img-phy-sim 0.3__tar.gz → 0.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,23 +1,44 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: img-phy-sim
3
- Version: 0.3
4
- Summary: A simulation library for image physics.
5
- Home-page: https://github.com/xXAI-botXx/Image-Physics-Simulation
6
- Download-URL: https://github.com/xXAI-botXx/Image-Physics-Simulation/archive/v_03.tar.gz
3
+ Version: 0.8
4
+ Summary: Physical Simulations on Images.
5
+ Home-page: https://github.com/M-106/Image-Physics-Simulation
6
+ Download-URL: https://github.com/M-106/Image-Physics-Simulation/archive/v_04.tar.gz
7
7
  Author: Tobia Ippolito
8
- License: MIT
9
- Project-URL: Homepage, https://github.com/xXAI-botXx/Image-Physics-Simulation
10
- Project-URL: Documentation, https://xxai-botxx.github.io/Image-Physics-Simulation/img_phy_sim
8
+ Project-URL: Documentation, https://M-106.github.io/Image-Physics-Simulation/img_phy_sim
9
+ Project-URL: Source, https://github.com/M-106/Image-Physics-Simulation
10
+ Keywords: Simulation,Computer-Vision,Physgen
11
11
  Classifier: Programming Language :: Python :: 3
12
- Classifier: License :: OSI Approved :: MIT License
13
- Requires-Python: >=3.8
12
+ Classifier: Operating System :: OS Independent
13
+ Classifier: Programming Language :: Python :: 3.8
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Classifier: Programming Language :: Python :: 3.13
14
19
  Description-Content-Type: text/markdown
15
20
  Requires-Dist: numpy
16
21
  Requires-Dist: opencv-python
17
22
  Requires-Dist: matplotlib
18
23
  Requires-Dist: scikit-image
24
+ Requires-Dist: joblib
25
+ Requires-Dist: shapely
26
+ Provides-Extra: full
27
+ Requires-Dist: torch; extra == "full"
28
+ Requires-Dist: torchvision; extra == "full"
29
+ Requires-Dist: datasets==3.6.0; extra == "full"
30
+ Requires-Dist: prime_printer; extra == "full"
31
+ Dynamic: author
32
+ Dynamic: classifier
33
+ Dynamic: description
34
+ Dynamic: description-content-type
19
35
  Dynamic: download-url
20
36
  Dynamic: home-page
37
+ Dynamic: keywords
38
+ Dynamic: project-url
39
+ Dynamic: provides-extra
40
+ Dynamic: requires-dist
41
+ Dynamic: summary
21
42
 
22
43
  # **I**mage-**P**hysics-**S**imulation
23
44
 
@@ -31,10 +52,14 @@ Contents:
31
52
  - [Raytracing Computation](#raytracing-computation)
32
53
  - [Raytracing Tutorial](#raytracing-tutorial)
33
54
  - [Performance Test](#performance-test)
55
+ - [Ray-Tracing Formats](#ray-tracing-formats)
34
56
 
35
- [> Documentation <](https://xxai-botxx.github.io/Image-Physics-Simulation/img_phy_sim.html)
57
+ [> Documentation <](https://M-106.github.io/Image-Physics-Simulation/img_phy_sim.html)
36
58
 
37
- <img src="./img_phy_sim/raytracing_example.png"></img>
59
+ <img src="https://github.com/M-106/Image-Physics-Simulation/raw/main/img_phy_sim/raytracing_example.png" width="46%"></img>
60
+ <img src="https://github.com/M-106/Image-Physics-Simulation/raw/main/img_phy_sim/ism_example.png" width="46%"></img>
61
+
62
+ > Ray-Beams and ISM
38
63
 
39
64
  <br><br>
40
65
 
@@ -45,18 +70,27 @@ This repo only need some basic libraries:
45
70
  - `matplotlib`
46
71
  - `opencv-python`
47
72
  - `scikit-image`
73
+ - `joblib`
74
+
75
+ If you want to use the `data` module then this package needs also:
76
+ - `torch`
77
+ - `torchvision`
78
+ - `datasets`
79
+ - `prime_printer`
48
80
 
