imicpe 0.0.9.6__tar.gz → 1.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {imicpe-0.0.9.6 → imicpe-1.0.0}/DESCRIPTION.md +0 -1
- {imicpe-0.0.9.6 → imicpe-1.0.0}/PKG-INFO +3 -2
- imicpe-1.0.0/README.md +127 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/pyproject.toml +4 -2
- imicpe-1.0.0/src/imicpe/_version.py +1 -0
- imicpe-1.0.0/src/imicpe/cs/__init__.py +9 -0
- imicpe-1.0.0/src/imicpe/cs/l1.py +111 -0
- imicpe-1.0.0/src/imicpe/cs/masks.py +80 -0
- imicpe-1.0.0/src/imicpe/cs/metrics.py +7 -0
- imicpe-1.0.0/src/imicpe/cs/operators.py +298 -0
- imicpe-1.0.0/src/imicpe/cs/shepp_logan_phantom.py +21 -0
- imicpe-1.0.0/src/imicpe/cs/tikhonov.py +95 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe.egg-info/PKG-INFO +3 -2
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe.egg-info/SOURCES.txt +7 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe.egg-info/requires.txt +2 -0
- imicpe-0.0.9.6/README.md +0 -93
- imicpe-0.0.9.6/src/imicpe/_version.py +0 -1
- {imicpe-0.0.9.6 → imicpe-1.0.0}/LICENSE +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/setup.cfg +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe/__init__.py +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe/optim/__init__.py +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe/optim/metrics.py +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe/optim/operators.py +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe/optim/pnnDataset.py +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe/optim/pnnTrainer.py +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe/optim/pnnUtils.py +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe.egg-info/dependency_links.txt +0 -0
- {imicpe-0.0.9.6 → imicpe-1.0.0}/src/imicpe.egg-info/top_level.txt +0 -0
|
@@ -15,7 +15,6 @@ Developped and maintained for teaching usage only!
|
|
|
15
15
|
# Usage example
|
|
16
16
|
|
|
17
17
|
The example below uses the mse method available in the `optim.metrics` subpackage of `imicpe`.
|
|
18
|
-
It requires `numpy.randn` to generate a gaussian distribution of N points.
|
|
19
18
|
|
|
20
19
|
```python
|
|
21
20
|
import numpy as np
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: imicpe
|
|
3
|
-
Version: 0.0
|
|
3
|
+
Version: 1.0.0
|
|
4
4
|
Summary: Toolbox for Maths,Signal,Image Teaching @ CPE
|
|
5
5
|
Author-email: Marion Foare <marion.foare@cpe.fr>, Eric Van Reeth <eric.vanreeth@cpe.fr>, Arthur Gautheron <arthur.gautheron@cpe.fr>
|
|
6
6
|
License: MIT License
|
|
@@ -18,6 +18,8 @@ Requires-Dist: plotly
|
|
|
18
18
|
Requires-Dist: torch
|
|
19
19
|
Requires-Dist: torchvision
|
|
20
20
|
Requires-Dist: tqdm
|
|
21
|
+
Requires-Dist: PyWavelets
|
|
22
|
+
Requires-Dist: scikit-image
|
|
21
23
|
|
|
22
24
|
|
|
23
25
|
A toolbox used for practical sessions at [CPE Lyon](https://www.cpe.fr/).
|
|
@@ -36,7 +38,6 @@ Developped and maintained for teaching usage only!
|
|
|
36
38
|
# Usage example
|
|
37
39
|
|
|
38
40
|
The example below uses the mse method available in the `optim.metrics` subpackage of `imicpe`.
|
|
39
|
-
It requires `numpy.randn` to generate a gaussian distribution of N points.
|
|
40
41
|
|
|
41
42
|
```python
|
|
42
43
|
import numpy as np
|
imicpe-1.0.0/README.md
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
1
|
+
# Librairie Python IMICPE
|
|
2
|
+
|
|
3
|
+
Le dépôt de la librairie imicpe ainsi que la documentation associée sont disponibles ici :
|
|
4
|
+
|
|
5
|
+
- Dépôt : <https://gitlab.in2p3.fr/cpe/msi/toolbox_imi>
|
|
6
|
+
- Doc : <https://cpe.pages.in2p3.fr/msi/toolbox_imi>
|
|
7
|
+
|
|
8
|
+
Table des matières
|
|
9
|
+
|
|
10
|
+
> [Introduction](#introduction)<br/>
|
|
11
|
+
> [Créer un nouveau module dans une librairie](#cr%C3%A9er-un-nouveau-module-dans-une-librairie)<br/>
|
|
12
|
+
> [Ajouter une nouvelle librairie/dépendence nécessaire à la librairie](#ajouter-une-nouvelle-librairiedépendence-nécessaire-à-la-librairie)<br/>
|
|
13
|
+
> [Appeler une autre fonction de la librairie](#appeler-une-autre-fonction-de-la-librairie)<br/>
|
|
14
|
+
> [Ajouter/Mettre à jour une fonction existante dans un module](#ajoutermettre-à-jour-une-fonction-existante-dans-un-module)<br/>
|
|
15
|
+
>> [Déposer le code et générer une version de test disponible sur test.pypi.org](#d%C3%A9poser-le-code-et-g%C3%A9n%C3%A9rer-une-version-de-test-disponible-sur-testpypiorg)<br/>
|
|
16
|
+
>> [Déposer le code et générer une version de disponible sur pypi.org](#d%C3%A9poser-le-code-et-g%C3%A9n%C3%A9rer-une-version-de-disponible-sur-pypiorg)<br/>
|
|
17
|
+
>> [Déposer le code sans vouloir générer de version de la librairie](#d%C3%A9poser-le-code-sans-vouloir-g%C3%A9n%C3%A9rer-de-version-de-la-librairie)<br/>
|
|
18
|
+
|
|
19
|
+
## Introduction
|
|
20
|
+
|
|
21
|
+
Certains outils d’intégration continue ont été installé sur le dépôt gitlab de chacune des librairies pour faciliter la génération de la documentation technique ainsi que la compilation de la librairie et son dépôt sur pypi.org ou test.pypi.org. Cependant, cela requiert quelques actions de votre part qui sont détaillées dans la suite du document.
