imsciences 0.8__tar.gz → 0.8.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {imsciences-0.8 → imsciences-0.8.1}/PKG-INFO +51 -51
- {imsciences-0.8 → imsciences-0.8.1}/README.md +50 -50
- {imsciences-0.8 → imsciences-0.8.1}/imsciences/datafunctions.py +111 -52
- {imsciences-0.8 → imsciences-0.8.1}/imsciences.egg-info/PKG-INFO +51 -51
- {imsciences-0.8 → imsciences-0.8.1}/setup.py +1 -1
- {imsciences-0.8 → imsciences-0.8.1}/imsciences/__init__.py +0 -0
- {imsciences-0.8 → imsciences-0.8.1}/imsciences/unittesting.py +0 -0
- {imsciences-0.8 → imsciences-0.8.1}/imsciences.egg-info/PKG-INFO-IMS-24Ltp-3 +0 -0
- {imsciences-0.8 → imsciences-0.8.1}/imsciences.egg-info/SOURCES.txt +0 -0
- {imsciences-0.8 → imsciences-0.8.1}/imsciences.egg-info/dependency_links.txt +0 -0
- {imsciences-0.8 → imsciences-0.8.1}/imsciences.egg-info/requires.txt +0 -0
- {imsciences-0.8 → imsciences-0.8.1}/imsciences.egg-info/top_level.txt +0 -0
- {imsciences-0.8 → imsciences-0.8.1}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: imsciences
|
|
3
|
-
Version: 0.8
|
|
3
|
+
Version: 0.8.1
|
|
4
4
|
Summary: IMS Data Processing Package
|
|
5
5
|
Author: IMS
|
|
6
6
|
Author-email: cam@im-sciences.com
|
|
@@ -36,97 +36,97 @@ The **IMSciences package** is a Python library designed to process incoming data
|
|
|
36
36
|
|
|
37
37
|
---
|
|
38
38
|
|
|
39
|
-
|
|
39
|
+
Table of Contents
|
|
40
|
+
=================
|
|
40
41
|
|
|
41
|
-
1.
|
|
42
|
-
2.
|
|
43
|
-
3.
|
|
44
|
-
4.
|
|
45
|
-
5.
|
|
42
|
+
1. `Data Processing <#data-processing>`_
|
|
43
|
+
2. `Data Pulling <#data-pulling>`_
|
|
44
|
+
3. `Installation <#installation>`_
|
|
45
|
+
4. `Usage <#usage>`_
|
|
46
|
+
5. `License <#license>`_
|
|
46
47
|
|
|
47
48
|
---
|
|
48
49
|
|
|
49
50
|
## Data Processing
|
|
50
51
|
|
|
51
|
-
|
|
52
|
-
## 1. `get_wd_levels`
|
|
52
|
+
## 1. get_wd_levels
|
|
53
53
|
- **Description**: Get the working directory with the option of moving up parents.
|
|
54
54
|
- **Usage**: `get_wd_levels(levels)`
|
|
55
55
|
- **Example**: `get_wd_levels(0)`
|
|
56
56
|
|
|
57
57
|
---
|
|
58
58
|
|
|
59
|
-
## 2.
|
|
59
|
+
## 2. remove_rows
|
|
60
60
|
- **Description**: Removes a specified number of rows from a pandas DataFrame.
|
|
61
61
|
- **Usage**: `remove_rows(data_frame, num_rows_to_remove)`
|
|
62
62
|
- **Example**: `remove_rows(df, 2)`
|
|
63
63
|
|
|
64
64
|
---
|
|
65
65
|
|
|
66
|
-
## 3.
|
|
66
|
+
## 3. aggregate_daily_to_wc_long
|
|
67
67
|
- **Description**: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week.
|
|
68
68
|
- **Usage**: `aggregate_daily_to_wc_long(df, date_column, group_columns, sum_columns, wc, aggregation='sum')`
|
|
69
69
|
- **Example**: `aggregate_daily_to_wc_long(df, 'date', ['platform'], ['cost', 'impressions', 'clicks'], 'mon', 'average')`
|
|
70
70
|
|
|
71
71
|
---
|
|
72
72
|
|
|
73
|
-
## 4.
|
|
73
|
+
## 4. convert_monthly_to_daily
|
|
74
74
|
- **Description**: Converts monthly data in a DataFrame to daily data by expanding and dividing the numeric values.
