imsciences 1.0.9__tar.gz → 1.1.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {imsciences-1.0.9 → imsciences-1.1.2}/PKG-INFO +1 -1
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences/__init__.py +2 -0
- imsciences-1.1.2/imsciences/oecd_pull.py +423 -0
- imsciences-1.1.2/imsciences/pull.py +3010 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences.egg-info/PKG-INFO +1 -1
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences.egg-info/SOURCES.txt +1 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/setup.py +1 -2
- imsciences-1.0.9/imsciences/pull.py +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/LICENSE.txt +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/README.md +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences/geo.py +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences/mmm.py +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences/pull-IMS-24Ltp-3.py +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences/vis.py +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences.egg-info/PKG-INFO-IMS-24Ltp-3 +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences.egg-info/PKG-INFO-TomG-HP-290722 +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences.egg-info/dependency_links.txt +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences.egg-info/requires.txt +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/imsciences.egg-info/top_level.txt +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/pyproject.toml +0 -0
- {imsciences-1.0.9 → imsciences-1.1.2}/setup.cfg +0 -0
|
@@ -0,0 +1,423 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import requests
|
|
3
|
+
import xml.etree.ElementTree as ET
|
|
4
|
+
from datetime import datetime
|
|
5
|
+
import time
|
|
6
|
+
import json
|
|
7
|
+
import os
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class OECDDataPuller:
|
|
12
|
+
"""
|
|
13
|
+
OECD data puller that saves progress and retries until all indicators are fetched.
|
|
14
|
+
Designed to handle API rate limits by saving state between runs.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
INDICATOR_CONFIG = [
|
|
18
|
+
{
|
|
19
|
+
"name": "Business Confidence Index",
|
|
20
|
+
"series": "BCICP",
|
|
21
|
+
"dataset": "SDD.STES,DSD_STES@DF_CLI,",
|
|
22
|
+
"filter": ".....",
|
|
23
|
+
"col_name": "macro_business_confidence_index",
|
|
24
|
+
},
|
|
25
|
+
{
|
|
26
|
+
"name": "Consumer Confidence Index",
|
|
27
|
+
"series": "CCICP",
|
|
28
|
+
"dataset": "SDD.STES,DSD_STES@DF_CLI,",
|
|
29
|
+
"filter": ".....",
|
|
30
|
+
"col_name": "macro_consumer_confidence_index",
|
|
31
|
+
},
|
|
32
|
+
{
|
|
33
|
+
"name": "CPI Total",
|
|
34
|
+
"series": "N.CPI",
|
|
35
|
+
"dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
|
|
36
|
+
"filter": "PA._T.N.GY",
|
|
37
|
+
"col_name": "macro_cpi_total",
|
|
38
|
+
},
|
|
39
|
+
{
|
|
40
|
+
