ins-pricing 0.4.4__tar.gz → 0.4.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/MANIFEST.in +3 -3
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/PKG-INFO +182 -162
- ins_pricing-0.4.5/README.md +130 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/README.md +66 -74
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/BayesOpt_incremental.py +904 -904
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/bayesopt_entry_runner.py +1442 -1442
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/README.md +573 -419
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/config_builder.py +1 -0
- ins_pricing-0.4.5/ins_pricing/modelling/README.md +67 -0
- ins_pricing-0.4.5/ins_pricing/modelling/core/bayesopt/README.md +59 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/config_preprocess.py +12 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/core.py +3 -1
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/setup.py +1 -1
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing.egg-info/PKG-INFO +182 -162
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing.egg-info/SOURCES.txt +2 -9
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/pyproject.toml +1 -1
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/setup.cfg +4 -4
- ins_pricing-0.4.4/README.md +0 -110
- ins_pricing-0.4.4/ins_pricing/CHANGELOG.md +0 -272
- ins_pricing-0.4.4/ins_pricing/RELEASE_NOTES_0.2.8.md +0 -344
- ins_pricing-0.4.4/ins_pricing/docs/LOSS_FUNCTIONS.md +0 -78
- ins_pricing-0.4.4/ins_pricing/docs/modelling/BayesOpt_USAGE.md +0 -945
- ins_pricing-0.4.4/ins_pricing/docs/modelling/README.md +0 -34
- ins_pricing-0.4.4/ins_pricing/frontend/QUICKSTART.md +0 -152
- ins_pricing-0.4.4/ins_pricing/modelling/core/bayesopt/PHASE2_REFACTORING_SUMMARY.md +0 -449
- ins_pricing-0.4.4/ins_pricing/modelling/core/bayesopt/PHASE3_REFACTORING_SUMMARY.md +0 -406
- ins_pricing-0.4.4/ins_pricing/modelling/core/bayesopt/REFACTORING_SUMMARY.md +0 -247
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/BayesOpt_entry.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/Explain_Run.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/Explain_entry.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/Pricing_Run.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/utils/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/utils/cli_common.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/utils/cli_config.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/utils/evaluation_context.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/utils/import_resolver.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/utils/notebook_utils.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/utils/run_logging.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/cli/watchdog_run.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/exceptions.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/app.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/example_config.json +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/example_workflows.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/ft_workflow.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/frontend/runner.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/governance/README.md +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/governance/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/governance/approval.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/governance/audit.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/governance/registry.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/governance/release.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/BayesOpt.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/config_components.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/model_explain_mixin.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/model_plotting_mixin.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/models/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/models/model_ft_components.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/models/model_ft_trainer.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/models/model_gnn.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/models/model_resn.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/trainers/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/trainers/trainer_base.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/trainers/trainer_ft.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/trainers/trainer_glm.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/trainers/trainer_gnn.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/trainers/trainer_resn.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/trainers/trainer_xgb.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils/constants.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils/distributed_utils.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils/io_utils.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils/losses.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils/metrics_and_devices.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils/torch_trainer_mixin.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/bayesopt/utils_backup.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/core/evaluation.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/explain/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/explain/gradients.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/explain/metrics.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/explain/permutation.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/explain/shap_utils.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/plotting/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/plotting/common.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/plotting/curves.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/plotting/diagnostics.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/plotting/geo.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/modelling/plotting/importance.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/README.md +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/calibration.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/data_quality.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/exposure.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/factors.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/monitoring.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/pricing/rate_table.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/production/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/production/drift.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/production/monitoring.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/production/predict.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/production/preprocess.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/production/scoring.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/reporting/README.md +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/reporting/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/reporting/report_builder.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/reporting/scheduler.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/governance/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/governance/test_audit.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/governance/test_registry.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/governance/test_release.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/conftest.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_cross_val_generic.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_distributed_utils.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_explain.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_geo_tokens_split.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_graph_cache.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_plotting.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_plotting_library.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/modelling/test_preprocessor.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/pricing/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/pricing/test_calibration.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/pricing/test_exposure.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/pricing/test_factors.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/pricing/test_rate_table.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/production/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/production/test_monitoring.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/production/test_predict.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/production/test_preprocess.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/tests/production/test_scoring.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/__init__.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/device.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/logging.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/metrics.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/paths.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/profiling.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/torch_compat.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing/utils/validation.py +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing.egg-info/dependency_links.txt +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing.egg-info/requires.txt +0 -0
- {ins_pricing-0.4.4 → ins_pricing-0.4.5}/ins_pricing.egg-info/top_level.txt +0 -0
|
@@ -1,3 +1,3 @@
|
|
|
1
|
-
include README.md
|
|
2
|
-
recursive-include ins_pricing *.md
|
|
3
|
-
recursive-exclude
|
|
1
|
+
include README.md
|
|
2
|
+
recursive-include ins_pricing *.md
|
|
3
|
+
recursive-exclude examples *
|
|
@@ -1,162 +1,182 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: ins_pricing
|
|
3
|
-
Version: 0.4.