|
|
22
|
+
|
|
23
|
+
## Créer un nouveau module dans une librairie
|
|
24
|
+
Dans le dépôt git, vous trouverez l’arborescence suivante :<br/>
|
|
25
|
+
<img src="docs/images/arborescence.png"
|
|
26
|
+
alt="Arborescence Structure"
|
|
27
|
+
style="float: left; margin-right: 10px;" />
|
|
28
|
+
1. [ ] Créez un nouveau dossier dans le dossier « src/nom de la libraire/_nom du module »_ (dans l’exemple ci-dessous le nouveau dossier se trouverait au même niveau que ssl, tns, tsa ou utils…)
|
|
29
|
+
2. [ ] Pour que le contenu de ce nouveau dossier soit reconnu comme un nouveau module de la librairie, il est nécessaire que ce dossier contienne un fichier **\__init_\_.py** qui va lister le lien vers toutes les fonctions du module.
|
|
30
|
+
3. [ ] Si vous souhaitez que la documentation de ce module soit automatiquement générée :
|
|
31
|
+
1. Copier le fichier « docs/imicpe.optim.rst » et renommez le « imicpe._nom du module._rst ».
|
|
32
|
+
2. Adapter le contenu du fichier.
|
|
33
|
+
3. Editez le fichier « docs/imicpe.rst » en ajoutant « imicpe._nom du module »_ à la suite de la liste déjà existante dans ce fichier.
|
|
34
|
+
4. Continuer en suivant les instructions de la partie suivante
|
|
35
|
+
|
|
36
|
+
## Ajouter une nouvelle librairie/dépendence nécessaire à la librairie
|
|
37
|
+
1. [ ] Identifier le nom de la librairie dans [Pypi](https://pypi.org)
|
|
38
|
+
2. [ ] Ajouter le nom de la librairie à la liste `dependencies` du fichier *pyproject.toml*
|
|
39
|
+
3. [ ] Ajouter le nom de la librairie au fichier *docs/requirements.txt*
|
|
40
|
+
|
|
41
|
+
## Appeler une autre fonction de la librairie
|
|
42
|
+
|
|
43
|
+
Bien faire l'appel en chemin relatif du fichier qui importe la fonction.
|
|
44
|
+
**Par exemple, pour introduire une fonction dans un autre fichier du même dossier, écrire** `from .my_file import my_func`
|
|
45
|
+
|
|
46
|
+
## Ajouter/Mettre à jour une fonction existante dans un module
|
|
47
|
+
|
|
48
|
+
Dans le dossier du module où vous souhaitez ajouter la fonction _myFunc_ :
|
|
49
|
+
1. [ ] Créer un fichier _maFonction.py_ qui contiendra :
|
|
50
|
+
1. Les imports nécessaires pour l’exécution des fonctions de ce fichier
|
|
51
|
+
2. Une (ou plusieurs) fonction(s) python _myFunc_ (..)
|
|
52
|
+
3. La doc string descriptive de la fonction qui respecte la nomenclature suivante
|
|
53
|
+
````
|
|
54
|
+
def sptheo(Q, method, fenetre=None):
|
|
55
|
+
"""
|
|
56
|
+
Calcule dans le cadre du TP Estimation spectrale :
|
|
57
|
+
|
|
58
|
+
- Gth : la valeur en dB de la DSPM du bruit blanc filtré entre 0 et 0,5.
|
|
59
|
+
- Gbiais : la valeur en dB de Gth convolué par la grandeur régissant le biais attaché à la 'method'.
|
|
60
|
+
- f : un vecteur fréquence réduite de même taille que Gth et Gbiais.
|
|
61
|
+
|
|
62
|
+
Parameters
|
|
63
|
+
----------
|
|
64
|
+
Q : int
|
|
65
|
+
Pour 'simple', représente la longueur de l'échantillon analysé.
|
|
66
|
+
Pour 'moyenne' ou 'welch', représente la longueur d'une tranche.
|
|
67
|
+
|
|
68
|
+
method : {'simple', 'moyenne', 'welch'}
|
|
69
|
+
Méthode d'estimation spectrale à utiliser.
|
|
70
|
+
|
|
71
|
+
fenetre : str, optional
|
|
72
|
+
Nom de la fenêtre à utiliser si method='welch'. Ignoré pour 'simple' et 'moyenne'.
|
|
73
|
+
|
|
74
|
+
Returns
|
|
75
|
+
-------
|
|
76
|
+
Gth : ndarray
|
|
77
|
+
Valeur en dB de la DSPM du bruit blanc filtré entre 0 et 0,5.
|
|
78
|
+
|
|
79
|
+
Gbiais : ndarray
|
|
80
|
+
Valeur en dB de Gth convolué par la grandeur régissant le biais.
|
|
81
|
+
|
|
82
|
+
f : ndarray
|
|
83
|
+
Vecteur fréquence réduite.
|
|
84
|
+
|
|
85
|
+
Notes
|
|
86
|
+
-----
|
|
87
|
+
Cette fonction calcule différentes valeurs théoriques dans le cadre de l'estimation spectrale,
|
|
88
|
+
en fonction de la méthode choisie ('simple', 'moyenne' ou 'welch') et des paramètres associés.
|
|
89
|
+
|
|
90
|
+
Example
|
|
91
|
+
-------
|
|
92
|
+
>>> from msicpe.tsa import sptheo
|
|
93
|
+
>>> sptheo(1024, 'welch', 'hamming')
|
|
94
|
+
"""
|
|
95
|
+
|
|
96
|
+
````
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
2. [ ] Editer le fichier **\__init_\_.py** du même dossier pour importer la fonction qui doit être accessible dans la librairie.