"name": "CPI Housing",
|
|
41
|
+
"series": "N.CPI",
|
|
42
|
+
"dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
|
|
43
|
+
"filter": "PA.CP041T043.N.GY",
|
|
44
|
+
"col_name": "macro_cpi_housing",
|
|
45
|
+
},
|
|
46
|
+
{
|
|
47
|
+
"name": "CPI Food",
|
|
48
|
+
"series": "N.CPI",
|
|
49
|
+
"dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
|
|
50
|
+
"filter": "PA.CP01.N.GY",
|
|
51
|
+
"col_name": "macro_cpi_food",
|
|
52
|
+
},
|
|
53
|
+
{
|
|
54
|
+
"name": "CPI Energy",
|
|
55
|
+
"series": "N.CPI",
|
|
56
|
+
"dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
|
|
57
|
+
"filter": "PA.CP045_0722.N.GY",
|
|
58
|
+
"col_name": "macro_cpi_energy",
|
|
59
|
+
},
|
|
60
|
+
{
|
|
61
|
+
"name": "Unemployment Rate",
|
|
62
|
+
"series": "UNE_LF_M",
|
|
63
|
+
"dataset": "SDD.TPS,DSD_LFS@DF_IALFS_UNE_M,",
|
|
64
|
+
"filter": "._Z.Y._T.Y_GE15.",
|
|
65
|
+
"col_name": "macro_unemployment_rate",
|
|
66
|
+
"special": "SPECIAL_UNE",
|
|
67
|
+
},
|
|
68
|
+
{
|
|
69
|
+
"name": "Real House Prices",
|
|
70
|
+
"series": "RHP",
|
|
71
|
+
"dataset": "ECO.MPD,DSD_AN_HOUSE_PRICES@DF_HOUSE_PRICES,1.0",
|
|
72
|
+
"filter": "",
|
|
73
|
+
"col_name": "macro_real_house_prices",
|
|
74
|
+
},
|
|
75
|
+
{
|
|
76
|
+
"name": "Manufacturing Production",
|
|
77
|
+
"series": "PRVM",
|
|
78
|
+
"dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
|
|
79
|
+
"filter": "IX.C..",
|
|
80
|
+
"col_name": "macro_manufacturing_production_volume",
|
|
81
|
+
},
|
|
82
|
+
{
|
|
83
|
+
"name": "Retail Trade Volume",
|
|
84
|
+
"series": "TOVM",
|
|
85
|
+
"dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
|
|
86
|
+
"filter": "IX...",
|
|
87
|
+
"col_name": "macro_retail_trade_volume",
|
|
88
|
+
},
|
|
89
|
+
{
|
|
90
|
+
"name": "Interbank Rate",
|
|
91
|
+
"series": "IRSTCI",
|
|
92
|
+
"dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
|
|
93
|
+
"filter": "PA...",
|
|
94
|
+
"col_name": "macro_interbank_rate",
|
|
95
|
+
},
|
|
96
|
+
{
|
|
97
|
+
"name": "Long-term Interest Rate",
|
|
98
|
+
"series": "IRLT",
|
|
99
|
+
"dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
|
|
100
|
+
"filter": "PA...",
|
|
101
|
+
"col_name": "macro_long_term_interest_rate",
|
|
102
|
+
},
|
|
103
|
+
{
|
|
104
|
+
"name": "GDP Growth",
|
|
105
|
+
"series": "B1GQ",
|
|
106
|
+
"dataset": "SDD.NAD,DSD_NAMAIN1@DF_QNA,1.1",
|
|
107
|
+
"filter": "._Z....GY.T0102",
|
|
108
|
+
"col_name": "macro_gdp_growth_yoy",
|
|
109
|
+
"special": "SPECIAL_GDP",
|
|
110
|
+
},
|
|
111
|
+
]
|
|
112
|
+
|
|
113
|
+
def __init__(self, country="GBR", start_date="2020-01-01", output_dir=None):
|
|
114
|
+
"""
|
|
115
|
+
Initialize the puller.
|
|
116
|
+
|
|
117
|
+
Args:
|
|
118
|
+
country (str): Country code (e.g., "GBR")
|
|
119
|
+
start_date (str): Start date for data collection
|
|
120
|
+
output_dir (str): Directory to save output files and state.