|
|
4
|
-
Summary: Reusable modelling, pricing, governance, and reporting utilities.
|
|
5
|
-
Author: meishi125478
|
|
6
|
-
License: Proprietary
|
|
7
|
-
Keywords: pricing,insurance,bayesopt,ml
|
|
8
|
-
Classifier: Programming Language :: Python :: 3
|
|
9
|
-
Classifier: Programming Language :: Python :: 3 :: Only
|
|
10
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
-
Classifier: License :: Other/Proprietary License
|
|
12
|
-
Classifier: Operating System :: OS Independent
|
|
13
|
-
Classifier: Intended Audience :: Developers
|
|
14
|
-
Requires-Python: >=3.9
|
|
15
|
-
Description-Content-Type: text/markdown
|
|
16
|
-
Requires-Dist: numpy>=1.20
|
|
17
|
-
Requires-Dist: pandas>=1.4
|
|
18
|
-
Provides-Extra: bayesopt
|
|
19
|
-
Requires-Dist: torch>=1.13; extra == "bayesopt"
|
|
20
|
-
Requires-Dist: optuna>=3.0; extra == "bayesopt"
|
|
21
|
-
Requires-Dist: xgboost>=1.6; extra == "bayesopt"
|
|
22
|
-
Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
|
|
23
|
-
Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
|
|
24
|
-
Requires-Dist: joblib>=1.2; extra == "bayesopt"
|
|
25
|
-
Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
|
|
26
|
-
Provides-Extra: plotting
|
|
27
|
-
Requires-Dist: matplotlib>=3.5; extra == "plotting"
|
|
28
|
-
Requires-Dist: scikit-learn>=1.1; extra == "plotting"
|
|
29
|
-
Provides-Extra: explain
|
|
30
|
-
Requires-Dist: torch>=1.13; extra == "explain"
|
|
31
|
-
Requires-Dist: shap>=0.41; extra == "explain"
|
|
32
|
-
Requires-Dist: scikit-learn>=1.1; extra == "explain"
|
|
33
|
-
Provides-Extra: geo
|
|
34
|
-
Requires-Dist: contextily>=1.3; extra == "geo"
|
|
35
|
-
Requires-Dist: matplotlib>=3.5; extra == "geo"
|
|
36
|
-
Provides-Extra: gnn
|
|
37
|
-
Requires-Dist: torch>=1.13; extra == "gnn"
|
|
38
|
-
Requires-Dist: pynndescent>=0.5; extra == "gnn"
|
|
39
|
-
Requires-Dist: torch-geometric>=2.3; extra == "gnn"
|
|
40
|
-
Provides-Extra: all
|
|
41
|
-
Requires-Dist: torch>=1.13; extra == "all"
|
|
42
|
-
Requires-Dist: optuna>=3.0; extra == "all"
|
|
43
|
-
Requires-Dist: xgboost>=1.6; extra == "all"
|
|
44
|
-
Requires-Dist: scikit-learn>=1.1; extra == "all"
|
|
45
|
-
Requires-Dist: statsmodels>=0.13; extra == "all"
|
|
46
|
-
Requires-Dist: joblib>=1.2; extra == "all"
|
|
47
|
-
Requires-Dist: matplotlib>=3.5; extra == "all"
|
|
48
|
-
Requires-Dist: shap>=0.41; extra == "all"
|
|
49
|
-
Requires-Dist: contextily>=1.3; extra == "all"
|
|
50
|
-
Requires-Dist: pynndescent>=0.5; extra == "all"
|
|
51
|
-
Requires-Dist: torch-geometric>=2.3; extra == "all"
|
|
52
|
-
|
|
53
|
-
# Insurance-Pricing
|
|
54
|
-
|
|
55
|
-
A reusable toolkit for insurance modeling, pricing, governance, and reporting.
