imsciences 1.0.2__tar.gz → 1.1.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: imsciences
3
- Version: 1.0.2
3
+ Version: 1.1.2
4
4
  Summary: IMS Data Processing Package
5
5
  Author: IMS
6
6
  Author-email: cam@im-sciences.com
@@ -26,6 +26,15 @@ Requires-Dist: google-analytics-data
26
26
  Requires-Dist: geopandas
27
27
  Requires-Dist: geopy
28
28
  Requires-Dist: workalendar
29
+ Dynamic: author
30
+ Dynamic: author-email
31
+ Dynamic: classifier
32
+ Dynamic: description
33
+ Dynamic: description-content-type
34
+ Dynamic: keywords
35
+ Dynamic: license-file
36
+ Dynamic: requires-dist
37
+ Dynamic: summary
29
38
 
30
39
  # IMS Package Documentation
31
40
 
@@ -1,3 +1,5 @@
1
+ __version__ = "1.1.2"
2
+
1
3
  from .geo import geoprocessing
2
4
  from .mmm import dataprocessing
3
5
  from .pull import datapull
@@ -0,0 +1,423 @@
1
+ import pandas as pd
2
+ import requests
3
+ import xml.etree.ElementTree as ET
4
+ from datetime import datetime
5
+ import time
6
+ import json
7
+ import os
8
+ from pathlib import Path
9
+
10
+
11
+ class OECDDataPuller:
12
+ """
13
+ OECD data puller that saves progress and retries until all indicators are fetched.
14
+ Designed to handle API rate limits by saving state between runs.
15
+ """
16
+
17
+ INDICATOR_CONFIG = [
18
+ {
19
+ "name": "Business Confidence Index",
20
+ "series": "BCICP",
21
+ "dataset": "SDD.STES,DSD_STES@DF_CLI,",
22
+ "filter": ".....",
23
+ "col_name": "macro_business_confidence_index",
24
+ },
25
+ {
26
+ "name": "Consumer Confidence Index",
27
+ "series": "CCICP",
28
+ "dataset": "SDD.STES,DSD_STES@DF_CLI,",
29
+ "filter": ".....",
30
+ "col_name": "macro_consumer_confidence_index",
31
+ },
32
+ {
33
+ "name": "CPI Total",
34
+ "series": "N.CPI",
35
+ "dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
36
+ "filter": "PA._T.N.GY",
37
+ "col_name": "macro_cpi_total",
38
+ },
39
+ {
40
+ "name": "CPI Housing",
41
+ "series": "N.CPI",
42
+ "dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
43
+ "filter": "PA.CP041T043.N.GY",
44
+ "col_name": "macro_cpi_housing",
45
+ },
46
+ {
47
+ "name": "CPI Food",
48
+ "series": "N.CPI",
49
+ "dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
50
+ "filter": "PA.CP01.N.GY",
51
+ "col_name": "macro_cpi_food",
52
+ },
53
+ {
54
+ "name": "CPI Energy",
55
+ "series": "N.CPI",
56
+ "dataset": "SDD.TPS,DSD_PRICES@DF_PRICES_ALL,",
57
+ "filter": "PA.CP045_0722.N.GY",
58
+ "col_name": "macro_cpi_energy",
59
+ },
60
+ {
61
+ "name": "Unemployment Rate",
62
+ "series": "UNE_LF_M",
63
+ "dataset": "SDD.TPS,DSD_LFS@DF_IALFS_UNE_M,",
64
+ "filter": "._Z.Y._T.Y_GE15.",
65
+ "col_name": "macro_unemployment_rate",
66
+ "special": "SPECIAL_UNE",
67
+ },
68
+ {
69
+ "name": "Real House Prices",
70
+ "series": "RHP",
71
+ "dataset": "ECO.MPD,DSD_AN_HOUSE_PRICES@DF_HOUSE_PRICES,1.0",
72
+ "filter": "",
73
+ "col_name": "macro_real_house_prices",
74
+ },
75
+ {
76
+ "name": "Manufacturing Production",
77
+ "series": "PRVM",
78
+ "dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
79
+ "filter": "IX.C..",
80
+ "col_name": "macro_manufacturing_production_volume",
81
+ },
82
+ {
83
+ "name": "Retail Trade Volume",
84
+ "series": "TOVM",
85
+ "dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
86