|
|
75
75
|
- **Usage**: `convert_monthly_to_daily(df, date_column, divide)`
|
|
76
76
|
- **Example**: `convert_monthly_to_daily(df, 'date')`
|
|
77
77
|
|
|
78
78
|
---
|
|
79
79
|
|
|
80
|
-
## 5.
|
|
80
|
+
## 5. plot_two
|
|
81
81
|
- **Description**: Plots specified columns from two different DataFrames using a shared date column. Useful for comparing data.
|
|
82
82
|
- **Usage**: `plot_two(df1, col1, df2, col2, date_column, same_axis=True)`
|
|
83
83
|
- **Example**: `plot_two(df1, 'cost', df2, 'cost', 'obs', True)`
|
|
84
84
|
|
|
85
85
|
---
|
|
86
86
|
|
|
87
|
-
## 6.
|
|
87
|
+
## 6. remove_nan_rows
|
|
88
88
|
- **Description**: Removes rows from a DataFrame where the specified column has NaN values.
|
|
89
89
|
- **Usage**: `remove_nan_rows(df, col_to_remove_rows)`
|
|
90
90
|
- **Example**: `remove_nan_rows(df, 'date')`
|
|
91
91
|
|
|
92
92
|
---
|
|
93
93
|
|
|
94
|
-
## 7.
|
|
94
|
+
## 7. filter_rows
|
|
95
95
|
- **Description**: Filters the DataFrame based on whether the values in a specified column are in a provided list.
|
|
96
96
|
- **Usage**: `filter_rows(df, col_to_filter, list_of_filters)`
|
|
97
97
|
- **Example**: `filter_rows(df, 'country', ['UK', 'IE'])`
|
|
98
98
|
|
|
99
99
|
---
|
|
100
100
|
|
|
101
|
-
## 8.
|
|
101
|
+
## 8. plot_one
|
|
102
102
|
- **Description**: Plots a specified column from a DataFrame.
|
|
103
103
|
- **Usage**: `plot_one(df1, col1, date_column)`
|
|
104
104
|
- **Example**: `plot_one(df, 'Spend', 'OBS')`
|
|
105
105
|
|
|
106
106
|
---
|
|
107
107
|
|
|
108
|
-
## 9.
|
|
108
|
+
## 9. week_of_year_mapping
|
|
109
109
|
- **Description**: Converts a week column in `yyyy-Www` or `yyyy-ww` format to week commencing date.
|
|
110
110
|
- **Usage**: `week_of_year_mapping(df, week_col, start_day_str)`
|
|
111
111
|
- **Example**: `week_of_year_mapping(df, 'week', 'mon')`
|
|
112
112
|
|
|
113
113
|
---
|
|
114
114
|
|
|
115
|
-
## 10.
|
|
115
|
+
## 10. exclude_rows
|
|
116
116
|
- **Description**: Removes rows from a DataFrame based on whether the values in a specified column are not in a provided list.
|
|
117
117
|
- **Usage**: `exclude_rows(df, col_to_filter, list_of_filters)`
|
|
118
118
|
- **Example**: `exclude_rows(df, 'week', ['2022-W20', '2022-W21'])`
|
|
119
119
|
|
|
120
120
|
---
|
|
121
121
|
|
|
122
|
-
## 11.
|
|
122
|
+
## 11. rename_cols
|
|
123
123
|
- **Description**: Renames columns in a pandas DataFrame.
|
|
124
124
|
- **Usage**: `rename_cols(df, name)`
|
|
125
125
|
- **Example**: `rename_cols(df, 'ame_facebook')`
|
|
126
126
|
|
|
127
127
|
---
|
|
128
128
|
|
|
129
|
-
## 12.
|
|
129
|
+
## 12. merge_new_and_old
|
|
130
130
|
- **Description**: Creates a new DataFrame with two columns: one for dates and one for merged numeric values.
|
|
131
131
|
- Merges numeric values from specified columns in the old and new DataFrames based on a given cutoff date.
|
|
132
132
|
- **Usage**: `merge_new_and_old(old_df, old_col, new_df, new_col, cutoff_date, date_col_name='OBS')`
|
|
@@ -134,21 +134,21 @@ The **IMSciences package** is a Python library designed to process incoming data
|
|
|
134
134
|
|
|
135
135
|
---
|
|
136
136
|
|
|
137
|
-
## 13.
|
|
137
|
+
## 13. merge_dataframes_on_date
|
|
138
138
|
- **Description**: Merge a list of DataFrames on a common column.