|
|
56
|
-
|
|
57
|
-
## Overview
|
|
58
|
-
|
|
59
|
-
Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
|
67
|
-
|
|
|
68
|
-
|
|
|
69
|
-
|
|
|
70
|
-
|
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
model.
|
|
88
|
-
model.
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
registry
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
pip install ins_pricing[
|
|
138
|
-
pip install ins_pricing[
|
|
139
|
-
pip install ins_pricing[
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ins_pricing
|
|
3
|
+
Version: 0.4.5
|
|
4
|
+
Summary: Reusable modelling, pricing, governance, and reporting utilities.
|
|
5
|
+
Author: meishi125478
|
|
6
|
+
License: Proprietary
|
|
7
|
+
Keywords: pricing,insurance,bayesopt,ml
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
+
Classifier: License :: Other/Proprietary License
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Classifier: Intended Audience :: Developers
|
|
14
|
+
Requires-Python: >=3.9
|
|
15
|
+
Description-Content-Type: text/markdown
|
|
16
|
+
Requires-Dist: numpy>=1.20
|
|
17
|
+
Requires-Dist: pandas>=1.4
|
|
18
|
+
Provides-Extra: bayesopt
|
|
19
|
+
Requires-Dist: torch>=1.13; extra == "bayesopt"
|
|
20
|
+
Requires-Dist: optuna>=3.0; extra == "bayesopt"
|
|
21
|
+
Requires-Dist: xgboost>=1.6; extra == "bayesopt"
|
|
22
|
+
Requires-Dist: scikit-learn>=1.1; extra == "bayesopt"
|
|
23
|
+
Requires-Dist: statsmodels>=0.13; extra == "bayesopt"
|
|
24
|
+
Requires-Dist: joblib>=1.2; extra == "bayesopt"
|
|
25
|
+
Requires-Dist: matplotlib>=3.5; extra == "bayesopt"
|
|
26
|
+
Provides-Extra: plotting
|
|
27
|
+
Requires-Dist: matplotlib>=3.5; extra == "plotting"
|
|
28
|
+
Requires-Dist: scikit-learn>=1.1; extra == "plotting"
|
|
29
|
+
Provides-Extra: explain
|
|
30
|
+
Requires-Dist: torch>=1.13; extra == "explain"
|
|
31
|
+
Requires-Dist: shap>=0.41; extra == "explain"
|
|
32
|
+
Requires-Dist: scikit-learn>=1.1; extra == "explain"
|
|
33
|
+
Provides-Extra: geo
|
|
34
|
+
Requires-Dist: contextily>=1.3; extra == "geo"
|
|
35
|
+
Requires-Dist: matplotlib>=3.5; extra == "geo"
|
|
36
|
+
Provides-Extra: gnn
|
|
37
|
+
Requires-Dist: torch>=1.13; extra == "gnn"
|
|
38
|
+
Requires-Dist: pynndescent>=0.5; extra == "gnn"
|
|
39
|
+
Requires-Dist: torch-geometric>=2.3; extra == "gnn"
|
|
40
|
+
Provides-Extra: all
|
|
41
|
+
Requires-Dist: torch>=1.13; extra == "all"
|
|
42
|
+
Requires-Dist: optuna>=3.0; extra == "all"
|
|
43
|
+
Requires-Dist: xgboost>=1.6; extra == "all"
|
|
44
|
+
Requires-Dist: scikit-learn>=1.1; extra == "all"
|
|
45
|
+
Requires-Dist: statsmodels>=0.13; extra == "all"
|
|
46
|
+
Requires-Dist: joblib>=1.2; extra == "all"
|
|
47
|
+
Requires-Dist: matplotlib>=3.5; extra == "all"
|
|
48
|
+
Requires-Dist: shap>=0.41; extra == "all"
|
|
49
|
+
Requires-Dist: contextily>=1.3; extra == "all"
|
|
50
|
+
Requires-Dist: pynndescent>=0.5; extra == "all"
|
|
51
|
+
Requires-Dist: torch-geometric>=2.3; extra == "all"
|
|
52
|
+
|
|
53
|
+
# Insurance-Pricing
|
|
54
|
+
|
|
55
|
+
A reusable toolkit for insurance modeling, pricing, governance, and reporting.