+ "filter": "IX...",
87
+ "col_name": "macro_retail_trade_volume",
88
+ },
89
+ {
90
+ "name": "Interbank Rate",
91
+ "series": "IRSTCI",
92
+ "dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
93
+ "filter": "PA...",
94
+ "col_name": "macro_interbank_rate",
95
+ },
96
+ {
97
+ "name": "Long-term Interest Rate",
98
+ "series": "IRLT",
99
+ "dataset": "SDD.STES,DSD_KEI@DF_KEI,4.0",
100
+ "filter": "PA...",
101
+ "col_name": "macro_long_term_interest_rate",
102
+ },
103
+ {
104
+ "name": "GDP Growth",
105
+ "series": "B1GQ",
106
+ "dataset": "SDD.NAD,DSD_NAMAIN1@DF_QNA,1.1",
107
+ "filter": "._Z....GY.T0102",
108
+ "col_name": "macro_gdp_growth_yoy",
109
+ "special": "SPECIAL_GDP",
110
+ },
111
+ ]
112
+
113
+ def __init__(self, country="GBR", start_date="2020-01-01", output_dir=None):
114
+ """
115
+ Initialize the puller.
116
+
117
+ Args:
118
+ country (str): Country code (e.g., "GBR")
119
+ start_date (str): Start date for data collection
120
+ output_dir (str): Directory to save output files and state.
121
+ Defaults to shared network path if available, else local "oecd_data"
122
+ """
123
+ self.country = country
124
+ self.start_date = start_date
125
+
126
+ # Determine output directory: try shared path first, fall back to local
127
+ if output_dir is None:
128
+ user_home = os.path.expanduser("~")
129
+ shared_path = Path(user_home) / "im-sciences.com" / "FileShare - MasterDrive" / "Central Database" / "Pull All" / "OECD Database"
130
+ local_path = Path("oecd_data")
131
+
132
+ # Try to use shared path if it exists and is accessible
133
+ if shared_path.exists() and shared_path.is_dir():
134
+ self.output_dir = shared_path
135
+ print(f"Using shared network path: {self.output_dir}")
136
+ else:
137
+ self.output_dir = local_path
138
+ print(f"Shared path not available. Using local directory: {self.output_dir}")
139
+ else:
140
+ self.output_dir = Path(output_dir)
141
+
142
+ self.output_dir.mkdir(parents=True, exist_ok=True)
143
+
144
+ self.state_file = self.output_dir / f"state_{country}.json"
145
+ self.data_file = self.output_dir / f"oecd_data_{country}.csv"
146
+ self.log_file = self.output_dir / f"log_{country}.txt"
147
+
148
+ self.state = self._load_state()
149
+
150
+ def _load_state(self):
151
+ """Load the current state from file, or initialize a new state."""
152
+ if self.state_file.exists():
153
+ with open(self.state_file, 'r') as f:
154
+ return json.load(f)
155
+ else:
156
+ return {
157
+ "completed_indicators": [],
158
+ "failed_attempts": {},
159
+ "last_run": None,
160
+ "fully_complete": False
161
+ }
162
+
163
+ def _save_state(self):
164
+ """Save the current state to file."""
165
+ self.state["last_run"] = datetime.now().isoformat()
166
+ with open(self.state_file, 'w') as f:
167
+ json.dump(self.state, f, indent=2)
168
+
169
+ def _log(self, message):
170
+ """Write a log message to both console and log file."""
171
+ timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
172
+ log_message = f"[{timestamp}] {message}"
173
+ print(log_message)
174
+
175
+ with open(self.log_file, 'a', encoding='utf-8') as f:
176
+ f.write(log_message + "\n")
177
+
178
+ @staticmethod
179
+ def parse_quarter(date_str):
180
+ """Parse a string in 'YYYY-Q#' format into a datetime object."""