|
|
139
139
|
- **Usage**: `merge_dataframes_on_date(dataframes, common_column='OBS', merge_how='outer')`
|
|
140
140
|
- **Example**: `merge_dataframes_on_date([df1, df2, df3], common_column='OBS', merge_how='outer')`
|
|
141
141
|
|
|
142
142
|
---
|
|
143
143
|
|
|
144
|
-
## 14.
|
|
144
|
+
## 14. merge_and_update_dfs
|
|
145
145
|
- **Description**: Merges two dataframes on a key column, updates the first dataframe's columns with the second's where available, and returns a dataframe sorted by the key column.
|
|
146
146
|
- **Usage**: `merge_and_update_dfs(df1, df2, key_column)`
|
|
147
147
|
- **Example**: `merge_and_update_dfs(processed_facebook, finalised_meta, 'OBS')`
|
|
148
148
|
|
|
149
149
|
---
|
|
150
150
|
|
|
151
|
-
## 15.
|
|
151
|
+
## 15. convert_us_to_uk_dates
|
|
152
152
|
- **Description**: Convert a DataFrame column with mixed date formats to datetime.
|
|
153
153
|
- **Usage**: `convert_us_to_uk_dates(df, date_col)`
|
|
154
154
|
- **Example**: `convert_us_to_uk_dates(df, 'date')`
|
|
@@ -162,189 +162,189 @@ The **IMSciences package** is a Python library designed to process incoming data
|
|
|
162
162
|
|
|
163
163
|
---
|
|
164
164
|
|
|
165
|
-
## 17.
|
|
165
|
+
## 17. pivot_table
|
|
166
166
|
- **Description**: Dynamically pivots a DataFrame based on specified columns.
|
|
167
167
|
- **Usage**: `pivot_table(df, index_col, columns, values_col, filters_dict=None, fill_value=0, aggfunc='sum', margins=False, margins_name='Total', datetime_trans_needed=True, reverse_header_order=False, fill_missing_weekly_dates=False, week_commencing='W-MON')`
|
|
168
168
|
- **Example**: `pivot_table(df, 'OBS', 'Channel Short Names', 'Value', filters_dict={'Master Include': ' == 1', 'OBS': ' >= datetime(2019,9,9)', 'Metric Short Names': ' == spd'}, fill_value=0, aggfunc='sum', margins=False, margins_name='Total', datetime_trans_needed=True, reverse_header_order=True, fill_missing_weekly_dates=True, week_commencing='W-MON')`
|
|
169
169
|
|
|
170
170
|
---
|
|
171
171
|
|
|
172
|
-
## 18.
|
|
172
|
+
## 18. apply_lookup_table_for_columns
|
|
173
173
|
- **Description**: Equivalent of XLOOKUP in Excel. Allows mapping of a dictionary of substrings within a column.
|
|
174
174
|
- **Usage**: `apply_lookup_table_for_columns(df, col_names, to_find_dict, if_not_in_dict='Other', new_column_name='Mapping')`
|
|
175
175
|
- **Example**: `apply_lookup_table_for_columns(df, col_names, {'spend': 'spd', 'clicks': 'clk'}, if_not_in_dict='Other', new_column_name='Metrics Short')`
|
|
176
176
|
|
|
177
177
|
---
|
|
178
178
|
|
|
179
|
-
## 19.
|
|
179
|
+
## 19. aggregate_daily_to_wc_wide
|
|
180
180
|
- **Description**: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week.
|
|
181
181
|
- **Usage**: `aggregate_daily_to_wc_wide(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)`
|
|
182
182
|
- **Example**: `aggregate_daily_to_wc_wide(df, 'date', ['platform'], ['cost', 'impressions', 'clicks'], 'mon', 'average', True)`
|
|
183
183
|
|
|
184
184
|
---
|
|
185
185
|
|
|
186
|
-
## 20.
|
|
186
|
+
## 20. merge_cols_with_seperator
|
|
187
187
|
- **Description**: Merges multiple columns in a DataFrame into one column with a separator `_`. Useful for lookup tables.
|
|
188
188
|
- **Usage**: `merge_cols_with_seperator(df, col_names, seperator='_', output_column_name='Merged', starting_prefix_str=None, ending_prefix_str=None)`
|
|
189
189
|
- **Example**: `merge_cols_with_seperator(df, ['Campaign', 'Product'], seperator='|', output_column_name='Merged Columns', starting_prefix_str='start_', ending_prefix_str='_end')`
|
|
190
190
|
|
|
191
191
|
---
|
|
192
192
|
|
|
193
|
-
## 21.
|
|
193
|
+
## 21. check_sum_of_df_cols_are_equal
|
|
194
194
|
- **Description**: Checks if the sum of two columns in two DataFrames are the same, and provides the sums and differences.
