe,sha256=SZps0VsS4RG1N_5lcCicfAMEI5RwdLMH7CZUVVVbdfQ,110080
68
+ ipex_llm/libs/quantize-llama_vnni.exe,sha256=b_YXBMvuKfHX96Y31M8MdeUoGS__2e2NZSX1Kr0yCzM,110592
69
+ ipex_llm/libs/quantize-starcoder.exe,sha256=Txap-heal5Q1pMJfrC1To8IcHktSboCReD8aLyT8u5A,127488
70
+ ipex_llm/libs/quantize-starcoder_vnni.exe,sha256=SEh_V-9nXaD5QlDZPQ6HdoStp1krtNc1vtIg0E-OPuo,128512
71
+ ipex_llm/libs/starcoder-api.dll,sha256=obLtkGPijemfhwOHIu8iIwt6UdGeGg0PnuvDBoIhR0Q,21504
72
+ ipex_llm/libs/starcoder.dll,sha256=pEZDz8kqNxmyyRd4LCVnvVsyM1Q2d5TnAV1fYbugGJI,599040
73
73
  ipex_llm/llamaindex/__init__.py,sha256=T-EbRT6GJ_8RCu-iLmSzcftOimXSPQf2d5X72AUAy2Y,874
74
74
  ipex_llm/llamaindex/llms/__init__.py,sha256=KP1lEdGqDuxPoxL1ZSH25Pm2kKMPJBWUTLR0ckSLMIU,1139
75
75
  ipex_llm/llamaindex/llms/bigdlllm.py,sha256=FQBzq1KOjfc6uofTXAha3O7TqpJkNfOFepXQmOVlbnI,26314
@@ -87,14 +87,14 @@ ipex_llm/serving/fastchat/tgi_api_protocol.py,sha256=brT3k3-V0NJrU4fRqUwWjC0O3iO
87
87
  ipex_llm/serving/fastchat/tgi_api_server.py,sha256=agNTAEiZPSuj3dEdIdYKwkoY0cXOUDX06DiM9VP2knQ,24418
88
88
  ipex_llm/serving/fastchat/vllm_worker.py,sha256=ZLz2Q9GxJO6r_LOiP6epgCRjBGk-K4EB1SNEWSJp5DA,11091
89
89
  ipex_llm/transformers/__init__.py,sha256=pJHs6GZXHIObVE4BUCuej-6BKBZZg9pYWKPrkhWSfB4,1192
90
- ipex_llm/transformers/convert.py,sha256=i2IOmDnQBKNtcfUL95l8w4rNBMiU4SqX_9uz_LtPHMI,98086
90
+ ipex_llm/transformers/convert.py,sha256=RVW8PIKpLrdMbvqKuUtWswyECTvDP7IM-o6I-Ez3TZ4,99554
91
91
  ipex_llm/transformers/convert_ipex.py,sha256=_nSnUTQy-yfkKaqGdqnBdWztZf3NGmnbZ0TKaDrF4X4,14617
92
92
  ipex_llm/transformers/embedding.py,sha256=bdgk59DvD4ZZyxRzewXOR7g56nThgO6uhIwk8QL7f-s,9299
93
93
  ipex_llm/transformers/kv.py,sha256=k4TU18LlA-Sbq9WNNQnfuzu3RSFBwFhmaV3BcGN5bAo,19191
94
94
  ipex_llm/transformers/lisa.py,sha256=F5WxbtXQ7RdKulj83h_2DnEIgKiKGZf7zvOmg6QBl2s,3289
95
95
  ipex_llm/transformers/loader.py,sha256=AwjV5RpI2t2bedlv7ZhLm8cfd-QJZm5hny-XyjIvdnk,6876
96
96
  ipex_llm/transformers/lookup.py,sha256=b6OlZ9OV10R9qeWw8mVryVpDxszkjwLkldvi7GPMJY8,19614
97
- ipex_llm/transformers/low_bit_linear.py,sha256=1diyN_5OTViAmi8CRIUh5j1s5Z9j3Umcz2MEiideV4U,40863
97