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
<i>Par exemple, si je veux que la fonction export_dat disponible dans le fichier export_dat.py soit accessible, je vais compléter le fichier_ **\__init_\_.py** de la façon suivante :</i>
|
|
103
|
+
|
|
104
|
+
```
|
|
105
|
+
from .export_dat import export_dat
|
|
106
|
+
```
|
|
107
|
+
|
|
108
|
+
3. [ ] Il faut maintenant déposer le code sur le dépôt git. Trois options s’offrent à vous :
|
|
109
|
+
\- Déposer le code et générer une version de test disponible sur test.pypi.org<br/>
|
|
110
|
+
\- Déposer le code et générer une version de disponible sur pypi.org<br/>
|
|
111
|
+
\- Déposer le code sans vouloir générer de version de la librairie
|
|
112
|
+
|
|
113
|
+
### Déposer le code et générer une version de test disponible sur test.pypi.org
|
|
114
|
+
|
|
115
|
+
- [ ] Modifier le fichier **version.txt** situé à la racine du dépôt et indiquer une suite de chiffre supérieure à celle disponible sur <https://test.pypi.org/simple/imicpe/>
|
|
116
|
+
- [ ] Faites un simple commit & push
|
|
117
|
+
- [ ] La doc sera mise à jour et d’ici quelques minutes (~5 min) il y aura une nouvelle version de la librairie qui sera disponible sur <https://test.pypi.org/simple/imicpe/>
|
|
118
|
+
|
|
119
|
+
### Déposer le code et générer une version de disponible sur pypi.org
|
|
120
|
+
|
|
121
|
+
- [ ] Faites un simple commit & push
|
|
122
|
+
- [ ] Sur le repo, créer un tag de la dernière version du git (en suivant la numérotation croissante existante).
|
|
123
|
+
- [ ] La doc sera mise à jour et d’ici quelques minutes (~5 min) il y aura une nouvelle version de la librairie qui sera disponible sur <https://pypi.org/project/imicpe/>
|
|
124
|
+
|
|
125
|
+
### Déposer le code sans vouloir générer de version de la librairie
|
|
126
|
+
|
|
127
|
+
- [ ] Faites un simple commit & push
|
|
@@ -9,12 +9,12 @@ build-backend = "setuptools.build_meta"
|
|
|
9
9
|
where = ["src"]
|
|
10
10
|
|
|
11
11
|
[tool.setuptools.package-data]
|
|
12
|
-
mypkg = ["*.txt", "*.mat"]
|
|
12
|
+
mypkg = ["*.txt", "*.mat", "*.npy"]
|
|
13
13
|
|
|
14
14
|
#[tool.setuptools_scm]
|
|
15
15
|
|
|
16
16
|
[project]
|
|
17
|
-
version="0.0
|
|
17
|
+
version="1.0.0"
|
|
18
18
|
name = "imicpe"
|
|
19
19
|
authors = [
|
|
20
20
|
{ name="Marion Foare", email="marion.foare@cpe.fr" },
|
|
@@ -32,6 +32,8 @@ dependencies = [
|
|
|
32
32
|
"torch",
|
|
33
33
|
"torchvision",
|
|
34
34
|
"tqdm",
|
|
35
|
+
"PyWavelets",
|
|
36
|
+
"scikit-image"
|
|
35
37
|
]
|
|
36
38
|
classifiers = [
|
|
37
39
|
"Programming Language :: Python :: 3",
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__="1.0.0"
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
from .metrics import mse, snr
|
|
2
|
+
from .operators import fwt, iwt, fwt2, iwt2
|
|
3
|
+
from .tikhonov import tikhonov
|
|
4
|
+
from .l1 import l1
|
|
5
|
+
from .shepp_logan_phantom import phantom_shepp_logan
|
|
6
|
+
from .masks import mat2mask, starPattern, getAcquisitionImage #, sub2ind, ind2sub
|
|
7
|
+
|
|
8
|
+
import os
|
|
9
|
+
cameraman = os.path.join(os.path.dirname(__file__), 'cameraman.tif')
|
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
|
|
2
|
+
import numpy as np
|
|
3
|
+
from scipy import ndimage
|
|
4
|
+
|
|
5
|
+
from .operators import *
|
|
6
|
+
from tqdm import tqdm_notebook as tqdm
|
|
7
|
+
|
|
8
|
+
def l1(opreg,A,At,z,x0,lam):
|
|
9
|
+
"""
|
|
10
|
+
l1 Algorithme Forward-Backward pour résoudre le problème
|
|
11
|
+
xhat = argmin ||Hx-z||_2^2 + lam.||Gx||_1
|
|
12
|
+
x
|
|
13
|
+
|
|
14
|
+
en particulier :
|
|
15
|
+
- le modèle LASSO si G = Id,
|
|
16
|
+
- le modèle TV si G = D (gradient) ou L (laplacien),
|
|
17
|
+
|
|
18
|
+
Args:
|
|
19
|
+
opreg (string) nom de l'opérateur G sur lequel opère la contrainte de parcimonie {'id', 'gradient', 'laplacien'}
|
|
20
|
+
A (fonction)
|
|
21
|
+
At (fonction)
|
|
22
|
+
z
|
|
23
|
+
x0 (numpy.ndarray)
|
|
24
|
+
lam (float)
|
|
25
|
+
|
|
26
|
+
Returns:
|
|
27
|
+
xhat (numpy.ndarray) solution du problème
|
|
28
|
+
loss (numpy.ndarray) évolution de la fonction de coût au cours des itérations
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
print('Running l1 model with ' +opreg+ ' sparsity constraint...\n\t')
|
|
32
|
+
|
|
33
|
+
### init ###
|
|
34
|
+
dim = x0.ndim
|
|
35
|
+
match opreg:
|
|
36
|
+
case 'id':
|
|
37
|
+
G = Id
|
|
38
|
+
Gt = Id
|
|
39
|
+
case 'gradient':
|
|
40
|
+
G = D
|
|
41
|
+
Gt = Dt
|
|
42
|
+
case 'laplacien':
|
|
43
|
+
G = L
|
|
44
|
+
Gt = Lt
|
|
45
|
+
|
|
46
|
+
# operator norms
|
|
47
|
+
lipA = opNorm(A,At,dim,x0)
|
|
48
|
+
lipG = opNorm(G,Gt,dim,x0)
|
|
49
|
+
|
|
50
|
+
# cost functions
|
|
51
|
+
def f(x): # data fidelity
|
|
52
|
+
return np.sum(x**2)/2
|
|
53
|
+
|
|
54
|
+
def R(x): # regularization
|
|
55
|
+
return np.sum(np.abs(x))
|
|
56
|
+
|
|
57
|
+
def E(x,lam): # total cost
|
|
58
|
+
return f(A(x)-z) + lam*R(G(x))
|
|
59
|
+
|
|
60
|
+
# proximity operator
|
|
61
|
+
def proxl1(x,gam):
|
|
62
|
+
return x - np.maximum(np.minimum(x,gam*np.ones(x.shape)),-gam*np.ones(x.shape))
|
|
63
|
+
|
|
64
|
+
### Algo ###
|
|
65
|
+