|
|
121
|
+
Defaults to shared network path if available, else local "oecd_data"
|
|
122
|
+
"""
|
|
123
|
+
self.country = country
|
|
124
|
+
self.start_date = start_date
|
|
125
|
+
|
|
126
|
+
# Determine output directory: try shared path first, fall back to local
|
|
127
|
+
if output_dir is None:
|
|
128
|
+
user_home = os.path.expanduser("~")
|
|
129
|
+
shared_path = Path(user_home) / "im-sciences.com" / "FileShare - MasterDrive" / "Central Database" / "Pull All" / "OECD Database"
|
|
130
|
+
local_path = Path("oecd_data")
|
|
131
|
+
|
|
132
|
+
# Try to use shared path if it exists and is accessible
|
|
133
|
+
if shared_path.exists() and shared_path.is_dir():
|
|
134
|
+
self.output_dir = shared_path
|
|
135
|
+
print(f"Using shared network path: {self.output_dir}")
|
|
136
|
+
else:
|
|
137
|
+
self.output_dir = local_path
|
|
138
|
+
print(f"Shared path not available. Using local directory: {self.output_dir}")
|
|
139
|
+
else:
|
|
140
|
+
self.output_dir = Path(output_dir)
|
|
141
|
+
|
|
142
|
+
self.output_dir.mkdir(parents=True, exist_ok=True)
|
|
143
|
+
|
|
144
|
+
self.state_file = self.output_dir / f"state_{country}.json"
|
|
145
|
+
self.data_file = self.output_dir / f"oecd_data_{country}.csv"
|
|
146
|
+
self.log_file = self.output_dir / f"log_{country}.txt"
|
|
147
|
+
|
|
148
|
+
self.state = self._load_state()
|
|
149
|
+
|
|
150
|
+
def _load_state(self):
|
|
151
|
+
"""Load the current state from file, or initialize a new state."""
|
|
152
|
+
if self.state_file.exists():
|
|
153
|
+
with open(self.state_file, 'r') as f:
|
|
154
|
+
return json.load(f)
|
|
155
|
+
else:
|
|
156
|
+
return {
|
|
157
|
+
"completed_indicators": [],
|
|
158
|
+
"failed_attempts": {},
|
|
159
|
+
"last_run": None,
|
|
160
|
+
"fully_complete": False
|
|
161
|
+
}
|
|
162
|
+
|
|
163
|
+
def _save_state(self):
|
|
164
|
+
"""Save the current state to file."""
|
|
165
|
+
self.state["last_run"] = datetime.now().isoformat()
|
|
166
|
+
with open(self.state_file, 'w') as f:
|
|
167
|
+
json.dump(self.state, f, indent=2)
|
|
168
|
+
|
|
169
|
+
def _log(self, message):
|
|
170
|
+
"""Write a log message to both console and log file."""
|
|
171
|
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
172
|
+
log_message = f"[{timestamp}] {message}"
|
|
173
|
+
print(log_message)
|
|
174
|
+
|
|
175
|
+
with open(self.log_file, 'a', encoding='utf-8') as f:
|
|
176
|
+
f.write(log_message + "\n")
|
|
177
|
+
|
|
178
|
+
@staticmethod
|
|
179
|
+
def parse_quarter(date_str):
|
|
180
|
+
"""Parse a string in 'YYYY-Q#' format into a datetime object."""
|
|
181
|
+
year, quarter = date_str.split("-")
|
|
182
|
+
quarter_number = int(quarter[1])
|
|
183
|
+
month = (quarter_number - 1) * 3 + 1
|
|
184
|
+
return pd.Timestamp(f"{year}-{month:02d}-01")
|
|
185
|
+
|
|
186
|
+
def _build_url(self, series, dataset_id, filter_val, freq, special_flag=None):
|
|
187
|
+
"""Build the appropriate OECD API URL based on indicator type."""
|
|
188
|
+
if special_flag == "SPECIAL_GDP":
|
|
189
|
+
return f"https://sdmx.oecd.org/public/rest/data/OECD.{dataset_id}/{freq}..{self.country}...{series}.{filter_val}?startPeriod=1950-01"
|
|
190
|
+
elif special_flag == "SPECIAL_UNE":
|
|
191
|
+
return f"https://sdmx.oecd.org/public/rest/data/OECD.{dataset_id}/{self.country}.{series}.{filter_val}.{freq}?startPeriod=1950-01"
|
|
192
|
+
else:
|
|
193
|
+
return f"https://sdmx.oecd.org/public/rest/data/OECD.{dataset_id}/{self.country}.{freq}.{series}.{filter_val}?startPeriod=1950-01"
|
|
194
|
+
|
|
195
|
+
def _extract_observations(self, xml_content):
|
|
196
|
+
"""Extract dates and values from OECD API XML response."""