181
+ year, quarter = date_str.split("-")
182
+ quarter_number = int(quarter[1])
183
+ month = (quarter_number - 1) * 3 + 1
184
+ return pd.Timestamp(f"{year}-{month:02d}-01")
185
+
186
+ def _build_url(self, series, dataset_id, filter_val, freq, special_flag=None):
187
+ """Build the appropriate OECD API URL based on indicator type."""
188
+ if special_flag == "SPECIAL_GDP":
189
+ return f"https://sdmx.oecd.org/public/rest/data/OECD.{dataset_id}/{freq}..{self.country}...{series}.{filter_val}?startPeriod=1950-01"
190
+ elif special_flag == "SPECIAL_UNE":
191
+ return f"https://sdmx.oecd.org/public/rest/data/OECD.{dataset_id}/{self.country}.{series}.{filter_val}.{freq}?startPeriod=1950-01"
192
+ else:
193
+ return f"https://sdmx.oecd.org/public/rest/data/OECD.{dataset_id}/{self.country}.{freq}.{series}.{filter_val}?startPeriod=1950-01"
194
+
195
+ def _extract_observations(self, xml_content):
196
+ """Extract dates and values from OECD API XML response."""
197
+ root = ET.fromstring(xml_content)
198
+ namespaces = {
199
+ "generic": "http://www.sdmx.org/resources/sdmxml/schemas/v2_1/data/generic",
200
+ }
201
+
202
+ dates = []
203
+ values = []
204
+
205
+ for obs in root.findall(".//generic:Obs", namespaces):
206
+ time_period = obs.find(".//generic:ObsDimension", namespaces).get("value")
207
+ value = obs.find(".//generic:ObsValue", namespaces).get("value")
208
+
209
+ if time_period and value:
210
+ dates.append(time_period)
211
+ values.append(float(value))
212
+
213
+ return dates, values
214
+
215
+ def _fetch_indicator_data(self, series, dataset_id, filter_val, col_name, special_flag=None):
216
+ """
217
+ Attempt to fetch data for a single indicator across different frequencies.
218
+
219
+ Returns:
220
+ tuple: (DataFrame or None, frequency_used, success_flag)
221
+ """
222
+ for freq in ["M", "Q", "A"]:
223
+ url = self._build_url(series, dataset_id, filter_val, freq, special_flag)
224
+
225
+ try:
226
+ response = requests.get(url, timeout=15)
227
+
228
+ if response.status_code == 429:
229
+ self._log(f"Rate limit hit for {col_name}")
230
+ return None, None, False
231
+
232
+ if response.status_code != 200:
233
+ continue
234
+
235
+ dates, values = self._extract_observations(response.content)
236
+
237
+ if len(dates) == 0:
238
+ continue
239
+
240
+ data = pd.DataFrame({"OBS": dates, col_name: values})
241
+
242
+ if freq == "Q":
243
+ data["OBS"] = data["OBS"].apply(self.parse_quarter)
244
+ else:
245
+ data["OBS"] = data["OBS"].apply(lambda x: datetime.strptime(x, "%Y-%m"))
246
+
247
+ data.sort_values(by="OBS", inplace=True)
248
+
249
+ return data, freq, True
250
+
251
+ except Exception as e:
252
+ self._log(f"Error fetching {col_name}: {str(e)}")
253
+ continue
254
+
255
+ return None, None, False
256
+
257
+ def _load_existing_data(self):
258
+ """Load existing data from CSV file if it exists."""
259
+ if self.data_file.exists():
260
+ df = pd.read_csv(self.data_file)
261
+ df['OBS'] = pd.to_datetime(df['OBS'])
262
+ return df
263
+ else:
264
+ date_range = pd.date_range(start=self.start_date, end=datetime.today(), freq="D")
265
+ return pd.DataFrame({"OBS": date_range})
266
+
267
+ def _save_data(self, df):
268
+ """Save DataFrame to CSV file."""
269
+ df.to_csv(self.data_file, index=False)
270
+
271
+ def fetch_pending_indicators(self):
272
+ """Fetch all indicators to ensure the most up-to-date data."""