niter = 1e3; # max number of iterations
|
|
66
|
+
# model hyperparameters
|
|
67
|
+
mu = 5; # Bregman parameter (in [1,10], should not vary)
|
|
68
|
+
|
|
69
|
+
# algo hyperparameters
|
|
70
|
+
gamx = .9/(lipA**2 + mu*lipG**2); #.5e-1; # gradient descent step (x subproblem)
|
|
71
|
+
gamu = 1/mu; # proximal descent step (y subproblem)
|
|
72
|
+
|
|
73
|
+
# initialize variables
|
|
74
|
+
En = np.zeros((int(niter+1),),float) * np.nan
|
|
75
|
+
xn = x0 #np.random.standard_normal((z.shape))
|
|
76
|
+
un = G(xn) # splitting variable
|
|
77
|
+
bn = np.zeros(un.shape,float) # Bregman variable
|
|
78
|
+
|
|
79
|
+
En[0] = E(xn,lam)
|
|
80
|
+
|
|
81
|
+
# loop parameters
|
|
82
|
+
k = 0
|
|
83
|
+
tol = 1e-10
|
|
84
|
+
stop_crit = En[0]
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
with tqdm(total=niter) as pbar:
|
|
88
|
+
while (k < niter) and (stop_crit > tol):
|
|
89
|
+
# yn subproblem
|
|
90
|
+
Gxn = G(xn)
|
|
91
|
+
un = proxl1(un - gamu*mu*(un-Gxn-bn/mu) , lam*gamu)
|
|
92
|
+
|
|
93
|
+
# xn subproblem (relaxed): gradient descent step instead of GS iteration
|
|
94
|
+
xn = xn - gamx*( At(A(xn)-z) - mu*Gt(un-Gxn-bn/mu) )
|
|
95
|
+
|
|
96
|
+
# bn subproblem
|
|
97
|
+
bn = bn - mu*(un-G(xn))
|
|
98
|
+
|
|
99
|
+
# compute loss
|
|
100
|
+
En[k+1] = E(xn,lam)
|
|
101
|
+
|
|
102
|
+
# update loop parameters
|
|
103
|
+
stop_crit = (En[k] - En[k+1])/En[k]
|
|
104
|
+
k += 1
|
|
105
|
+
pbar.update(1)
|
|
106
|
+
|
|
107
|
+
pbar.close()
|
|
108
|
+
xhat = xn
|
|
109
|
+
loss = En
|
|
110
|
+
|
|
111
|
+
return xhat, loss
|
|
@@ -0,0 +1,80 @@
|
|
|
1
|
+
|
|
2
|
+
import numpy as np
|
|
3
|
+
from scipy import ndimage
|
|
4
|
+
import pywt
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
mat2mask = lambda mat, H, W, M: np.reshape(mat.T, (H, W, M))
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def starPattern(N, M):
|
|
11
|
+
"""
|
|
12
|
+
starPattern Génère un masque de taille NxN en étoile (tomographie) correspondant à M mesures.
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
N (int) Taille du masque
|
|
16
|
+
M (int) Nombre de mesures
|
|
17
|
+
|
|
18
|
+
Returns:
|
|
19
|
+
Amat (numpy.ndarray) Matrice d'acquisition
|
|
20
|
+
mask (numpy.ndarray) Masque
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
mask2mat = lambda mask: np.reshape(mask, (M, N**2))
|
|
25
|
+
|
|
26
|
+
H = int(N)
|
|
27
|
+
W = int(N)
|
|
28
|
+
|
|
29
|
+
n = int(N)
|
|
30
|
+
r = np.linspace(-1, 1, 3*n)*n
|
|
31
|
+
|
|
32
|
+
nrho = 2**4
|
|
33
|
+
R = np.round(np.linspace(-n/2, n/2, nrho))#.astype(int)
|
|
34
|
+
|
|
35
|
+
ntheta = M//nrho
|
|
36
|
+
T = np.linspace(0, np.pi, ntheta+1, endpoint=False)
|
|
37
|
+
|
|
38
|
+
mask = np.zeros((H, W, ntheta, nrho))
|
|
39
|
+
for itt in range(ntheta):
|
|
40
|
+
theta = T[itt]
|
|
41
|
+
|
|
42
|
+
for itr in range(nrho):
|
|
43
|
+
rho = R[itr]
|
|
44
|
+
|
|
45
|
+
x = np.round(r*np.cos(theta) + n/2 - rho*np.sin(theta))#.astype(int)
|
|
46
|
+
y = np.round(r*np.sin(theta) + n/2 + rho*np.cos(theta))#.astype(int)
|
|
47
|
+
|
|
48
|
+
valid = np.where((x >= 0) & (x < n) & (y >= 0) & (y < n))
|
|
49
|
+
x = x[valid].astype(int)
|
|
50
|
+
y = y[valid].astype(int)
|
|
51
|
+
|
|
52
|
+
tmpM = np.zeros((H, W))
|
|
53
|
+
tmpM[y, x] = 1
|
|
54
|
+
|
|
55
|
+
mask[:, :, itt, itr] = tmpM
|
|
56
|
+
|
|
57
|
+
mask = mask.reshape((H, W, M))
|
|
58
|
+
Amat = mask2mat(mask)
|
|
59
|
+
|
|
60
|
+
return Amat, mask
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def getAcquisitionImage(x,mask):
|
|
64
|
+
_, _, Nmeasures = mask.shape
|
|
65
|
+
|
|
66
|
+
zim = np.sum(mask * np.tile(x[..., None], (1, 1, Nmeasures)), axis=2)
|
|
67
|
+
zim = zim / np.max(zim)
|
|
68
|
+
|
|
69
|
+
return zim
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
# def sub2ind(array_shape, rows, cols):
|
|
74
|
+
# ind = rows*array_shape[1] + cols
|
|
75
|
+
# return ind.astype(int)
|
|
76
|
+
|
|
77
|
+
# def ind2sub(array_shape, ind):
|
|
78
|
+
# rows = (ind.astype('int') / array_shape[1])
|
|
79
|
+
# cols = (ind.astype('int') % array_shape[1]) # or numpy.mod(ind.astype('int'), array_shape[1])
|
|
80
|
+
# return (int(rows), int(cols))
|
|
@@ -0,0 +1,298 @@
|
|
|
1
|
+
|
|
2
|
+
import numpy as np
|
|
3
|
+
from scipy import ndimage
|
|
4
|
+
import pywt
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
############################################################
|
|
8
|
+
## identity operator
|
|
9
|
+
############################################################
|
|
10
|
+
def Id(x):
|
|
11
|
+
"""
|
|
12
|
+
Id Opérateur identité
|
|
13
|
+
|
|
14
|
+
Args:
|
|
15
|
+
X (numpy.ndarray) signal 1D
|
|
16
|
+
ou: image non vectorisée 2D
|
|
17
|
+
|
|
18
|
+
Returns:
|
|
19
|
+
(numpy.ndarray) X
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
return x
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
############################################################
|
|
26
|
+
## differential forward and backward operators
|
|
27
|
+
############################################################
|
|
28
|
+
# gradient
|
|
29
|
+
def D(x):
|
|
30
|
+
"""
|
|
31
|
+
D Calcule le gradient par différences finies à droite.