|
|
56
|
+
|
|
57
|
+
## Overview
|
|
58
|
+
|
|
59
|
+
Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning
|
|
60
|
+
model training, pricing calculations, and model governance workflows in the insurance industry.
|
|
61
|
+
|
|
62
|
+
### Core Modules
|
|
63
|
+
|
|
64
|
+
| Module | Description |
|
|
65
|
+
|--------|-------------|
|
|
66
|
+
| modelling | ML model training (GLM, XGBoost, ResNet, FT-Transformer, GNN) and model interpretability |
|
|
67
|
+
| pricing | Factor table construction, numeric binning, premium calibration, exposure calculation, PSI monitoring |
|
|
68
|
+
| production | Model prediction, batch scoring, data drift detection, production metrics monitoring |
|
|
69
|
+
| governance | Model registry, version management, approval workflows, audit logging |
|
|
70
|
+
| reporting | Report generation (Markdown format), report scheduling |
|
|
71
|
+
| utils | Data validation, performance profiling, device management, logging configuration |
|
|
72
|
+
|
|
73
|
+
### Quick Start
|
|
74
|
+
|
|
75
|
+
```python
|
|
76
|
+
# Model training with Bayesian optimization
|
|
77
|
+
from ins_pricing import bayesopt as ropt
|
|
78
|
+
|
|
79
|
+
model = ropt.BayesOptModel(
|
|
80
|
+
train_data, test_data,
|
|
81
|
+
model_name='my_model',
|
|
82
|
+
resp_nme='target',
|
|
83
|
+
weight_nme='weight',
|
|
84
|
+
factor_nmes=feature_list,
|
|
85
|
+
cate_list=categorical_features,
|
|
86
|
+
)
|
|
87
|
+
model.bayesopt_xgb(max_evals=100) # Train XGBoost
|
|
88
|
+
model.bayesopt_resnet(max_evals=50) # Train ResNet
|
|
89
|
+
model.bayesopt_ft(max_evals=50) # Train FT-Transformer
|
|
90
|
+
|
|
91
|
+
# Pricing: build factor table
|
|
92
|
+
from ins_pricing.pricing import build_factor_table
|
|
93
|
+
factors = build_factor_table(
|
|
94
|
+
df,
|
|
95
|
+
factor_col='age_band',
|
|
96
|
+
loss_col='claim_amount',
|
|
97
|
+
exposure_col='exposure',
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
# Production: batch scoring
|
|
101
|
+
from ins_pricing.production import batch_score
|
|
102
|
+
scores = batch_score(model.trainers['xgb'].predict, df)
|
|
103
|
+
|
|
104
|
+
# Model governance
|
|
105
|
+
from ins_pricing.governance import ModelRegistry
|
|
106
|
+
registry = ModelRegistry('models.json')
|
|
107
|
+
registry.register(model_name, version, metrics=metrics)
|
|
108
|
+
```
|
|
109
|
+
|
|
110
|
+
### Project Structure
|
|
111
|
+
|
|
112
|
+
```
|
|
113
|
+
ins_pricing/
|
|
114
|
+
cli/ # Command-line entry points
|
|
115
|
+
modelling/
|
|
116
|
+
core/bayesopt/ # ML model training core
|
|
117
|
+
explain/ # Model interpretability
|
|
118
|
+