|
|
195
195
|
- **Usage**: `check_sum_of_df_cols_are_equal(df_1, df_2, cols_1, cols_2)`
|
|
196
196
|
- **Example**: `check_sum_of_df_cols_are_equal(df_1, df_2, 'Media Cost', 'Spend')`
|
|
197
197
|
|
|
198
198
|
---
|
|
199
199
|
|
|
200
|
-
## 22.
|
|
200
|
+
## 22. convert_2_df_cols_to_dict
|
|
201
201
|
- **Description**: Creates a dictionary using two columns in a DataFrame.
|
|
202
202
|
- **Usage**: `convert_2_df_cols_to_dict(df, key_col, value_col)`
|
|
203
203
|
- **Example**: `convert_2_df_cols_to_dict(df, 'Campaign', 'Channel')`
|
|
204
204
|
|
|
205
205
|
---
|
|
206
206
|
|
|
207
|
-
## 23.
|
|
207
|
+
## 23. create_FY_and_H_columns
|
|
208
208
|
- **Description**: Creates financial year, half-year, and financial half-year columns.
|
|
209
209
|
- **Usage**: `create_FY_and_H_columns(df, index_col, start_date, starting_FY, short_format='No', half_years='No', combined_FY_and_H='No')`
|
|
210
210
|
- **Example**: `create_FY_and_H_columns(df, 'Week (M-S)', '2022-10-03', 'FY2023', short_format='Yes', half_years='Yes', combined_FY_and_H='Yes')`
|
|
211
211
|
|
|
212
212
|
---
|
|
213
213
|
|
|
214
|
-
## 24.
|
|
214
|
+
## 24. keyword_lookup_replacement
|
|
215
215
|
- **Description**: Updates chosen values in a specified column of the DataFrame based on a lookup dictionary.
|
|
216
216
|
- **Usage**: `keyword_lookup_replacement(df, col, replacement_rows, cols_to_merge, replacement_lookup_dict, output_column_name='Updated Column')`
|
|
217
217
|
- **Example**: `keyword_lookup_replacement(df, 'channel', 'Paid Search Generic', ['channel', 'segment', 'product'], qlik_dict_for_channel, output_column_name='Channel New')`
|
|
218
218
|
|
|
219
219
|
---
|
|
220
220
|
|
|
221
|
-
## 25.
|
|
221
|
+
## 25. create_new_version_of_col_using_LUT
|
|
222
222
|
- **Description**: Creates a new column in a DataFrame by mapping values from an old column using a lookup table.
|
|
223
223
|
- **Usage**: `create_new_version_of_col_using_LUT(df, keys_col, value_col, dict_for_specific_changes, new_col_name='New Version of Old Col')`
|
|
224
224
|
- **Example**: `create_new_version_of_col_using_LUT(df, 'Campaign Name', 'Campaign Type', search_campaign_name_retag_lut, 'Campaign Name New')`
|
|
225
225
|
|
|
226
226
|
---
|
|
227
227
|
|
|
228
|
-
## 26.
|
|
228
|
+
## 26. convert_df_wide_2_long
|
|
229
229
|
- **Description**: Converts a DataFrame from wide to long format.
|
|
230
230
|
- **Usage**: `convert_df_wide_2_long(df, value_cols, variable_col_name='Stacked', value_col_name='Value')`
|
|
231
231
|
- **Example**: `convert_df_wide_2_long(df, ['Media Cost', 'Impressions', 'Clicks'], variable_col_name='Metric')`
|
|
232
232
|
|
|
233
233
|
---
|
|
234
234
|
|
|
235
|
-
## 27.
|
|
235
|
+
## 27. manually_edit_data
|
|
236
236
|
- **Description**: Enables manual updates to DataFrame cells by applying filters and editing a column.
|
|
237
237
|
- **Usage**: `manually_edit_data(df, filters_dict, col_to_change, new_value, change_in_existing_df_col='No', new_col_to_change_name='New', manual_edit_col_name=None, add_notes='No', existing_note_col_name=None, note=None)`
|
|
238
238
|
- **Example**: `manually_edit_data(df, {'OBS': ' <= datetime(2023,1,23)', 'File_Name': ' == France media'}, 'Master Include', 1, change_in_existing_df_col='Yes', new_col_to_change_name='Master Include', manual_edit_col_name='Manual Changes')`
|
|
239
239
|
|
|
240
240
|
---
|
|
241
241
|
|
|
242
|
-
## 28.
|
|
242
|
+
## 28. format_numbers_with_commas
|
|
243
243
|
- **Description**: Formats numeric data into numbers with commas and specified decimal places.