49
81
  You can download / clone this repo and run the example notebook via following Python/Anaconda setup:
50
82
  ```bash
51
83
  conda create -n img-phy-sim python=3.13 pip -y
52
84
  conda activate img-phy-sim
53
- pip install numpy matplotlib opencv-python ipython jupyter shapely prime_printer datasets==3.6.0 scikit-image
85
+ pip install numpy matplotlib opencv-python ipython jupyter shapely prime_printer datasets==3.6.0 scikit-image joblib shapely
54
86
  pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
55
87
  ```
56
88
 
57
89
  You can also use this repo via [Python Package Index (PyPI)](https://pypi.org/) as a package:
58
90
  ```bash
59
91
  pip install img-phy-sim
92
+ # or for using `data` module:
93
+ pip install img-phy-sim[full]
60
94
  ```
61
95
 
62
96
  Here the instructions to use the package version of `ips` and an anconda setup:
@@ -64,11 +98,13 @@ Here the instructions to use the package version of `ips` and an anconda setup:
64
98
  conda create -n img-phy-sim python=3.13 pip -y
65
99
  conda activate img-phy-sim
66
100
  pip install img-phy-sim
101
+ # or for using `data` module:
102
+ pip install img-phy-sim[full]
67
103
  ```
68
104
 
69
- To run the example code you still need:
105
+ To run the example code you also need (this is included in `img-phy-sim[full]`):
70
106
  ```bash
71
- pip install prime_printer shapely datasets==3.6.0
107
+ pip install prime_printer datasets==3.6.0
72
108
  pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
73
109
  ```
74
110
 
@@ -76,20 +112,20 @@ pip install torch torchvision torchaudio --index-url https://download.pytorch.or
76
112
 
77
113
  ### Download Example Data
78
114
 
79
- You can download Physgen data if wanted via the `physgen_dataset.py` using following commands:
115
+ You can download Physgen data if wanted via the `data.py` using following commands:
80
116
 
81
117
  ```bash
82
118
  conda activate img-phy-sim
83
- cd "D:\Informatik\Projekte\Image-Physics-Simulation" && D:
84
- python physgen_dataset.py --output_real_path ./datasets/physgen_train_raw/real --output_osm_path ./datasets/physgen_train_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode train
119
+ cd "D:\Informatik\Projekte\Image-Physics-Simulation\img_phy_sim" && D:
120
+ python data.py --output_real_path ./datasets/physgen_train_raw/real --output_osm_path ./datasets/physgen_train_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode train
85
121
  ```
86
122
 
87
123
  ```bash
88
- python physgen_dataset.py --output_real_path ./datasets/physgen_test_raw/real --output_osm_path ./datasets/physgen_test_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode test
124
+ python data.py --output_real_path ./datasets/physgen_test_raw/real --output_osm_path ./datasets/physgen_test_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode test
89
125
  ```
90
126
 
91
127
  ```bash
92
- python physgen_dataset.py --output_real_path ./datasets/physgen_val_raw/real --output_osm_path ./datasets/physgen_val_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode validation
128
+ python data.py --output_real_path ./datasets/physgen_val_raw/real --output_osm_path ./datasets/physgen_val_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode validation
93
129
  ```
94
130
 
95
131
  <br><br>
@@ -183,6 +219,23 @@ class PhysGenDataset(Dataset):
183
219
  - `open`: load your saved rays txt file
184
220
  - `get_linear_degree_range`: get a range for your beam-directions -> example beams between 0-360 with stepsize 10
185
221
  - `merge_rays`: merge 2 rays to one 'object'
222
+ - `ism`
223
+ - `reflect_point_across_infinite_line`: Reflects a point across the infinite line defined by two endpoints
224
+ - `paths_to_rays`: Converts polyline paths into your ray/segment representation, optionally normalizing points to ([0,1]) image space
225
+ - `reflection_map_to_img`: Normalizes a float reflection/energy map to a uint8 visualization image in ([0,255])