|
|
197
|
+
root = ET.fromstring(xml_content)
|
|
198
|
+
namespaces = {
|
|
199
|
+
"generic": "http://www.sdmx.org/resources/sdmxml/schemas/v2_1/data/generic",
|
|
200
|
+
}
|
|
201
|
+
|
|
202
|
+
dates = []
|
|
203
|
+
values = []
|
|
204
|
+
|
|
205
|
+
for obs in root.findall(".//generic:Obs", namespaces):
|
|
206
|
+
time_period = obs.find(".//generic:ObsDimension", namespaces).get("value")
|
|
207
|
+
value = obs.find(".//generic:ObsValue", namespaces).get("value")
|
|
208
|
+
|
|
209
|
+
if time_period and value:
|
|
210
|
+
dates.append(time_period)
|
|
211
|
+
values.append(float(value))
|
|
212
|
+
|
|
213
|
+
return dates, values
|
|
214
|
+
|
|
215
|
+
def _fetch_indicator_data(self, series, dataset_id, filter_val, col_name, special_flag=None):
|
|
216
|
+
"""
|
|
217
|
+
Attempt to fetch data for a single indicator across different frequencies.
|
|
218
|
+
|
|
219
|
+
Returns:
|
|
220
|
+
tuple: (DataFrame or None, frequency_used, success_flag)
|
|
221
|
+
"""
|
|
222
|
+
for freq in ["M", "Q", "A"]:
|
|
223
|
+
url = self._build_url(series, dataset_id, filter_val, freq, special_flag)
|
|
224
|
+
|
|
225
|
+
try:
|
|
226
|
+
response = requests.get(url, timeout=15)
|
|
227
|
+
|
|
228
|
+
if response.status_code == 429:
|
|
229
|
+
self._log(f"Rate limit hit for {col_name}")
|
|
230
|
+
return None, None, False
|
|
231
|
+
|
|
232
|
+
if response.status_code != 200:
|
|
233
|
+
continue
|
|
234
|
+
|
|
235
|
+
dates, values = self._extract_observations(response.content)
|
|
236
|
+
|
|
237
|
+
if len(dates) == 0:
|
|
238
|
+
continue
|
|
239
|
+
|
|
240
|
+
data = pd.DataFrame({"OBS": dates, col_name: values})
|
|
241
|
+
|
|
242
|
+
if freq == "Q":
|
|
243
|
+
data["OBS"] = data["OBS"].apply(self.parse_quarter)
|
|
244
|
+
else:
|
|
245
|
+
data["OBS"] = data["OBS"].apply(lambda x: datetime.strptime(x, "%Y-%m"))
|
|
246
|
+
|
|
247
|
+
data.sort_values(by="OBS", inplace=True)
|
|
248
|
+
|
|
249
|
+
return data, freq, True
|
|
250
|
+
|
|
251
|
+
except Exception as e:
|
|
252
|
+
self._log(f"Error fetching {col_name}: {str(e)}")
|
|
253
|
+
continue
|
|
254
|
+
|
|
255
|
+
return None, None, False
|
|
256
|
+
|
|
257
|
+
def _load_existing_data(self):
|
|
258
|
+
"""Load existing data from CSV file if it exists."""
|
|
259
|
+
if self.data_file.exists():
|
|
260
|
+
df = pd.read_csv(self.data_file)
|
|
261
|
+
df['OBS'] = pd.to_datetime(df['OBS'])
|
|
262
|
+
return df
|
|
263
|
+
else:
|
|
264
|
+
date_range = pd.date_range(start=self.start_date, end=datetime.today(), freq="D")
|
|
265
|
+
return pd.DataFrame({"OBS": date_range})
|
|
266
|
+
|
|
267
|
+
def _save_data(self, df):
|
|
268
|
+
"""Save DataFrame to CSV file."""
|
|
269
|
+
df.to_csv(self.data_file, index=False)
|
|
270
|
+
|
|
271
|
+
def fetch_pending_indicators(self):
|
|
272
|
+
"""Fetch all indicators to ensure the most up-to-date data."""