plotting/ # Model visualization
|
|
119
|
+
pricing/ # Insurance pricing module
|
|
120
|
+
production/ # Production deployment module
|
|
121
|
+
governance/ # Model governance
|
|
122
|
+
reporting/ # Report generation
|
|
123
|
+
utils/ # Utilities
|
|
124
|
+
tests/ # Test suite
|
|
125
|
+
```
|
|
126
|
+
|
|
127
|
+
### Installation
|
|
128
|
+
|
|
129
|
+
```bash
|
|
130
|
+
# Basic installation
|
|
131
|
+
pip install ins_pricing
|
|
132
|
+
|
|
133
|
+
# Full installation (all optional dependencies)
|
|
134
|
+
pip install ins_pricing[all]
|
|
135
|
+
|
|
136
|
+
# Install specific extras
|
|
137
|
+
pip install ins_pricing[bayesopt] # Model training
|
|
138
|
+
pip install ins_pricing[explain] # Model explanation
|
|
139
|
+
pip install ins_pricing[plotting] # Visualization
|
|
140
|
+
pip install ins_pricing[gnn] # Graph neural networks
|
|
141
|
+
```
|
|
142
|
+
|
|
143
|
+
#### Multi-platform and GPU notes
|
|
144
|
+
|
|
145
|
+
- Install the correct PyTorch build for your platform/GPU before installing extras.
|
|
146
|
+
- Torch Geometric requires platform-specific wheels; follow the official PyG install guide.
|
|
147
|
+
- Multi-GPU uses torch.distributed/DataParallel where supported; Windows disables CUDA DDP.
|
|
148
|
+
|
|
149
|
+
---
|
|
150
|
+
## PyPI Upload (scripts)
|
|
151
|
+
|
|
152
|
+
This repo includes upload scripts for Windows and Linux/macOS.
|
|
153
|
+
|
|
154
|
+
### Windows
|
|
155
|
+
|
|
156
|
+
```cmd
|
|
157
|
+
set TWINE_PASSWORD=your_pypi_token_here
|
|
158
|
+
python -m build
|
|
159
|
+
upload_to_pypi.bat
|
|
160
|
+
```
|
|
161
|
+
|
|
162
|
+
### Linux / macOS
|
|
163
|
+
|
|
164
|
+
```bash
|
|
165
|
+
chmod +x upload_to_pypi.sh
|
|
166
|
+
export TWINE_PASSWORD='your_pypi_token_here'
|
|
167
|
+
python -m build
|
|
168
|
+
./upload_to_pypi.sh
|
|
169
|
+
```
|
|
170
|
+
|
|
171
|
+
### Makefile (if make is available)
|
|
172
|
+
|
|
173
|
+
```bash
|
|
174
|
+
make build
|
|
175
|
+
make upload
|
|
176
|
+
```
|
|
177
|
+
|
|
178
|
+
### Tips
|
|
179
|
+
|
|
180
|
+
- Never commit tokens to version control.
|
|
181
|
+
- Use environment variables or secret managers to store credentials.
|
|
182
|
+
- Test with TestPyPI before publishing when needed.
|
|
@@ -0,0 +1,130 @@
|
|
|
1
|
+
# Insurance-Pricing
|
|
2
|
+
|
|
3
|
+
A reusable toolkit for insurance modeling, pricing, governance, and reporting.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Insurance-Pricing (ins_pricing) is an enterprise-grade Python library designed for machine learning
|
|
8
|
+
model training, pricing calculations, and model governance workflows in the insurance industry.