|
|
32
|
+
Autrement dit, D(x) calcule le produit matriciel Dx.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
X (numpy.ndarray) signal 1D
|
|
36
|
+
ou: image non vectorisée 2D
|
|
37
|
+
|
|
38
|
+
Returns:
|
|
39
|
+
(numpy.ndarray) Gradient de X
|
|
40
|
+
"""
|
|
41
|
+
|
|
42
|
+
if x.ndim == 1:
|
|
43
|
+
grad = np.concatenate((x[1:] - x[:-1], [0]))/2.
|
|
44
|
+
|
|
45
|
+
elif x.ndim == 2:
|
|
46
|
+
sz = x.shape
|
|
47
|
+
Dx_im = np.concatenate(( x[:,1:] - x[:,:-1] , np.zeros((sz[0],1)) ), axis=1)/ 2.
|
|
48
|
+
Dy_im = np.concatenate(( x[1:,:] - x[:-1,:] , np.zeros((1,sz[1])) ), axis=0)/ 2.
|
|
49
|
+
|
|
50
|
+
grad = np.array([Dx_im,Dy_im])
|
|
51
|
+
return grad
|
|
52
|
+
|
|
53
|
+
def Dt(x):
|
|
54
|
+
"""
|
|
55
|
+
Dt Calcule l’adjoint gradient par différences finies à droite.
|
|
56
|
+
Autrement dit, Dt(x) calcule le produit matriciel D'x.
|
|
57
|
+
|
|
58
|
+
Args:
|
|
59
|
+
X (numpy.ndarray) signal 1D
|
|
60
|
+
ou: image non vectorisée 2D
|
|
61
|
+
|
|
62
|
+
Returns:
|
|
63
|
+
(numpy.ndarray) Divergence de X
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
if x.ndim == 1:
|
|
67
|
+
div = - np.concatenate(([x[0]], x[1:-1] - x[:-2], [-x[-2]])) /2.
|
|
68
|
+
|
|
69
|
+
elif x.ndim == 3:
|
|
70
|
+
x1 = x[0]
|
|
71
|
+
x2 = x[1]
|
|
72
|
+
div = - np.concatenate((x1[:,[0]], x1[:,1:-1] - x1[:,:-2], -x1[:,[-2]]), axis=1) /2. \
|
|
73
|
+
- np.concatenate((x2[[0],:], x2[1:-1,:] - x2[:-2,:], -x2[[-2],:]), axis=0) /2.
|
|
74
|
+
return div
|
|
75
|
+
|
|
76
|
+
# laplacian
|
|
77
|
+
def L(x):
|
|
78
|
+
"""
|
|
79
|
+
L Calcule la dérivée seconde d’un signal, ou le laplacien dans le cas d’une image.
|
|
80
|
+
Autrement dit, L(x) calcule le produit matriciel Lx.
|
|
81
|
+
|
|
82
|
+
Args:
|
|
83
|
+
X (numpy.ndarray) signal 1D
|
|
84
|
+
ou: image non vectorisée 2D
|
|
85
|
+
|
|
86
|
+
Returns:
|
|
87
|
+
(numpy.ndarray) Laplacien de X
|
|
88
|
+
"""
|
|
89
|
+
|
|
90
|
+
if x.ndim == 1:
|
|
91
|
+
ker = np.array([1, -2, 1])
|
|
92
|
+
#lap = np.convolve(x,ker,'same')
|
|
93
|
+
lap = ndimage.convolve1d(x,ker,mode='nearest')
|
|
94
|
+
elif x.ndim == 2:
|
|
95
|
+
ker = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) # V4
|
|
96
|
+
#ker = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]]) # V8
|
|
97
|
+
lap = ndimage.convolve(x,ker,mode='nearest')
|
|
98
|
+
return lap
|
|
99
|
+
|
|
100
|
+
def Lt(x):
|
|
101
|
+
"""
|
|
102
|
+
Lt Calcule l’adjoint du laplacien.
|
|
103
|
+
Autrement dit, Lt(x) calcule le produit matriciel L'x.
|
|
104
|
+
|
|
105
|
+
Args:
|
|
106
|
+
X (numpy.ndarray) signal 1D
|
|
107
|
+
ou: image non vectorisée 2D
|
|
108
|
+
|
|
109
|
+
Returns:
|
|
110
|
+
(numpy.ndarray) Adjoint du Laplacien de X
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
if x.ndim == 1:
|
|
114
|
+
ker = np.array([1, -2, 1])
|
|
115
|
+
#lap = np.correlate(x,ker,'same')
|
|
116
|
+
lap = ndimage.correlate1d(x,ker,mode='nearest')
|
|
117
|
+
elif x.ndim == 2:
|
|
118
|
+
ker = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) # V4
|
|
119
|
+
#ker = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]]) # V8
|
|
120
|
+
lap = ndimage.correlate(x,ker,mode='nearest')
|
|
121
|
+
return lap
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
############################################################
|
|
125
|
+
## Wavelet transforms
|
|
126
|
+
############################################################
|
|
127
|
+
def fwt(x,wavelet,level):
|
|
128
|
+
"""
|
|
129
|
+
P Calcule la transformée en ondelettes directe 1D.
|
|
130
|
+
|
|
131
|
+
Args:
|
|
132
|
+
x (numpy.ndarray) signal 1D
|
|
133
|
+
|
|
134
|
+
Returns:
|
|
135
|
+
(numpy.ndarray) Vecteur des coefficients de la décomposition en ondelettes de x
|
|
136
|
+
"""
|
|
137
|
+
|
|
138
|
+
dim = x.ndim
|
|
139
|
+
|
|
140
|
+
coeffs = pywt.wavedec(x, wavelet, level=level, mode="periodization")
|
|
141
|
+
coeff_arr, _, _ = pywt.ravel_coeffs(coeffs)
|
|
142
|
+
|
|
143
|
+
return coeff_arr
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def iwt(x,wavelet,level,coeffs_slices=None,coeffs_shapes=None,):
|
|
147
|
+
"""
|
|
148
|
+
P Calcule la transformée en ondelettes inverse 1D.