273
+ # Reset completed indicators for this fresh run
274
+ self.state["completed_indicators"] = []
275
+
276
+ daily_df = self._load_existing_data()
277
+
278
+ # Always attempt to refresh all indicators
279
+ pending_indicators = self.INDICATOR_CONFIG
280
+
281
+ self._log(f"Starting fetch cycle. Pending: {len(pending_indicators)}/{len(self.INDICATOR_CONFIG)}")
282
+
283
+ for indicator in pending_indicators:
284
+ col_name = indicator["col_name"]
285
+
286
+ self._log(f"Fetching: {indicator['name']} ({col_name})")
287
+
288
+ data, freq_used, success = self._fetch_indicator_data(
289
+ indicator["series"],
290
+ indicator["dataset"],
291
+ indicator["filter"],
292
+ col_name,
293
+ indicator.get("special")
294
+ )
295
+
296
+ if success:
297
+ self._log(f" [OK] Success! {len(data)} observations ({freq_used})")
298
+
299
+ daily_df = pd.merge_asof(
300
+ daily_df,
301
+ data[["OBS", col_name]],
302
+ on="OBS",
303
+ direction="backward",
304
+ )
305
+
306
+ self.state["completed_indicators"].append(col_name)
307
+
308
+ if col_name in self.state["failed_attempts"]:
309
+ del self.state["failed_attempts"][col_name]
310
+
311
+ self._save_data(daily_df)
312
+ self._save_state()
313
+
314
+ time.sleep(2)
315
+
316
+ else:
317
+ self._log(f" [FAIL] Failed to fetch {col_name}")
318
+
319
+ if col_name not in self.state["failed_attempts"]:
320
+ self.state["failed_attempts"][col_name] = 0
321
+ self.state["failed_attempts"][col_name] += 1
322
+
323
+ self._save_state()
324
+
325
+ remaining = len(self.INDICATOR_CONFIG) - len(self.state["completed_indicators"])
326
+
327
+ if remaining == 0:
328
+ self._log("All indicators successfully fetched!")
329
+ else:
330
+ self._log(f"Fetch cycle complete. {remaining} indicators still have failures.")
331
+
332
+ return True # Always return True to indicate the refresh cycle completed
333
+
334
+ def run_until_complete(self, max_iterations=None, sleep_seconds=3600):
335
+ """
336
+ Run the fetcher to refresh all indicators with up-to-date data.
337
+
338
+ Args:
339
+ max_iterations (int): Maximum number of cycles to run (None = unlimited)
340
+ sleep_seconds (int): Seconds to wait between cycles (default: 3600 = 1 hour)
341
+ """
342
+ iteration = 0
343
+
344
+ self._log("=" * 80)
345
+ self._log(f"Starting OECD data puller for {self.country}")
346
+ self._log(f"Output directory: {self.output_dir.absolute()}")
347
+ self._log("=" * 80)
348
+
349
+ while True:
350
+ iteration += 1
351
+
352
+ if max_iterations and iteration > max_iterations:
353
+ self._log(f"Reached maximum iterations ({max_iterations}). Stopping.")
354
+ break
355
+
356
+ self._log(f"{'='*80}")
357
+ self._log(f"ITERATION {iteration}")
358
+ self._log(f"{'='*80}")
359
+
360
+ self.fetch_pending_indicators()
361
+
362
+ # Check if all indicators have data
363
+ if len(self.state["completed_indicators"]) == len(self.INDICATOR_CONFIG):
364
+ self._log("=" * 80)
365
+ self._log("SUCCESS! All indicators have been fetched.")
366
+ self._log(f"Data saved to: {self.data_file.absolute()}")
367
+ self._log("=" * 80)
368
+ break
369
+
370
+ self._log(f"Waiting {sleep_seconds} seconds before next attempt...")
371
+ self._log(f"Next run scheduled for: {(datetime.now() + pd.Timedelta(seconds=sleep_seconds)).strftime('%Y-%m-%d %H:%M:%S')}")
372
+
373
+ time.sleep(sleep_seconds)
374
+
375
+ def get_status(self):
376
+ """Get current status of data collection."""