|
|
9
|
+
|
|
10
|
+
### Core Modules
|
|
11
|
+
|
|
12
|
+
| Module | Description |
|
|
13
|
+
|--------|-------------|
|
|
14
|
+
| modelling | ML model training (GLM, XGBoost, ResNet, FT-Transformer, GNN) and model interpretability |
|
|
15
|
+
| pricing | Factor table construction, numeric binning, premium calibration, exposure calculation, PSI monitoring |
|
|
16
|
+
| production | Model prediction, batch scoring, data drift detection, production metrics monitoring |
|
|
17
|
+
| governance | Model registry, version management, approval workflows, audit logging |
|
|
18
|
+
| reporting | Report generation (Markdown format), report scheduling |
|
|
19
|
+
| utils | Data validation, performance profiling, device management, logging configuration |
|
|
20
|
+
|
|
21
|
+
### Quick Start
|
|
22
|
+
|
|
23
|
+
```python
|
|
24
|
+
# Model training with Bayesian optimization
|
|
25
|
+
from ins_pricing import bayesopt as ropt
|
|
26
|
+
|
|
27
|
+
model = ropt.BayesOptModel(
|
|
28
|
+
train_data, test_data,
|
|
29
|
+
model_name='my_model',
|
|
30
|
+
resp_nme='target',
|
|
31
|
+
weight_nme='weight',
|
|
32
|
+
factor_nmes=feature_list,
|
|
33
|
+
cate_list=categorical_features,
|
|
34
|
+
)
|
|
35
|
+
model.bayesopt_xgb(max_evals=100) # Train XGBoost
|
|
36
|
+
model.bayesopt_resnet(max_evals=50) # Train ResNet
|
|
37
|
+
model.bayesopt_ft(max_evals=50) # Train FT-Transformer
|
|
38
|
+
|
|
39
|
+
# Pricing: build factor table
|
|
40
|
+
from ins_pricing.pricing import build_factor_table
|
|
41
|
+
factors = build_factor_table(
|
|
42
|
+
df,
|
|
43
|
+
factor_col='age_band',
|
|
44
|
+
loss_col='claim_amount',
|
|
45
|
+
exposure_col='exposure',
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
# Production: batch scoring
|
|
49
|
+
from ins_pricing.production import batch_score
|
|
50
|
+
scores = batch_score(model.trainers['xgb'].predict, df)
|
|
51
|
+
|
|
52
|
+
# Model governance
|
|
53
|
+
from ins_pricing.governance import ModelRegistry
|
|
54
|
+
registry = ModelRegistry('models.json')
|
|
55
|
+
registry.register(model_name, version, metrics=metrics)
|
|
56
|
+
```
|
|
57
|
+
|
|
58
|
+
### Project Structure
|
|
59
|
+
|
|
60
|
+
```
|
|
61
|
+
ins_pricing/
|
|
62
|
+
cli/ # Command-line entry points
|
|
63
|
+
modelling/
|
|
64
|
+
core/bayesopt/ # ML model training core
|
|
65
|
+
explain/ # Model interpretability
|
|
66
|
+
plotting/ # Model visualization
|
|
67
|
+
pricing/ # Insurance pricing module
|
|
68
|
+
production/ # Production deployment module
|
|
69
|
+
governance/ # Model governance
|
|
70
|
+
reporting/ # Report generation
|
|
71
|
+
utils/ # Utilities
|
|
72
|
+
tests/ # Test suite
|
|
73
|
+
```
|
|
74
|
+
|
|
75
|
+
### Installation
|
|
76
|
+
|
|
77
|
+
```bash
|
|
78
|
+
# Basic installation
|
|
79
|
+
pip install ins_pricing
|
|
80
|
+
|
|
81
|
+
# Full installation (all optional dependencies)
|
|
82
|
+
pip install ins_pricing[all]
|
|
83
|
+
|
|
84
|
+
# Install specific extras
|
|
85
|
+
pip install ins_pricing[bayesopt] # Model training
|
|
86
|
+
pip install ins_pricing[explain] # Model explanation
|
|
87
|
+
pip install ins_pricing[plotting] # Visualization
|
|
88
|
+
pip install ins_pricing[gnn] # Graph neural networks
|
|
89
|
+
```
|
|
90
|
+
|
|
91
|
+
#### Multi-platform and GPU notes
|
|
92
|
+
|
|
93
|
+
- Install the correct PyTorch build for your platform/GPU before installing extras.