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
x (numpy.ndarray) Vecteur des coefficients d'ondelettes
|
|
152
|
+
|
|
153
|
+
Returns:
|
|
154
|
+
(numpy.ndarray) Signal correspondant aux coefficients d'ondelettes donnés par x
|
|
155
|
+
"""
|
|
156
|
+
|
|
157
|
+
J = level
|
|
158
|
+
N = len(x)
|
|
159
|
+
|
|
160
|
+
if coeffs_shapes is None:
|
|
161
|
+
# compute coeffs size at each level
|
|
162
|
+
sizes = [N // (2**j) for j in range(J, 0, -1)] + [N // (2**J)]
|
|
163
|
+
|
|
164
|
+
# coefficients splitting
|
|
165
|
+
start = 0
|
|
166
|
+
coeffs = []
|
|
167
|
+
for size in reversed(sizes):
|
|
168
|
+
coeffs.append(x[start:start + size])
|
|
169
|
+
start += size
|
|
170
|
+
else:
|
|
171
|
+
coeffs = pywt.unravel_coeffs(x, coeffs_slices, coeffs_shapes, output_format='wavedec')
|
|
172
|
+
|
|
173
|
+
# reconstruct corresponding signal
|
|
174
|
+
signal = pywt.waverec(coeffs, wavelet, mode="periodization")
|
|
175
|
+
|
|
176
|
+
return signal
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
def fwt2(x,wavelet,level):
|
|
180
|
+
"""
|
|
181
|
+
P Calcule la transformée en ondelettes directe 2D.
|
|
182
|
+
|
|
183
|
+
Args:
|
|
184
|
+
x (numpy.ndarray) image NON vectorisée 2D
|
|
185
|
+
|
|
186
|
+
Returns:
|
|
187
|
+
(numpy.ndarray) Vecteur des coefficients de la décomposition en ondelettes de x
|
|
188
|
+
"""
|
|
189
|
+
|
|
190
|
+
coeffs = pywt.wavedec2(x, wavelet, level=level, mode="periodization")
|
|
191
|
+
coeff_arr, _, _ = pywt.ravel_coeffs(coeffs)
|
|
192
|
+
|
|
193
|
+
return coeff_arr
|
|
194
|
+
|
|
195
|
+
def iwt2(x,wavelet,level,coeffs_slices,coeffs_shapes):
|
|
196
|
+
"""
|
|
197
|
+
P Calcule la transformée en ondelettes inverse 2D.
|
|
198
|
+
|
|
199
|
+
Args:
|
|
200
|
+
x (numpy.ndarray) Vecteur des coefficients d'ondelettes
|
|
201
|
+
|
|
202
|
+
Returns:
|
|
203
|
+
(numpy.ndarray) Image correspondante aux coefficients d'ondelettes donnés par x
|
|
204
|
+
"""
|
|
205
|
+
|
|
206
|
+
J = level
|
|
207
|
+
N = len(x)
|
|
208
|
+
|
|
209
|
+
coeffs = pywt.unravel_coeffs(x, coeffs_slices, coeffs_shapes,
|
|
210
|
+
output_format='wavedec2')
|
|
211
|
+
|
|
212
|
+
# reconstruct corresponding signal
|
|
213
|
+
image = pywt.waverec2(coeffs, wavelet, mode="periodization")
|
|
214
|
+
|
|
215
|
+
return image
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
############################################################
|
|
219
|
+
## Operator and matrix norm
|
|
220
|
+
############################################################
|
|
221
|
+
def opNorm(op,opt,dim,xn):
|
|
222
|
+
"""
|
|
223
|
+
opNorm Calcule la norme de l'opérateur OP, dont
|
|
224
|
+
l'opérateur transposé est OPT, en dimension DIM
|
|
225
|
+
|
|
226
|
+
Args:
|
|
227
|
+
OP (function) opérateur direct
|
|
228
|
+
OPT (function) opérateur adjoint
|
|
229
|
+
DIM (int) 1 or 2
|
|
230
|
+
|
|
231
|
+
Returns:
|
|
232
|
+
(float) norme de l'opérateur OP
|
|
233
|
+
"""
|
|
234
|
+
|
|
235
|
+
def T(x):
|
|
236
|
+
return opt(op(x))
|
|
237
|
+
|
|
238
|
+
# match dim:
|
|
239
|
+
# case 1:
|
|
240
|
+
# xn = np.random.standard_normal((64))
|
|
241
|
+
# case 2:
|
|
242
|
+
# xn = np.random.standard_normal((64,64))
|
|
243
|
+
|
|
244
|
+
xnn = xn
|
|
245
|
+
|
|
246
|
+
n = np.zeros((1000,),float)
|
|
247
|
+
n[1] = 1
|
|
248
|
+
tol = 1e-4
|
|
249
|
+
rhon = n[1]+2*tol
|
|
250
|
+
|
|
251
|
+
k = 1
|
|
252
|
+
while abs(n[k]-rhon)/n[k] >= tol:
|
|
253
|
+
xn = T(xnn)
|
|
254
|
+
xnn = T(xn)
|
|
255
|
+
|
|
256
|
+
rhon = n[k]
|
|
257
|
+
n[k+1] = np.sum(xnn**2)/np.sum(xn**2)
|
|
258
|
+
|
|
259
|
+
k = k+1
|
|
260
|
+
|
|
261
|
+
N = n[k-1] + 1e-16
|
|
262
|
+
return 1.01* N**(.25) # sqrt(L) gives |||T|||=|||D'D||| ie |||D|||^2
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
def matNorm(M):
|
|
266
|
+
"""
|
|
267
|
+
matNorm Calcule la norme de la matrice M
|
|
268
|
+
|
|
269
|
+
Args:
|
|
270
|
+
M (numpy.ndarray) matrice dont on souhaite calculer la norme
|
|
271
|
+
|
|
272
|
+
Returns:
|
|
273
|
+
(float) norme de la matrice M
|
|
274
|
+
"""
|
|
275
|
+
|
|
276
|
+
def T(x):
|
|
277
|
+
return np.dot(M.T, np.dot(M,x))
|
|
278
|
+
|
|
279
|
+
xn = np.random.standard_normal((M.shape[1]))
|
|
280
|
+
xnn = xn
|
|
281
|
+
|
|
282
|
+
n = np.zeros((1000,),float)
|
|
283
|
+
n[1] = 1
|
|
284
|
+
tol = 1e-4
|
|
285
|
+
rhon = n[1]+2*tol
|
|
286
|
+
|
|
287
|
+
k = 1
|
|
288
|
+
while abs(n[k]-rhon)/n[k] >= tol:
|
|
289
|
+
xn = T(xnn)
|
|
290
|
+
xnn = T(xn)
|
|
291
|
+
|
|
292
|
+
rhon = n[k]
|
|
293
|
+
n[k+1] = np.sum(xnn**2)/np.sum(xn**2)
|
|
294
|
+
|
|
295
|
+
k = k+1
|
|
296
|
+
|
|
297
|
+
N = n[k-1] + 1e-16
|
|
298
|
+
return 1.01* N**(.25) # sqrt(L) gives |||T|||=|||D'D||| ie |||D|||^2
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
from skimage.data import shepp_logan_phantom
|
|
5
|
+
from skimage.transform import rescale, resize
|
|
6
|
+
|
|
7
|
+
def phantom_shepp_logan(N):
|
|
8
|
+
"""
|
|
9
|
+
phantom_shepp_logan Génère le phantom de Shepp-Logan 2D de taille NxN.