377
+ total = len(self.INDICATOR_CONFIG)
378
+ completed = len(self.state["completed_indicators"])
379
+
380
+ status = {
381
+ "country": self.country,
382
+ "total_indicators": total,
383
+ "completed_indicators": completed,
384
+ "remaining_indicators": total - completed,
385
+ "completion_percentage": (completed / total) * 100,
386
+ "fully_complete": self.state["fully_complete"],
387
+ "last_run": self.state["last_run"],
388
+ "failed_attempts": self.state["failed_attempts"],
389
+ "completed_list": self.state["completed_indicators"]
390
+ }
391
+
392
+ return status
393
+
394
+
395
+ def main():
396
+ """Main execution function with example usage."""
397
+
398
+ # Example 1: Run until complete with 1-hour intervals
399
+ puller = OECDDataPuller(
400
+ country="GBR",
401
+ start_date="2020-01-01",
402
+ output_dir="oecd_data"
403
+ )
404
+
405
+ # Check current status
406
+ status = puller.get_status()
407
+ print(f"Current progress: {status['completed_indicators']}/{status['total_indicators']} "
408
+ f"({status['completion_percentage']:.1f}%)")
409
+
410
+ # Run until complete (will retry every hour)
411
+ puller.run_until_complete(sleep_seconds=3600)
412
+
413
+ # Example 2: Run a single fetch cycle (useful for manual/scheduled execution)
414
+ # puller = OECDDataPuller(country="GBR")
415
+ # puller.fetch_pending_indicators()
416
+
417
+ # Example 3: Run with a custom sleep interval (e.g., 30 minutes)
418
+ # puller = OECDDataPuller(country="USA")
419
+ # puller.run_until_complete(sleep_seconds=1800)
420
+
421
+
422
+ if __name__ == "__main__":
423
+ main()
@@ -2397,13 +2397,13 @@ class datapull:
2397
2397
  cdid_list (list, optional): A list of additional CDIDs to fetch (e.g., ['JP9Z', 'UKPOP']). Defaults to None.
2398
2398
  week_start_day (str, optional): The day the week starts on ('mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'). Defaults to 'mon'.
2399
2399
  sector (str or list, optional): The sector(s) for which the standard CDIDs are fetched
2400
- (e.g., 'fast_food', ['fast_food', 'retail']). Defaults to None (only default CDIDs).
2400
+ (e.g., 'fast_food', ['fast_food', 'retail']). Defaults to None (only default CDIDs).
2401
2401
 
2402
2402
  Returns
2403
2403
  -------
2404
2404
  pd.DataFrame: A DataFrame with weekly frequency, containing an 'OBS' column (week commencing date)
2405
- and all series as renamed columns (e.g., 'macro_retail_sales_uk').
2406
- Returns an empty DataFrame if no data is fetched or processed.
2405
+ and all series as renamed columns (e.g., 'macro_retail_sales_uk').
2406
+ Returns an empty DataFrame if no data is fetched or processed.
2407
2407
 
2408
2408
  """
2409
2409
  # Define CDIDs for sectors and defaults
@@ -2436,16 +2436,11 @@ class datapull:
2436
2436
  sector_cdids_map.get(sec, []),
2437
2437
  ) # Use extend to add items from the list
2438
2438
 
2439
- standard_cdids = list(
2440
- set(default_cdids + sector_specific_cdids),
2441
- ) # Combine default and selected sector CDIDs, ensure uniqueness
2442
-
2443
2439
  # Combine standard CDIDs and any additional user-provided CDIDs
2440
+ standard_cdids = list(dict.fromkeys(default_cdids + sector_specific_cdids))
2444
2441
  if cdid_list is None:
2445
2442
  cdid_list = []
2446
- final_cdid_list = list(
2447
- set(standard_cdids + cdid_list),
2448
- ) # Ensure uniqueness in the final list
2443
+ final_cdid_list = list(dict.fromkeys(standard_cdids + cdid_list))
2449
2444
 
2450
2445
  base_search_url = (
2451
2446
  "https://api.beta.ons.gov.uk/v1/search?content_type=timeseries&cdids="
@@ -2670,26 +2665,59 @@ class datapull:
2670
2665
  )
2671
2666
 