|
|
94
|
+
- Torch Geometric requires platform-specific wheels; follow the official PyG install guide.
|
|
95
|
+
- Multi-GPU uses torch.distributed/DataParallel where supported; Windows disables CUDA DDP.
|
|
96
|
+
|
|
97
|
+
---
|
|
98
|
+
## PyPI Upload (scripts)
|
|
99
|
+
|
|
100
|
+
This repo includes upload scripts for Windows and Linux/macOS.
|
|
101
|
+
|
|
102
|
+
### Windows
|
|
103
|
+
|
|
104
|
+
```cmd
|
|
105
|
+
set TWINE_PASSWORD=your_pypi_token_here
|
|
106
|
+
python -m build
|
|
107
|
+
upload_to_pypi.bat
|
|
108
|
+
```
|
|
109
|
+
|
|
110
|
+
### Linux / macOS
|
|
111
|
+
|
|
112
|
+
```bash
|
|
113
|
+
chmod +x upload_to_pypi.sh
|
|
114
|
+
export TWINE_PASSWORD='your_pypi_token_here'
|
|
115
|
+
python -m build
|
|
116
|
+
./upload_to_pypi.sh
|
|
117
|
+
```
|
|
118
|
+
|
|
119
|
+
### Makefile (if make is available)
|
|
120
|
+
|
|
121
|
+
```bash
|
|
122
|
+
make build
|
|
123
|
+
make upload
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
### Tips
|
|
127
|
+
|
|
128
|
+
- Never commit tokens to version control.
|
|
129
|
+
- Use environment variables or secret managers to store credentials.
|
|
130
|
+
- Test with TestPyPI before publishing when needed.
|
|
@@ -1,74 +1,66 @@
|
|
|
1
|
-
#
|
|
2
|
-
|
|
3
|
-
Distribution name:
|
|
4
|
-
|
|
5
|
-
Reusable modelling and pricing utilities organized as a small toolbox with clear boundaries
|
|
6
|
-
between modelling, production, governance, and reporting.
|
|
7
|
-
|
|
8
|
-
## Architecture
|
|
9
|
-
|
|
10
|
-
- `cli/`: CLI entry points
|
|
11
|
-
- `modelling/`
|
|
12
|
-
- `core/`: BayesOpt training core (GLM / XGB / ResNet / FT / GNN).
|
|
13
|
-
- `plotting/`: model-agnostic curves and geo visualizations.
|
|
14
|
-
- `explain/`: permutation, gradients, and SHAP helpers.
|
|
15
|
-
- `
|
|
16
|
-
- `
|
|
17
|
-
- `
|
|
18
|
-
- `
|
|
19
|
-
- `
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
-
|
|
29
|
-
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
- `from ins_pricing.
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
`
|
|
48
|
-
-
|
|
49
|
-
-
|
|
50
|
-
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
Legacy import paths continue to work:
|
|
69
|
-
|
|
70
|
-
- `import user_packages`
|
|
71
|
-
- `import user_packages.bayesopt`
|
|
72
|
-
- `import user_packages.plotting`
|
|
73
|
-
- `import user_packages.explain`
|
|
74
|
-
- `import user_packages.BayesOpt`
|
|
1
|
+
# ins_pricing
|
|
2
|
+
|
|
3
|
+
Distribution name: ins_pricing (import package is `ins_pricing`; legacy alias `user_packages` still works).
|
|
4
|
+
|
|
5
|
+
Reusable modelling and pricing utilities organized as a small toolbox with clear boundaries
|
|
6
|
+
between modelling, production, governance, and reporting.
