imsciences 1.0.5__tar.gz → 1.0.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of imsciences might be problematic. Click here for more details.
- {imsciences-1.0.5 → imsciences-1.0.6}/PKG-INFO +1 -1
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences/pull.py +60 -30
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences.egg-info/PKG-INFO +1 -1
- {imsciences-1.0.5 → imsciences-1.0.6}/setup.py +1 -1
- {imsciences-1.0.5 → imsciences-1.0.6}/LICENSE.txt +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/README.md +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences/__init__.py +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences/geo.py +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences/mmm.py +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences/vis.py +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences.egg-info/PKG-INFO-TomG-HP-290722 +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences.egg-info/SOURCES.txt +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences.egg-info/dependency_links.txt +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences.egg-info/requires.txt +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/imsciences.egg-info/top_level.txt +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/pyproject.toml +0 -0
- {imsciences-1.0.5 → imsciences-1.0.6}/setup.cfg +0 -0
|
@@ -2397,13 +2397,13 @@ class datapull:
|
|
|
2397
2397
|
cdid_list (list, optional): A list of additional CDIDs to fetch (e.g., ['JP9Z', 'UKPOP']). Defaults to None.
|
|
2398
2398
|
week_start_day (str, optional): The day the week starts on ('mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'). Defaults to 'mon'.
|
|
2399
2399
|
sector (str or list, optional): The sector(s) for which the standard CDIDs are fetched
|
|
2400
|
-
|
|
2400
|
+
(e.g., 'fast_food', ['fast_food', 'retail']). Defaults to None (only default CDIDs).
|
|
2401
2401
|
|
|
2402
2402
|
Returns
|
|
2403
2403
|
-------
|
|
2404
2404
|
pd.DataFrame: A DataFrame with weekly frequency, containing an 'OBS' column (week commencing date)
|
|
2405
|
-
|
|
2406
|
-
|
|
2405
|
+
and all series as renamed columns (e.g., 'macro_retail_sales_uk').
|
|
2406
|
+
Returns an empty DataFrame if no data is fetched or processed.
|
|
2407
2407
|
|
|
2408
2408
|
"""
|
|
2409
2409
|
# Define CDIDs for sectors and defaults
|
|
@@ -2436,16 +2436,11 @@ class datapull:
|
|
|
2436
2436
|
sector_cdids_map.get(sec, []),
|
|
2437
2437
|
) # Use extend to add items from the list
|
|
2438
2438
|
|
|
2439
|
-
standard_cdids = list(
|
|
2440
|
-
set(default_cdids + sector_specific_cdids),
|
|
2441
|
-
) # Combine default and selected sector CDIDs, ensure uniqueness
|
|
2442
|
-
|
|
2443
2439
|
# Combine standard CDIDs and any additional user-provided CDIDs
|
|
2440
|
+
standard_cdids = list(dict.fromkeys(default_cdids + sector_specific_cdids))
|
|
2444
2441
|
if cdid_list is None:
|
|
2445
2442
|
cdid_list = []
|
|
2446
|
-
final_cdid_list = list(
|
|
2447
|
-
set(standard_cdids + cdid_list),
|
|
2448
|
-
) # Ensure uniqueness in the final list
|
|
2443
|
+
final_cdid_list = list(dict.fromkeys(standard_cdids + cdid_list))
|
|
2449
2444
|
|
|
2450
2445
|
base_search_url = (
|
|
2451
2446
|
"https://api.beta.ons.gov.uk/v1/search?content_type=timeseries&cdids="
|
|
@@ -2670,26 +2665,59 @@ class datapull:
|
|
|
2670
2665
|
)
|
|
2671
2666
|
|
|
2672
2667
|
def clean_column_name(name):
|
|
2673
|
-
# Remove content within parentheses
|
|
2668
|
+
# Remove content within parentheses
|
|
2674
2669
|
name = re.sub(r"\(.*?\)", "", name)
|
|
2675
|
-
|
|
2676
|
-
|
|
2677
|
-
|
|
2678
|
-
|
|
2679
|
-
|
|
2680
|
-
|
|
2670
|
+
|
|
2671
|
+