|
|
10
|
+
|
|
11
|
+
Args:
|
|
12
|
+
N (int) Taille du phantom
|
|
13
|
+
|
|
14
|
+
Returns:
|
|
15
|
+
(numpy.ndarray) Image du phantom
|
|
16
|
+
"""
|
|
17
|
+
p = shepp_logan_phantom()
|
|
18
|
+
p = resize(p, (int(N),int(N)), anti_aliasing=False)
|
|
19
|
+
p[p<1e-10] = .1
|
|
20
|
+
|
|
21
|
+
return p
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
|
|
2
|
+
import numpy as np
|
|
3
|
+
from scipy import ndimage
|
|
4
|
+
|
|
5
|
+
from .operators import *
|
|
6
|
+
from tqdm import tqdm_notebook as tqdm
|
|
7
|
+
|
|
8
|
+
def tikhonov(opreg,A,At,z,x0,lam):
|
|
9
|
+
"""
|
|
10
|
+
tikhonov Algorithme de descente de gradient pour résoudre le problème
|
|
11
|
+
xhat = argmin ||Hx-z||_2^2 + lam.||Gx||_2^2
|
|
12
|
+
x
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
opreg (string) nom de l'opérateur G sur lequel opère la contrainte de parcimonie {'id', 'gradient', 'laplacien'}
|
|
17
|
+
A (fonction)
|
|
18
|
+
At (fonction)
|
|
19
|
+
z
|
|
20
|
+
x0 (numpy.ndarray)
|
|
21
|
+
lam (float)
|
|
22
|
+
|
|
23
|
+
Returns:
|
|
24
|
+
xhat (numpy.ndarray) solution du problème
|
|
25
|
+
loss (numpy.ndarray) évolution de la fonction de coût au cours des itérations
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
print('Running Tikhonov model with ' +opreg+ ' sparsity constraint...\n\t')
|
|
29
|
+
|
|
30
|
+
### init ###
|
|
31
|
+
dim = x0.ndim
|
|
32
|
+
match opreg:
|
|
33
|
+
case 'id':
|
|
34
|
+
G = Id
|
|
35
|
+
Gt = Id
|
|
36
|
+
case 'gradient':
|
|
37
|
+
G = D
|
|
38
|
+
Gt = Dt
|
|
39
|
+
case 'laplacien':
|
|
40
|
+
G = L
|
|
41
|
+
Gt = Lt
|
|
42
|
+
|
|
43
|
+
# operator norms
|
|
44
|
+
lipA = opNorm(A,At,dim,x0)
|
|
45
|
+
lipG = opNorm(G,Gt,dim,x0)
|
|
46
|
+
|
|
47
|
+
# cost functions
|
|
48
|
+
def f(x): # data fidelity
|
|
49
|
+
return np.sum(x**2)/2
|
|
50
|
+
|
|
51
|
+
def R(x): # regularization
|
|
52
|
+
return np.sum(x**2)/2
|
|
53
|
+
|
|
54
|
+
def E(x,lam): # total cost
|
|
55
|
+
return f(A(x)-z) + lam*R(G(x))
|
|
56
|
+
|
|
57
|
+
# proximity operator
|
|
58
|
+
def proxl1(x,gam):
|
|
59
|
+
return x - np.maximum(np.minimum(x,gam*np.ones(x.shape)),-gam*np.ones(x.shape))
|
|
60
|
+
|
|
61
|
+
### Algo ###
|
|
62
|
+
niter = 1e3; # max number of iterations
|
|
63
|
+
|
|
64
|
+
# algo hyperparameters
|
|
65
|
+
gam = .9/(2*lipA**2 + 2*lam*lipG**2); # gradient descent step
|
|
66
|
+
|
|
67
|
+
# initialize variables
|
|
68
|
+
En = np.zeros((int(niter+1),),float) * np.nan
|
|
69
|
+
xn = x0 #np.random.standard_normal((z.shape))
|
|
70
|
+
|
|
71
|
+
En[0] = E(xn,lam)
|
|
72
|
+
|
|
73
|
+
# loop parameters
|
|
74
|
+
k = 0
|
|
75
|
+
tol = 1e-10
|
|
76
|
+
stop_crit = En[0]
|
|
77
|
+
|
|
78
|
+
with tqdm(total=niter) as pbar:
|
|
79
|
+
while (k < niter) and (stop_crit > tol):
|
|
80
|
+
# xn subproblem
|
|
81
|
+
xn = xn - 2*gam*(At(A(xn)-z) + lam*Gt(G(xn)))
|
|
82
|
+
|
|
83
|
+
# compute loss
|
|
84
|
+
En[k+1] = E(xn,lam)
|
|
85
|
+
|
|
86
|
+
# update loop parameters
|
|
87
|
+
stop_crit = (En[k] - En[k+1])/En[k]
|
|
88
|
+
k += 1
|
|
89
|
+
pbar.update(1)
|
|
90
|
+
|
|
91
|
+
pbar.close()
|
|
92
|
+
xhat = xn
|
|
93
|
+
loss = En
|
|
94
|
+
|
|
95
|
+
return xhat, loss
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: imicpe
|
|
3
|
-
Version: 0.0
|
|
3
|
+
Version: 1.0.0
|
|
4
4
|
Summary: Toolbox for Maths,Signal,Image Teaching @ CPE
|
|
5
5
|
Author-email: Marion Foare <marion.foare@cpe.fr>, Eric Van Reeth <eric.vanreeth@cpe.fr>, Arthur Gautheron <arthur.gautheron@cpe.fr>
|
|
6
6
|
License: MIT License
|
|
@@ -18,6 +18,8 @@ Requires-Dist: plotly
|
|
|
18
18
|
Requires-Dist: torch
|
|
19
19
|
Requires-Dist: torchvision
|
|
20
20
|
Requires-Dist: tqdm
|
|
21
|
+
Requires-Dist: PyWavelets
|
|
22
|
+
Requires-Dist: scikit-image
|
|
21
23
|
|
|
22
24
|
|
|
23
25
|
A toolbox used for practical sessions at [CPE Lyon](https://www.cpe.fr/).