|
|
7
|
+
|
|
8
|
+
## Architecture
|
|
9
|
+
|
|
10
|
+
- `cli/`: CLI entry points and shared utilities.
|
|
11
|
+
- `modelling/`
|
|
12
|
+
- `core/`: BayesOpt training core (GLM / XGB / ResNet / FT / GNN).
|
|
13
|
+
- `plotting/`: model-agnostic curves and geo visualizations.
|
|
14
|
+
- `explain/`: permutation, gradients, and SHAP helpers.
|
|
15
|
+
- `examples/`: demo configs and notebooks (repo only; not packaged).
|
|
16
|
+
- `pricing/`: factor tables, calibration, exposure, monitoring.
|
|
17
|
+
- `production/`: scoring, metrics, drift/PSI.
|
|
18
|
+
- `governance/`: registry, approval, audit workflows.
|
|
19
|
+
- `reporting/`: report builder and scheduler.
|
|
20
|
+
|
|
21
|
+
## Call flow (typical)
|
|
22
|
+
|
|
23
|
+
1. Model training
|
|
24
|
+
- Python API: `from ins_pricing.modelling import BayesOptModel`
|
|
25
|
+
- CLI: `python ins_pricing/cli/BayesOpt_entry.py --config-json ...`
|
|
26
|
+
2. Evaluation and visualization
|
|
27
|
+
- Curves: `from ins_pricing.plotting import curves`
|
|
28
|
+
- Importance: `from ins_pricing.plotting import importance`
|
|
29
|
+
- Geo: `from ins_pricing.plotting import geo`
|
|
30
|
+
3. Explainability
|
|
31
|
+
- `from ins_pricing.explain import permutation_importance, integrated_gradients_torch`
|
|
32
|
+
4. Pricing loop
|
|
33
|
+
- `from ins_pricing.pricing import build_factor_table, rate_premium`
|
|
34
|
+
5. Production and governance
|
|
35
|
+
- `from ins_pricing.production import batch_score, psi_report`
|
|
36
|
+
- `from ins_pricing.governance import ModelRegistry, ReleaseManager`
|
|
37
|
+
6. Reporting
|
|
38
|
+
- `from ins_pricing.reporting import build_report, write_report, schedule_daily`
|
|
39
|
+
|
|
40
|
+
## Import notes
|
|
41
|
+
|
|
42
|
+
- `ins_pricing` exposes lightweight lazy imports so that pricing/production/governance
|
|
43
|
+
can be used without installing heavy ML dependencies.
|
|
44
|
+
- Demo notebooks/configs live in the repo under `examples/` and are not shipped
|
|
45
|
+
in the PyPI package.
|
|
46
|
+
- Heavy dependencies are only required when you import or use the related modules:
|
|
47
|
+
- BayesOpt: `torch`, `optuna`, `xgboost`, etc.
|
|
48
|
+
- Explain: `torch` (gradients), `shap` (SHAP).
|
|
49
|
+
- Geo plotting on basemap: `contextily`.
|
|
50
|
+
- Plotting: `matplotlib`.
|
|
51
|
+
|
|
52
|
+
## Multi-platform and GPU notes
|
|
53
|
+
|
|
54
|
+
- Install the correct PyTorch build for your platform/GPU before installing extras.
|
|
55
|
+
- Torch Geometric requires platform-specific wheels; follow the official PyG install guide.
|
|
56
|
+
- Multi-GPU uses DDP or DataParallel where supported; Windows disables CUDA DDP.
|
|
57
|
+
|
|
58
|
+
## Backward-compatible imports
|
|
59
|
+
|
|
60
|
+
Legacy import paths continue to work:
|
|
61
|
+
|
|
62
|
+
- `import user_packages`
|
|
63
|
+
- `import user_packages.bayesopt`
|
|
64
|
+
- `import user_packages.plotting`
|
|
65
|
+
- `import user_packages.explain`
|
|
66
|
+
- `import user_packages.BayesOpt`
|