|
|
244
244
|
- **Usage**: `format_numbers_with_commas(df, decimal_length_chosen=2)`
|
|
245
245
|
- **Example**: `format_numbers_with_commas(df, 1)`
|
|
246
246
|
|
|
247
247
|
---
|
|
248
248
|
|
|
249
|
-
## 29.
|
|
249
|
+
## 29. filter_df_on_multiple_conditions
|
|
250
250
|
- **Description**: Filters a DataFrame based on multiple conditions from a dictionary.
|
|
251
251
|
- **Usage**: `filter_df_on_multiple_conditions(df, filters_dict)`
|
|
252
252
|
- **Example**: `filter_df_on_multiple_conditions(df, {'OBS': ' <= datetime(2023,1,23)', 'File_Name': ' == France media'})`
|
|
253
253
|
|
|
254
254
|
---
|
|
255
255
|
|
|
256
|
-
## 30.
|
|
256
|
+
## 30. read_and_concatenate_files
|
|
257
257
|
- **Description**: Reads and concatenates all files of a specified type in a folder.
|
|
258
258
|
- **Usage**: `read_and_concatenate_files(folder_path, file_type='csv')`
|
|
259
259
|
- **Example**: `read_and_concatenate_files(folder_path, file_type='csv')`
|
|
260
260
|
|
|
261
261
|
---
|
|
262
262
|
|
|
263
|
-
## 31.
|
|
263
|
+
## 31. remove_zero_values
|
|
264
264
|
- **Description**: Removes rows with zero values in a specified column.
|
|
265
265
|
- **Usage**: `remove_zero_values(data_frame, column_to_filter)`
|
|
266
266
|
- **Example**: `remove_zero_values(df, 'Funeral_Delivery')`
|
|
267
267
|
|
|
268
268
|
---
|
|
269
269
|
|
|
270
|
-
## 32.
|
|
270
|
+
## 32. upgrade_outdated_packages
|
|
271
271
|
- **Description**: Upgrades all outdated packages in the environment.
|
|
272
272
|
- **Usage**: `upgrade_outdated_packages()`
|
|
273
273
|
- **Example**: `upgrade_outdated_packages()`
|
|
274
274
|
|
|
275
275
|
---
|
|
276
276
|
|
|
277
|
-
## 33.
|
|
277
|
+
## 33. convert_mixed_formats_dates
|
|
278
278
|
- **Description**: Converts a mix of US and UK date formats to datetime.
|
|
279
279
|
- **Usage**: `convert_mixed_formats_dates(df, date_col)`
|
|
280
280
|
- **Example**: `convert_mixed_formats_dates(df, 'OBS')`
|
|
281
281
|
|
|
282
282
|
---
|
|
283
283
|
|
|
284
|
-
## 34.
|
|
284
|
+
## 34. fill_weekly_date_range
|
|
285
285
|
- **Description**: Fills in missing weeks with zero values.
|
|
286
286
|
- **Usage**: `fill_weekly_date_range(df, date_column, freq)`
|
|
287
287
|
- **Example**: `fill_weekly_date_range(df, 'OBS', 'W-MON')`
|
|
288
288
|
|
|
289
289
|
---
|
|
290
290
|
|
|
291
|
-
## 35.
|
|
291
|
+
## 35. add_prefix_and_suffix
|
|
292
292
|
- **Description**: Adds prefixes and/or suffixes to column headers.
|
|
293
293
|
- **Usage**: `add_prefix_and_suffix(df, prefix='', suffix='', date_col=None)`
|
|
294
294
|
- **Example**: `add_prefix_and_suffix(df, prefix='media_', suffix='_spd', date_col='obs')`
|
|
295
295
|
|
|
296
296
|
---
|
|
297
297
|
|
|
298
|
-
## 36.
|
|
298
|
+
## 36. create_dummies
|
|
299
299
|
- **Description**: Converts time series into binary indicators based on a threshold.