226
+ - `Segment`: Immutable dataclass representing a 2D line segment with convenience access to its endpoints
227
+ - `_seg_seg_intersection`: Computes the unique intersection point of two finite 2D segments, returning None for parallel/colinear/no-hit cases
228
+ - `_bresenham_points`: Generates all integer grid points along a line between two pixels using Bresenham’s algorithm
229
+ - `is_visible_raster`: Tests line-of-sight between two points by checking whether Bresenham-sampled pixels hit an occlusion raster
230
+ - `build_wall_mask`: Builds a binary 0/255 wall mask from an input image using explicit wall labels or mask-like heuristics
231
+ - `get_wall_segments_from_mask`: Extracts wall boundary contours from a binary mask and converts them into geometric Segment primitives
232
+ - `build_occlusion_from_wallmask`: Produces a binary occlusion raster (optionally dilated) used for fast visibility checks
233
+ - `enumerate_wall_sequences_indices`: Enumerates all reflection sequences (as wall-index tuples) up to a maximum reflection order
234
+ - `precompute_image_sources`: Computes image-source positions for each reflection sequence by iteratively mirroring the source across the corresponding walls
235
+ - `build_path_for_sequence`: Reconstructs the specular reflection polyline for a given wall sequence by backtracking virtual receivers and segment intersections
236
+ - `path_energy`: Computes a simple physically-inspired path contribution based on total path length and per-reflection losses
237
+ - `check_path_visibility_raster`: Verifies that every segment of a candidate path is unobstructed using raster line-of-sight tests
238
+ - `compute_reflection_map`: Evaluates all valid ISM paths from one source to a receiver grid and accumulates path counts
186
239
  - `img`
187
240
  - `open`: load an image via Open-CV
188
241
  - `save`: save an image
@@ -190,6 +243,21 @@ class PhysGenDataset(Dataset):
190
243
  - `advanced_imshow`: show multiple images with many options
191
244
  - `show_image_with_line_and_profile`: show an image with a red line + the values of the image on this line
192
245
  - `plot_image_with_values`: plot an image with it's value plotted and averaged to see your image in values
246
+ - `math`
247
+ - `get_linear_degree_range`: generate evenly spaced degrees within a range
248
+ - `degree_to_vector`: convert a degree angle to a 2D unit vector
249
+ - `vector_to_degree`: convert a 2D vector into its corresponding degree
250
+ - `normalize_point`: Normalize a 2D point to [0, 1] range
251
+ - `denormalize_point`: Denormalize a 2D point to pixel coordinates
252
+ - `numpy_info`: Get statistics about an numpy array
253
+ - `eval`
254
+ - `calc_metrices`: calculate F1, Recall and Precision between rays (or optinal an image) and an image
255
+ - `data`
256
+ - `PhysGenDataset()`: PyTorch dataset wrapper for PhysGen with flexible input/output configuration
257
+ - `resize_tensor_to_divisible_by_14`: resize tensors so height and width are divisible by 14
258
+ - `get_dataloader`: create a PyTorch DataLoader for the PhysGen dataset
259
+ - `get_image`: retrieve a single dataset sample (optionally as NumPy arrays)
260
+ - `save_dataset`: export PhysGen inputs and targets as PNG images to disk
193
261
 
194
262
 
195
263
  That are not all functions but the ones which should be most useful. Check out the documentation for all functions.
@@ -209,17 +277,12 @@ That are not all functions but the ones which should be most useful. Check out t
209
277
 
210
278
  ### Raytracing Tutorial
211
279
 
212
- [See also the example notebook 👀](./example/physgen.ipynb)
280
+ [See also the example notebook 👀](./example/physgen.ipynb)
213
281
 
214
282
  In general you need to do:
215
- 1. **Load your Image** -> using `ips.img.open`
216
- 2. **Calculate the Wall-Map** -> using `ips.ray_tracing.get_wall_map`
217
- 3. **Calculate the Beams** -> using `ips.img.open`
218