+ ipex_llm/transformers/low_bit_linear.py,sha256=2FhbDODYaw0D2RXfYCx3B9NyDep2D50tzQm6pYDxpzQ,40964
98
98
  ipex_llm/transformers/model.py,sha256=64eRLtbFftku9kcN5xSNerbZ3jAFUjCbNlM8Ly54ygE,41079
99
99
  ipex_llm/transformers/modelling_bigdl.py,sha256=7JpNVMuyq_OmtNUaMFMXdxPWZp2q0QHC02QeA-VTPOw,6709
100
100
  ipex_llm/transformers/npu_model.py,sha256=X8ZtvZJpzz64XrSPhUYXXZmdJcbZ9X6G3Vlzw-zgN1Q,39749
@@ -154,7 +154,7 @@ ipex_llm/transformers/models/gptbigcode.py,sha256=cP1_qGWoa43R2WacAMblShjku4Qupc
154
154
  ipex_llm/transformers/models/gptneox.py,sha256=loRh1x_5S6BCeOr_s5xr-N_1SQHL3Y5IiUBAEyoMUqQ,6172
155
155
  ipex_llm/transformers/models/internlm.py,sha256=JZFrI2HXsIAfM-6pA2RO0wcXopOliC1FggLMzNzaDZ4,17404
156
156
  ipex_llm/transformers/models/internvl.py,sha256=Vx0vENIEQLX2M6P398mw5TOhpks0U8xf8rtRQvy94go,8154
157
- ipex_llm/transformers/models/llama.py,sha256=NzpyQve_RC9ez1W-jWPLGZ80k_S1I5Rx5saAzCsDIoI,8558
157
+ ipex_llm/transformers/models/llama.py,sha256=rqrNjuZb_jeb9MKx0z-FSVoGx8YDBxQzPJ9ZUvYhgx0,9138
158
158
  ipex_llm/transformers/models/minicpm.py,sha256=eaPNVNrep0_xGoELhZd886ff0ceoKqB6cusdAhd52eE,10145
159
159
  ipex_llm/transformers/models/minicpm3.py,sha256=11cYl8KM2hoIJNMAOZMxiwCu6dMhup9ric_OEn8-VrQ,9363
160
160
  ipex_llm/transformers/models/minicpmv.py,sha256=PP05b5iTnrMpiseCn8iJcxKJDnfq7WqXp9Mrch0kKZ0,9876
@@ -174,7 +174,8 @@ ipex_llm/transformers/models/rwkv5.py,sha256=OkRNj1pCAZg1z2Fw-I0DEnxLEdZyPeRSQ6m
174
174
  ipex_llm/transformers/models/sd.py,sha256=VvHV5u-0k2MgHu3NL9113hPj7DgfxqctuKzEEeNfRDU,5981
175
175
  ipex_llm/transformers/models/stablelm.py,sha256=fj-XtOnR6kggnFUQTMPCOOzolkPztN06WAv8QW-XRnI,7054
176
176
  ipex_llm/transformers/models/starcoder2.py,sha256=ONKvD7JCkRM0DI-R56x28QFBJ7CjD5hOZBQ_3WfOcNk,6626
177
- ipex_llm/transformers/models/utils.py,sha256=WYBc26vSiy_CzV07z-eT5ts90Kko2yUmS3DDZtfGcRk,15065
177
+ ipex_llm/transformers/models/utils.py,sha256=Rdn9T4zk6Hz8ybJp6kvlyfPwgHwdxEZ8R4zGtMeozWg,15105
178
+ ipex_llm/transformers/models/whisper.py,sha256=ju3WP8Eq-KvD7kb3Qy51r4FOfSX3NBxfp5RBcq__gzc,4241
178
179
  ipex_llm/transformers/models/yuan.py,sha256=JYAn_ZaSGK0NBJLEIxCACfAq084a66GFJkdd5NbpmMA,7732
179
180