|
|
300
300
|
- **Usage**: `create_dummies(df, date_col=None, dummy_threshold=0, add_total_dummy_col='No', total_col_name='total')`
|
|
301
301
|
- **Example**: `create_dummies(df, date_col='obs', dummy_threshold=100, add_total_dummy_col='Yes', total_col_name='med_total_dum')`
|
|
302
302
|
|
|
303
303
|
---
|
|
304
304
|
|
|
305
|
-
## 37.
|
|
305
|
+
## 37. replace_substrings
|
|
306
306
|
- **Description**: Replaces substrings in a column of strings using a dictionary and can change column values to lowercase.
|
|
307
307
|
- **Usage**: `replace_substrings(df, column, replacements, to_lower=False, new_column=None)`
|
|
308
308
|
- **Example**: `replace_substrings(df, 'Influencer Handle', replacement_dict, to_lower=True, new_column='Short Version')`
|
|
309
309
|
|
|
310
310
|
---
|
|
311
311
|
|
|
312
|
-
## 38. `add_total_column
|
|
312
|
+
## 38. `add_total_column
|
|
313
313
|
- **Description**: Sums all columns (excluding a specified column) to create a total column.
|
|
314
314
|
- **Usage**: `add_total_column(df, exclude_col=None, total_col_name='Total')`
|
|
315
315
|
- **Example**: `add_total_column(df, exclude_col='obs', total_col_name='total_media_spd')`
|
|
316
316
|
|
|
317
317
|
---
|
|
318
318
|
|
|
319
|
-
## 39.
|
|
319
|
+
## 39. apply_lookup_table_based_on_substring
|
|
320
320
|
- **Description**: Maps substrings in a column to values using a lookup dictionary.
|
|
321
321
|
- **Usage**: `apply_lookup_table_based_on_substring(df, column_name, category_dict, new_col_name='Category', other_label='Other')`
|
|
322
322
|
- **Example**: `apply_lookup_table_based_on_substring(df, 'Campaign Name', campaign_dict, new_col_name='Campaign Name Short', other_label='Full Funnel')`
|
|
323
323
|
|
|
324
324
|
---
|
|
325
325
|
|
|
326
|
-
## 40.
|
|
326
|
+
## 40. compare_overlap
|
|
327
327
|
- **Description**: Compares matching rows and columns in two DataFrames and outputs the differences.
|
|
328
328
|
- **Usage**: `compare_overlap(df1, df2, date_col)`
|
|
329
329
|
- **Example**: `compare_overlap(df_1, df_2, 'obs')`
|
|
330
330
|
|
|
331
331
|
---
|
|
332
332
|
|
|
333
|
-
## 41.
|
|
333
|
+
## 41. week_commencing_2_week_commencing_conversion
|
|
334
334
|
- **Description**: Converts a week commencing column to a different start day.
|
|
335
335
|
- **Usage**: `week_commencing_2_week_commencing_conversion(df, date_col, week_commencing='sun')`
|
|
336
336
|
- **Example**: `week_commencing_2_week_commencing_conversion(df, 'obs', week_commencing='mon')`
|
|
337
337
|
|
|
338
338
|
---
|
|
339
339
|
|
|
340
|
-
## 42.
|
|
340
|
+
## 42. plot_chart
|
|
341
341
|
- **Description**: Plots various chart types including line, area, scatter, and bar.
|
|
342
342
|
- **Usage**: `plot_chart(df, date_col, value_cols, chart_type='line', title='Chart', x_title='Date', y_title='Values', **kwargs)`
|
|
343
343
|
- **Example**: `plot_chart(df, 'obs', df.cols, chart_type='line', title='Spend Over Time', x_title='Date', y_title='Spend')`
|
|
344
344
|
|
|
345
345
|
---
|
|
346
346
|
|
|
347
|
-
## 43.
|
|
347
|
+
## 43. plot_two_with_common_cols
|
|
348
348
|
- **Description**: Plots charts for two DataFrames based on common column names.
|
|
349
349
|
- **Usage**: `plot_two_with_common_cols(df1, df2, date_column, same_axis=True)`
|
|
350
350
|
- **Example**: `plot_two_with_common_cols(df_1, df_2, date_column='obs')`
|
|
@@ -412,7 +412,7 @@ The **IMSciences package** is a Python library designed to process incoming data
|
|
|
412
412
|
Install the IMS package via pip:
|
|
413
413
|
|
|
414
414
|
```bash
|
|
415
|
-
pip install
|
|
415
|
+
pip install imsciences
|
|
416
416
|
```
|
|
417
417
|
|
|
418
418
|
---
|