- 4. **Draw (Export) the Beams** -> using `ips.img.open`
283
+ 1. Load your Image + Calculate the Wall-Map + **Calculate the Beams** -> using `ips.ray_tracing.trace_beams`
284
+ 2. **Draw (Export) the Beams on a image** -> using `ips.ray_tracing.draw_rays`
219
285
 
220
- Using this lib, this is reduced to:
221
- 1. **Calculate the Beams** (including Wall-Map and loading your Image) -> using `ips.img.open`
222
- 2. **Draw (Export) the Beams** -> using `ips.img.open`
223
286
 
224
287
  See this example:
225
288
 
@@ -303,7 +366,7 @@ ips.ray_tracing.print_rays_info(rays)
303
366
 
304
367
  Following features are included:
305
368
  - Setting custom startposition for raytracing
306
- - Adding custom beam shooting positions in degree (where 0° is the east/right of the image and 90° is south/bottom and so on)
369
+ - Adding custom beam shooting positions in degree (where 0° is the east/right of the image and 90° is south/bottom and so on)
307
370
  - Setting reflexion order (how many maxium reflexions should be calculated)
308
371
  - Setting if the border of the image should be reflective or not
309
372
  - And setting if the input image should be scaled and if the rays itself should be scaled
@@ -348,7 +411,17 @@ I hope this little tutorial could be helpful. Good luck with your project <3
348
411
 
349
412
  <br>
350
413
 
351
- [> See the notebook/code <](./example/physgen_performance.ipynb)
414
+ [> See the notebook/code <](./example/physgen_performance.ipynb) [(or parallel notebook)](./example/physgen_parallel_performance.ipynb)
415
+
416
+ <br><br>
417
+
418
+ Comparison no parallel vs parallel computing:
419
+ - Parallel Mean Experiment time: 3.48 seconds (mean first experiment: 8.85 seconds)
420
+ - Standard Mean Experiment time: 4.53 seconds (mean first experiment: 16.00 seconds)
421
+
422
+ <br><br>
423
+
424
+ Parameter Experiments:
352
425
 
353
426
  Executed with 50 random images.
354
427
 
@@ -461,13 +534,130 @@ Summary:
461
534
  The Stepsize/amount of rays have the biggest impact on the performance. The other parameters have rather a small impact.
462
535
 
463
536
 
464
- | **Experiment** | **Number of Experiments** | **avg_time (mean ± std)** | **avg_compute_time (mean ± std)** | **avg_draw_time (mean ± std)** | **rel_change (avg_time)** | **Trend** | **Conclusion** |
537
+ | **Experiment** | **Number of Experiments** | **avg_time (mean ± std)** | **avg_compute_time (mean ± std)** | **avg_draw_time (mean ± std)** | **rel_change (avg_time)** | **Trend** | **Conclusion** |
465
538
  | --- | --- | --- | --- | --- | --- | --- | --- |
466
- | **1. Ray Amount** | 4 | 16.01 ± 23.63 s | 15.11 ± 22.23 s | 0.90 ± 1.39 s | **351.22 %** | Increasing (+17.31 s/exp) | Performance changes **significantly** |
467
- | **2. Ray Scaling** | 2 | 0.57 ± 0.01 s | 0.56 ± 0.00 s | 0.016 ± 0.006 s | **2.73 %** | Decreasing (0.016 s/exp) | Performance changes **slightly** |
468
- | **3. Reflection Order** | 6 | 0.93 ± 0.74 s | 0.90 ± 0.72 s | 0.029 ± 0.016 s | **227.71 %** | Increasing (+0.37 s/exp) | Performance changes **significantly** |
469
- | **4. Detail Draw** | 2 | 0.63 ± 0.05 s | 0.56 ± 0.00 s | 0.071 ± 0.050 s | **16.39 %** | Increasing (+0.10 s/exp) | Performance changes **slightly** |
539
+ | **1. Ray Amount** | 4 | 16.01 ± 23.63 s | 15.11 ± 22.23 s | 0.90 ± 1.39 s | **351.22 %** | Increasing (+17.31 s/exp) | Performance changes **significantly** |
540
+ | **2. Ray Scaling** | 2 | 0.57 ± 0.01 s | 0.56 ± 0.00 s | 0.016 ± 0.006 s | **2.73 %** | Decreasing (−0.016 s/exp) | Performance changes **slightly** |
541
+ | **3. Reflection Order** | 6 | 0.93 ± 0.74 s | 0.90 ± 0.72 s | 0.029 ± 0.016 s | **227.71 %** | Increasing (+0.37 s/exp) | Performance changes **significantly** |
542
+ | **4. Detail Draw** | 2 | 0.63 ± 0.05 s | 0.56 ± 0.00 s | 0.071 ± 0.050 s | **16.39 %** | Increasing (+0.10 s/exp) | Performance changes **slightly** |
543
+
544
+ <!--
545
+ <br><br>
546
+
547