  ipex_llm/transformers/npu_models/__init__.py,sha256=ulEUGLjaP48LCrVeury3UxLjXxKzRi0UpSG4bYu-7f8,585
180
181
  ipex_llm/transformers/npu_models/baichuan.py,sha256=fJtd7fBrttySghRUgfZTAdxLjsSNC-XL08HISsXigLE,4685
@@ -243,11 +244,11 @@ ipex_llm/vllm/xpu/engine/__init__.py,sha256=pY_CpyuZd72fr6s32ejeKHKFW0K4vUU2rzZj
243
244
  ipex_llm/vllm/xpu/engine/engine.py,sha256=k4-D27WS_Gk3mA--w3HWAjPjb4Aiu043MVPi0ZoAUBc,5984
244
245
  ipex_llm/vllm/xpu/entrypoints/openai/api_server.py,sha256=GshTZFB8e4PWvqckfbmTOU6b0oLkNn7A-vzLuG9--j8,21544
245
246
  ipex_llm/vllm/xpu/entrypoints/openai/cli_args.py,sha256=2rENA2ucynMaIjiZBEh2ez1o5vR32GaP514t39CD7KM,8676
246
- ipex_llm-2.2.0b20250114.data/scripts/ipex-llm-init.bat,sha256=HPtCYuDYwEatq7dAwOvdfVcHYCpAVdbj75K1qh0vQek,2578
247
- ipex_llm-2.2.0b20250114.data/scripts/llm-chat.ps1,sha256=6qrs-hGVAV8IKh7Jx8nq_XrnZcjd7qGU5wndArM7Yag,2769
248
- ipex_llm-2.2.0b20250114.data/scripts/llm-cli.ps1,sha256=3qBtTLs_EjYDnM8YyCpJhzLnGCKTEGssu9UNqfkjVXs,3009
249
- ipex_llm-2.2.0b20250114.dist-info/METADATA,sha256=CsE0v0mVfDVChkqM_ovKZkcfFq2zcg1yL3xthEnO7JM,12705
250
- ipex_llm-2.2.0b20250114.dist-info/WHEEL,sha256=6iYPr8vTHsyDK75jr9X0V3I9wPSVmtwr_8fdATBciGk,98
251
- ipex_llm-2.2.0b20250114.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
252
- ipex_llm-2.2.0b20250114.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
253
- ipex_llm-2.2.0b20250114.dist-info/RECORD,,
247
+ ipex_llm-2.2.0b20250116.data/scripts/ipex-llm-init.bat,sha256=HPtCYuDYwEatq7dAwOvdfVcHYCpAVdbj75K1qh0vQek,2578
248
+ ipex_llm-2.2.0b20250116.data/scripts/llm-chat.ps1,sha256=6qrs-hGVAV8IKh7Jx8nq_XrnZcjd7qGU5wndArM7Yag,2769
249
+ ipex_llm-2.2.0b20250116.data/scripts/llm-cli.ps1,sha256=3qBtTLs_EjYDnM8YyCpJhzLnGCKTEGssu9UNqfkjVXs,3009
250
+ ipex_llm-2.2.0b20250116.dist-info/METADATA,sha256=-88ot5J1vrH5lxaRqG7J_H4AODcB6syYq9PHArHcHw4,12879
251
+ ipex_llm-2.2.0b20250116.dist-info/WHEEL,sha256=6iYPr8vTHsyDK75jr9X0V3I9wPSVmtwr_8fdATBciGk,98
252
+ ipex_llm-2.2.0b20250116.dist-info/entry_points.txt,sha256=TiUyBB2MRmfF3ko-pyAEzqeBCRnyhu27bNOAsWPp3e8,61
253
+ ipex_llm-2.2.0b20250116.dist-info/top_level.txt,sha256=CGCMHM-SyqUabU4h8RqJ2KTYckQUO3LvIWwmUQ6Qbzw,9
254
+ ipex_llm-2.2.0b20250116.dist-info/RECORD,,