|
|
@@ -36,7 +38,6 @@ Developped and maintained for teaching usage only!
|
|
|
36
38
|
# Usage example
|
|
37
39
|
|
|
38
40
|
The example below uses the mse method available in the `optim.metrics` subpackage of `imicpe`.
|
|
39
|
-
It requires `numpy.randn` to generate a gaussian distribution of N points.
|
|
40
41
|
|
|
41
42
|
```python
|
|
42
43
|
import numpy as np
|
|
@@ -9,6 +9,13 @@ src/imicpe.egg-info/SOURCES.txt
|
|
|
9
9
|
src/imicpe.egg-info/dependency_links.txt
|
|
10
10
|
src/imicpe.egg-info/requires.txt
|
|
11
11
|
src/imicpe.egg-info/top_level.txt
|
|
12
|
+
src/imicpe/cs/__init__.py
|
|
13
|
+
src/imicpe/cs/l1.py
|
|
14
|
+
src/imicpe/cs/masks.py
|
|
15
|
+
src/imicpe/cs/metrics.py
|
|
16
|
+
src/imicpe/cs/operators.py
|
|
17
|
+
src/imicpe/cs/shepp_logan_phantom.py
|
|
18
|
+
src/imicpe/cs/tikhonov.py
|
|
12
19
|
src/imicpe/optim/__init__.py
|
|
13
20
|
src/imicpe/optim/metrics.py
|
|
14
21
|
src/imicpe/optim/operators.py
|
imicpe-0.0.9.6/README.md
DELETED
|
@@ -1,93 +0,0 @@
|
|
|
1
|
-
# toolbox
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
## Getting started
|
|
6
|
-
|
|
7
|
-
To make it easy for you to get started with GitLab, here's a list of recommended next steps.
|
|
8
|
-
|
|
9
|
-
Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
|
|
10
|
-
|
|
11
|
-
## Add your files
|
|
12
|
-
|
|
13
|
-
- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
|
|
14
|
-
- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
|
|
15
|
-
|
|
16
|
-
```
|
|
17
|
-
cd existing_repo
|
|
18
|
-
git remote add origin https://gitlab.in2p3.fr/cpe/msi/toolbox.git
|
|
19
|
-
git branch -M main
|
|
20
|
-
git push -uf origin main
|
|
21
|
-
```
|
|
22
|
-
|
|
23
|
-
## Integrate with your tools
|
|
24
|
-
|
|
25
|
-
- [ ] [Set up project integrations](https://gitlab.in2p3.fr/cpe/msi/toolbox/-/settings/integrations)
|
|
26
|
-
|
|
27
|
-
## Collaborate with your team
|
|
28
|
-
|
|
29
|
-
- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
|
|
30
|
-
- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
|
|
31
|
-
- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
|
|
32
|
-
- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
|
|
33
|
-
- [ ] [Set auto-merge](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
|
|
34
|
-
|
|
35
|
-
## Test and Deploy
|
|
36
|
-
|
|
37
|
-
Use the built-in continuous integration in GitLab.
|
|
38
|
-
|
|
39
|
-
- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
|
|
40
|
-
- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing (SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
|
|
41
|
-
- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
|
|
42
|
-
- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
|
|
43
|
-
- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
|
|
44
|
-
|
|
45
|
-
***
|
|
46
|
-
|
|
47
|
-
# Editing this README
|
|
48
|
-
|
|
49
|
-
When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thanks to [makeareadme.com](https://www.makeareadme.com/) for this template.
|
|
50
|
-
|
|
51
|
-
## Suggestions for a good README
|
|
52
|
-
|
|
53
|
-
Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
|
|
54
|
-
|
|
55
|
-
## Name
|
|
56
|
-
Choose a self-explaining name for your project.
|
|
57
|
-
|
|
58
|
-
## Description
|
|
59
|
-
Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
|
|
60
|
-
|
|
61
|
-
## Badges
|
|
62
|
-
On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
|
|
63
|
-
|
|
64
|
-
## Visuals
|
|
65
|
-
Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
|
|
66
|
-
|
|
67
|
-
## Installation
|
|
68
|
-
Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
|
|
69
|
-
|
|
70
|
-
## Usage
|
|
71
|
-
Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
|
|
72
|
-
|
|
73
|
-
## Support
|
|
74
|
-
Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
|
|
75
|
-
|
|
76
|
-
## Roadmap
|
|
77
|
-
If you have ideas for releases in the future, it is a good idea to list them in the README.
|
|
78
|
-
|
|
79
|
-
## Contributing
|
|
80
|
-
State if you are open to contributions and what your requirements are for accepting them.
|
|
81
|
-
|
|
82
|
-
For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
|
|
83
|
-
|
|
84
|
-
You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
|
|
85
|
-
|
|
86
|
-
## Authors and acknowledgment
|
|
87
|
-
Show your appreciation to those who have contributed to the project.
|
|
88
|
-
|
|
89
|
-
## License
|
|
90
|
-
For open source projects, say how it is licensed.
|
|
91
|
-
|
|
92
|
-
## Project status
|
|
93
|
-
If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
__version__="0.0.9.6"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|