2672
2667
  def clean_column_name(name):
2673
- # Remove content within parentheses (e.g., CPI INDEX 00: ALL ITEMS 2015=100)
2668
+ # Remove content within parentheses
2674
2669
  name = re.sub(r"\(.*?\)", "", name)
2675
- # Take only the part before the first colon if present
2676
- name = re.split(r":", name)[0]
2677
- # Remove digits
2678
- # name = re.sub(r"\d+", "", name) # Reconsider removing all digits, might be needed for some series
2679
- # Remove specific words like 'annual', 'rate' case-insensitively
2680
- name = re.sub(r"\b(annual|rate)\b", "", name, flags=re.IGNORECASE)
2670
+
2671
+ # Special handling for ANY CPI items (not just CPI INDEX)
2672
+ if "CPI" in name.upper():
2673
+ # Extract the description part after the colon for CPI items
2674
+ if ":" in name:
2675
+ parts = name.split(":")
2676
+ if len(parts) >= 2:
2677
+ # Take the description part (usually the second part)
2678
+ description = parts[1].strip()
2679
+ # Remove any remaining colons and everything after
2680
+ description = description.split(":")[0].strip()
2681
+ name = f"CPI {description}"
2682
+
2683
+ # Remove numbers and dots for ALL CPI items (like 00, 06.2.2, 12.5.3/5)
2684
+ name = re.sub(r"\d+\.?\d*/?\.?\d*", "", name)
2685
+
2686
+ else:
2687
+ # For non-CPI items, take only the part before the first colon
2688
+ name = re.split(r":", name)[0]
2689
+ # Remove all digits for non-CPI items too
2690
+ name = re.sub(r"\d+", "", name)
2691
+
2692
+ # Remove year references like "2015=100"
2693
+ name = re.sub(r"\d{4}=\d+", "", name)
2694
+
2695
+ # Remove specific words case-insensitively
2696
+ name = re.sub(r"\b(annual|rate|index|seasonally|adjusted|sa|cvm)\b", "", name, flags=re.IGNORECASE)
2697
+
2698
+ # Remove percentage symbols and "%"
2699
+ name = re.sub(r"%", "percent", name)
2700
+
2681
2701
  # Remove non-alphanumeric characters (except underscore and space)
2682
2702
  name = re.sub(r"[^\w\s]", "", name)
2703
+
2683
2704
  # Replace spaces with underscores
2684
- name = name.strip() # Remove leading/trailing whitespace
2685
- name = name.replace(" ", "_")
2705
+ name = name.strip().replace(" ", "_")
2706
+
2686
2707
  # Replace multiple underscores with a single one
2687
2708
  name = re.sub(r"_+", "_", name)
2688
- # Remove trailing underscores
2689
- name = name.rstrip("_")
2690
- # Add prefix and suffix
2709
+
2710
+ # Remove leading/trailing underscores
2711
+ name = name.strip("_")
2712
+
2713
+ # Truncate very long names (optional)
2714
+ if len(name) > 50:
2715
+ words = name.split("_")
2716
+ # Keep first few meaningful words
2717
+ name = "_".join(words[:4])
2718
+
2691
2719
  return f"macro_{name.lower()}_uk"
2692
-
2720
+
2693
2721
  # Apply cleaning function to relevant columns
2694
2722
  weekly_df.columns = [
2695
2723
  clean_column_name(col) if col != "week_commencing" else col
@@ -2704,6 +2732,19 @@ class datapull:
2704
2732
  # Consider if 0 is the appropriate fill value for your use case
2705
2733
  # weekly_df = weekly_df.fillna(0)
2706
2734
 
2735
+ # Get only the data columns (excluding OBS)
2736
+ data_columns = [col for col in weekly_df.columns if col != "OBS"]
2737
+
2738
+ new_columns = ["OBS"]
2739
+ for i, col in enumerate(data_columns):
2740
+ if i < len(final_cdid_list):
2741
+ new_columns.append(f"{col}_{final_cdid_list[i]}")
2742
+ else:
2743
+ new_columns.append(col) # Keep original if no matching CDID
2744
+
2745
+ # Apply the new column names to the DataFrame
2746
+ weekly_df.columns = new_columns
2747
+
2707
2748
  return weekly_df
2708
2749
  print("No data successfully fetched or processed.")
2709
2750
  return pd.DataFrame()