|
|
273
|
+
# Reset completed indicators for this fresh run
|
|
274
|
+
self.state["completed_indicators"] = []
|
|
275
|
+
|
|
276
|
+
daily_df = self._load_existing_data()
|
|
277
|
+
|
|
278
|
+
# Always attempt to refresh all indicators
|
|
279
|
+
pending_indicators = self.INDICATOR_CONFIG
|
|
280
|
+
|
|
281
|
+
self._log(f"Starting fetch cycle. Pending: {len(pending_indicators)}/{len(self.INDICATOR_CONFIG)}")
|
|
282
|
+
|
|
283
|
+
for indicator in pending_indicators:
|
|
284
|
+
col_name = indicator["col_name"]
|
|
285
|
+
|
|
286
|
+
self._log(f"Fetching: {indicator['name']} ({col_name})")
|
|
287
|
+
|
|
288
|
+
data, freq_used, success = self._fetch_indicator_data(
|
|
289
|
+
indicator["series"],
|
|
290
|
+
indicator["dataset"],
|
|
291
|
+
indicator["filter"],
|
|
292
|
+
col_name,
|
|
293
|
+
indicator.get("special")
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
if success:
|
|
297
|
+
self._log(f" [OK] Success! {len(data)} observations ({freq_used})")
|
|
298
|
+
|
|
299
|
+
daily_df = pd.merge_asof(
|
|
300
|
+
daily_df,
|
|
301
|
+
data[["OBS", col_name]],
|
|
302
|
+
on="OBS",
|
|
303
|
+
direction="backward",
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
self.state["completed_indicators"].append(col_name)
|
|
307
|
+
|
|
308
|
+
if col_name in self.state["failed_attempts"]:
|
|
309
|
+
del self.state["failed_attempts"][col_name]
|
|
310
|
+
|
|
311
|
+
self._save_data(daily_df)
|
|
312
|
+
self._save_state()
|
|
313
|
+
|
|
314
|
+
time.sleep(2)
|
|
315
|
+
|
|
316
|
+
else:
|
|
317
|
+
self._log(f" [FAIL] Failed to fetch {col_name}")
|
|
318
|
+
|
|
319
|
+
if col_name not in self.state["failed_attempts"]:
|
|
320
|
+
self.state["failed_attempts"][col_name] = 0
|
|
321
|
+
self.state["failed_attempts"][col_name] += 1
|
|
322
|
+
|
|
323
|
+
self._save_state()
|
|
324
|
+
|
|
325
|
+
remaining = len(self.INDICATOR_CONFIG) - len(self.state["completed_indicators"])
|
|
326
|
+
|
|
327
|
+
if remaining == 0:
|
|
328
|
+
self._log("All indicators successfully fetched!")
|
|
329
|
+
else:
|
|
330
|
+
self._log(f"Fetch cycle complete. {remaining} indicators still have failures.")
|
|
331
|
+
|
|
332
|
+
return True # Always return True to indicate the refresh cycle completed
|
|
333
|
+
|
|
334
|
+
def run_until_complete(self, max_iterations=None, sleep_seconds=3600):
|
|
335
|
+
"""
|
|
336
|
+
Run the fetcher to refresh all indicators with up-to-date data.
|
|
337
|
+
|
|
338
|
+
Args:
|
|
339
|
+
max_iterations (int): Maximum number of cycles to run (None = unlimited)
|
|
340
|
+
sleep_seconds (int): Seconds to wait between cycles (default: 3600 = 1 hour)
|
|
341
|
+
"""
|
|
342
|
+
iteration = 0
|
|
343
|
+
|
|
344
|
+
self._log("=" * 80)
|
|
345
|
+
self._log(f"Starting OECD data puller for {self.country}")
|
|
346
|
+
self._log(f"Output directory: {self.output_dir.absolute()}")
|
|
347
|
+
self._log("=" * 80)
|
|
348
|
+
|
|
349
|
+
while True:
|
|
350
|
+
iteration += 1
|
|
351
|
+
|
|
352
|
+
if max_iterations and iteration > max_iterations:
|
|
353
|
+
self._log(f"Reached maximum iterations ({max_iterations}). Stopping.")