# Special handling for ANY CPI items (not just CPI INDEX)
|
|
2672
|
+
if "CPI" in name.upper():
|
|
2673
|
+
# Extract the description part after the colon for CPI items
|
|
2674
|
+
if ":" in name:
|
|
2675
|
+
parts = name.split(":")
|
|
2676
|
+
if len(parts) >= 2:
|
|
2677
|
+
# Take the description part (usually the second part)
|
|
2678
|
+
description = parts[1].strip()
|
|
2679
|
+
# Remove any remaining colons and everything after
|
|
2680
|
+
description = description.split(":")[0].strip()
|
|
2681
|
+
name = f"CPI {description}"
|
|
2682
|
+
|
|
2683
|
+
# Remove numbers and dots for ALL CPI items (like 00, 06.2.2, 12.5.3/5)
|
|
2684
|
+
name = re.sub(r"\d+\.?\d*/?\.?\d*", "", name)
|
|
2685
|
+
|
|
2686
|
+
else:
|
|
2687
|
+
# For non-CPI items, take only the part before the first colon
|
|
2688
|
+
name = re.split(r":", name)[0]
|
|
2689
|
+
# Remove all digits for non-CPI items too
|
|
2690
|
+
name = re.sub(r"\d+", "", name)
|
|
2691
|
+
|
|
2692
|
+
# Remove year references like "2015=100"
|
|
2693
|
+
name = re.sub(r"\d{4}=\d+", "", name)
|
|
2694
|
+
|
|
2695
|
+
# Remove specific words case-insensitively
|
|
2696
|
+
name = re.sub(r"\b(annual|rate|index|seasonally|adjusted|sa|cvm)\b", "", name, flags=re.IGNORECASE)
|
|
2697
|
+
|
|
2698
|
+
# Remove percentage symbols and "%"
|
|
2699
|
+
name = re.sub(r"%", "percent", name)
|
|
2700
|
+
|
|
2681
2701
|
# Remove non-alphanumeric characters (except underscore and space)
|
|
2682
2702
|
name = re.sub(r"[^\w\s]", "", name)
|
|
2703
|
+
|
|
2683
2704
|
# Replace spaces with underscores
|
|
2684
|
-
name = name.strip()
|
|
2685
|
-
|
|
2705
|
+
name = name.strip().replace(" ", "_")
|
|
2706
|
+
|
|
2686
2707
|
# Replace multiple underscores with a single one
|
|
2687
2708
|
name = re.sub(r"_+", "_", name)
|
|
2688
|
-
|
|
2689
|
-
|
|
2690
|
-
|
|
2709
|
+
|
|
2710
|
+
# Remove leading/trailing underscores
|
|
2711
|
+
name = name.strip("_")
|
|
2712
|
+
|
|
2713
|
+
# Truncate very long names (optional)
|
|
2714
|
+
if len(name) > 50:
|
|
2715
|
+
words = name.split("_")
|
|
2716
|
+
# Keep first few meaningful words
|
|
2717
|
+
name = "_".join(words[:4])
|
|
2718
|
+
|
|
2691
2719
|
return f"macro_{name.lower()}_uk"
|
|
2692
|
-
|
|
2720
|
+
|
|
2693
2721
|
# Apply cleaning function to relevant columns
|
|
2694
2722
|
weekly_df.columns = [
|
|
2695
2723
|
clean_column_name(col) if col != "week_commencing" else col
|
|
@@ -2704,14 +2732,16 @@ class datapull:
|
|
|
2704
2732
|
# Consider if 0 is the appropriate fill value for your use case
|
|
2705
2733
|
# weekly_df = weekly_df.fillna(0)
|
|
2706
2734
|
|
|
2707
|
-
#
|
|
2708
|
-
|
|
2709
|
-
|
|
2710
|
-
|
|
2711
|
-
|
|
2735
|
+
# Get only the data columns (excluding OBS)
|
|
2736
|
+
data_columns = [col for col in weekly_df.columns if col != "OBS"]
|
|
2737
|
+
|
|
2738
|
+
new_columns = ["OBS"]
|
|
2739
|
+
for i, col in enumerate(data_columns):
|
|
2740
|
+
if i < len(final_cdid_list):
|
|
2741
|
+
new_columns.append(f"{col}_{final_cdid_list[i]}")
|
|
2712
2742
|
else:
|
|
2713
|
-
new_columns.append(
|
|
2714
|
-
|
|
2743
|
+
new_columns.append(col) # Keep original if no matching CDID
|
|
2744
|
+
|
|
2715
2745
|
# Apply the new column names to the DataFrame
|
|
2716
2746
|
weekly_df.columns = new_columns
|
|
2717
2747
|
|
|
@@ -21,7 +21,7 @@ def get_version():
|
|
|
21
21
|
for line in f:
|
|
22
22
|
if line.startswith("__version__"):
|
|
23
23
|
return line.split("=")[1].strip().strip('"').strip("'")
|
|
24
|
-
return "1.0.
|
|
24
|
+
return "1.0.5" # Start from 1.0.0 instead of 0.0.0
|
|
25
25
|
|
|
26
26
|
|
|
27
27
|
def increment_version():
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|