+ ### Optimization
548
+
549
+ <br>
550
+
551
+ Speed comparison between `standard`, `with joblib` and `joblib + CPython`.
552
+
553
+ FIXME -> table
554
+
555
+
556
+ <br>
557
+
558
+ Cython is Pyhon code which is closer to C. Instead of compiling to Python-Bytecode (`.pyc`), your code will be compiled as C-Extension (`.so`/`.pyd`).
559
+
560
+ There are 3 layers of Cython optimization:
561
+ 1. Writing in `.pyx` files not `.py` files -> you can just rename your file<br>
562
+ - +5% to +30% speedup
563
+ 2. Set `cdef` for local variables + helper-functions + `cpdef` for API-functions -> add types<br>
564
+ Example:
565
+ ```python
566
+ cdef double x0, y0, dx, dy
567
+ cdef int cell_x, cell_y, steps
568
+ ```
569
+ - +5x to +50x speedup
570
+ 3. Add types everywhere, especially in numpy arrays. <br>
571
+ Example:
572
+ ```python
573
+ cimport numpy as cnp
574
+
575
+ def trace(..., cnp.ndarray[double, ndim=2] img):
576
+ cdef double value = img[y, x]
577
+ ```
578
+ - +20× to +500×
579
+
580
+
581
+
582
+ | **Optimization Layer** | **Effort** | **Speedup** | **What It Does** |
583
+ |---|---|---|---|
584
+ | **1. `.py` → `.pyx`** | minimal | **+5–30%** | Reduces Python interpreter overhead and applies basic Cython optimizations |
585
+ | **2. `cdef` variables & `cpdef` functions** | medium | **+5×–50×** | Moves loops and math into pure C, eliminating Python object overhead |
586
+ | **3. `cimport numpy` + typed NumPy arrays** | high | **+20×–500×** | Enables direct C‑level memory access with zero Python indexing overhead |
587
+
588
+
589
+
590
+ > Use `pip install cypthon` to install it.
591
+
592
+ In `setup.py` you need following changes:
593
+ ```python
594
+ from setuptools import setup, find_packages, Extension
595
+ from Cython.Build import cythonize
596
+
597
+ ...
598
+
599
+ ext_1 = Extension(
600
+ name="img_phy_sim.ray_tracing",
601
+ sources=["img_phy_sim/ray_tracing.pyx"],
602
+ include_dirs=[],
603
+ extra_compile_args=["-O3"],
604
+ )
605
+
606
+ ext_2 = Extension(
607
+ name="img_phy_sim.math",
608
+ sources=["img_phy_sim/math.pyx"],
609
+ include_dirs=[],
610
+ extra_compile_args=["-O3"],
611
+ )
612
+
613
+ setup(
614
+ ext_modules=cythonize(
615
+ [ext_1, ext_2],
616
+ compiler_directives={
617
+ "language_level": "3",
618
+ "boundscheck": False,
619
+ "wraparound": False,
620
+ "initializedcheck": False,
621
+ "nonecheck": False,
622
+ "cdivision": True,
623
+ },
624
+ annotate=True,
625
+ ),
626
+ ...
627
+ )
628
+ ```
629
+
630
+ -->
631
+
632
+ <br><br>
633
+
634
+ ### Ray-Tracing Formats
635
+
636
+ <br>
637
+
638
+
639
+ **Your current approach (DDA / Pixel Ray Marching)**
640
+ * **Forward integration**: Ray is propagated step by step through a **discrete grid** (pixel/grid).
641
+ * **Collision model**: A "hit" occurs when the ray enters a **wall cell** (quantization).
642
+ * **Reflection**: Occurs **locally at the collision pixel** with a (often quantized) normal/orientation.
643
+ * Result: good for "many rays" / field of view, but **not deterministic with regard to reflection paths** (you need directions/sampling).
644
+
645
+ **Noise modeling style (image source method / geometric acoustics)**
646
+ * **Path construction**: Reflection paths are constructed **deterministically** via **mirror sources** (virtual sources).
647
+ * **Continuous geometry**: works in $\mathbb{R}^2 / \mathbb{R}^3$ with lines/segments/polygons ("infinity-based" in the sense of *continuous space*, not raster).
648
+ * **Validation**: Path is then accepted/rejected via **visibility/occlusion checks**.
649
+ * Result: Delivers **all specular paths up to order N** without angle sampling.
650
+
651
+ Short form:
652
+
653
+ * **Pixel-based + stochastic/directed** (original approach here) vs. **continuous + deterministically constructed** (noise modelling).
654
+
655
+
656
+ <br>
657
+
658
+ How to use which of them in `img-phy-sim`:
470
659
 
660
+ FIXME
471
661
 
472
662
 
473
663