|
|
354
|
+
break
|
|
355
|
+
|
|
356
|
+
self._log(f"{'='*80}")
|
|
357
|
+
self._log(f"ITERATION {iteration}")
|
|
358
|
+
self._log(f"{'='*80}")
|
|
359
|
+
|
|
360
|
+
self.fetch_pending_indicators()
|
|
361
|
+
|
|
362
|
+
# Check if all indicators have data
|
|
363
|
+
if len(self.state["completed_indicators"]) == len(self.INDICATOR_CONFIG):
|
|
364
|
+
self._log("=" * 80)
|
|
365
|
+
self._log("SUCCESS! All indicators have been fetched.")
|
|
366
|
+
self._log(f"Data saved to: {self.data_file.absolute()}")
|
|
367
|
+
self._log("=" * 80)
|
|
368
|
+
break
|
|
369
|
+
|
|
370
|
+
self._log(f"Waiting {sleep_seconds} seconds before next attempt...")
|
|
371
|
+
self._log(f"Next run scheduled for: {(datetime.now() + pd.Timedelta(seconds=sleep_seconds)).strftime('%Y-%m-%d %H:%M:%S')}")
|
|
372
|
+
|
|
373
|
+
time.sleep(sleep_seconds)
|
|
374
|
+
|
|
375
|
+
def get_status(self):
|
|
376
|
+
"""Get current status of data collection."""
|
|
377
|
+
total = len(self.INDICATOR_CONFIG)
|
|
378
|
+
completed = len(self.state["completed_indicators"])
|
|
379
|
+
|
|
380
|
+
status = {
|
|
381
|
+
"country": self.country,
|
|
382
|
+
"total_indicators": total,
|
|
383
|
+
"completed_indicators": completed,
|
|
384
|
+
"remaining_indicators": total - completed,
|
|
385
|
+
"completion_percentage": (completed / total) * 100,
|
|
386
|
+
"fully_complete": self.state["fully_complete"],
|
|
387
|
+
"last_run": self.state["last_run"],
|
|
388
|
+
"failed_attempts": self.state["failed_attempts"],
|
|
389
|
+
"completed_list": self.state["completed_indicators"]
|
|
390
|
+
}
|
|
391
|
+
|
|
392
|
+
return status
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
def main():
|
|
396
|
+
"""Main execution function with example usage."""
|
|
397
|
+
|
|
398
|
+
# Example 1: Run until complete with 1-hour intervals
|
|
399
|
+
puller = OECDDataPuller(
|
|
400
|
+
country="GBR",
|
|
401
|
+
start_date="2020-01-01",
|
|
402
|
+
output_dir="oecd_data"
|
|
403
|
+
)
|
|
404
|
+
|
|
405
|
+
# Check current status
|
|
406
|
+
status = puller.get_status()
|
|
407
|
+
print(f"Current progress: {status['completed_indicators']}/{status['total_indicators']} "
|
|
408
|
+
f"({status['completion_percentage']:.1f}%)")
|
|
409
|
+
|
|
410
|
+
# Run until complete (will retry every hour)
|
|
411
|
+
puller.run_until_complete(sleep_seconds=3600)
|
|
412
|
+
|
|
413
|
+
# Example 2: Run a single fetch cycle (useful for manual/scheduled execution)
|
|
414
|
+
# puller = OECDDataPuller(country="GBR")
|
|
415
|
+
# puller.fetch_pending_indicators()
|
|
416
|
+
|
|
417
|
+
# Example 3: Run with a custom sleep interval (e.g., 30 minutes)
|
|
418
|
+
# puller = OECDDataPuller(country="USA")
|
|
419
|
+
# puller.run_until_complete(sleep_seconds=1800)
|
|
420
|
+
|
|
421
|
+
|
|
422
|
+
if __name__ == "__main__":
|
|
423
|
+
main()
|