img-phy-sim 0.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,473 @@
1
+ Metadata-Version: 2.4
2
+ Name: img-phy-sim
3
+ Version: 0.3
4
+ Summary: A simulation library for image physics.
5
+ Home-page: https://github.com/xXAI-botXx/Image-Physics-Simulation
6
+ Download-URL: https://github.com/xXAI-botXx/Image-Physics-Simulation/archive/v_03.tar.gz
7
+ Author: Tobia Ippolito
8
+ License: MIT
9
+ Project-URL: Homepage, https://github.com/xXAI-botXx/Image-Physics-Simulation
10
+ Project-URL: Documentation, https://xxai-botxx.github.io/Image-Physics-Simulation/img_phy_sim
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: License :: OSI Approved :: MIT License
13
+ Requires-Python: >=3.8
14
+ Description-Content-Type: text/markdown
15
+ Requires-Dist: numpy
16
+ Requires-Dist: opencv-python
17
+ Requires-Dist: matplotlib
18
+ Requires-Dist: scikit-image
19
+ Dynamic: download-url
20
+ Dynamic: home-page
21
+
22
+ # **I**mage-**P**hysics-**S**imulation
23
+
24
+ This is a library for 2D Ray-Tracing on an image. For example the Physgen Dataset, [see here](https://huggingface.co/datasets/mspitzna/physicsgen).
25
+
26
+ Contents:
27
+ - [Installation](#installation)
28
+ - [Download Example Data](#download-example-data)
29
+ - [Pre-Compute Rays](#pre-compute-rays)
30
+ - [Library Overview](#library-overview)
31
+ - [Raytracing Computation](#raytracing-computation)
32
+ - [Raytracing Tutorial](#raytracing-tutorial)
33
+ - [Performance Test](#performance-test)
34
+
35
+ [> Documentation <](https://xxai-botxx.github.io/Image-Physics-Simulation/img_phy_sim.html)
36
+
37
+ <img src="./img_phy_sim/raytracing_example.png"></img>
38
+
39
+ <br><br>
40
+
41
+ ### Installation
42
+
43
+ This repo only need some basic libraries:
44
+ - `numpy`
45
+ - `matplotlib`
46
+ - `opencv-python`
47
+ - `scikit-image`
48
+
49
+ You can download / clone this repo and run the example notebook via following Python/Anaconda setup:
50
+ ```bash
51
+ conda create -n img-phy-sim python=3.13 pip -y
52
+ conda activate img-phy-sim
53
+ pip install numpy matplotlib opencv-python ipython jupyter shapely prime_printer datasets==3.6.0 scikit-image
54
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
55
+ ```
56
+
57
+ You can also use this repo via [Python Package Index (PyPI)](https://pypi.org/) as a package:
58
+ ```bash
59
+ pip install img-phy-sim
60
+ ```
61
+
62
+ Here the instructions to use the package version of `ips` and an anconda setup:
63
+ ```bash
64
+ conda create -n img-phy-sim python=3.13 pip -y
65
+ conda activate img-phy-sim
66
+ pip install img-phy-sim
67
+ ```
68
+
69
+ To run the example code you still need:
70
+ ```bash
71
+ pip install prime_printer shapely datasets==3.6.0
72
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
73
+ ```
74
+
75
+ <br><br>
76
+
77
+ ### Download Example Data
78
+
79
+ You can download Physgen data if wanted via the `physgen_dataset.py` using following commands:
80
+
81
+ ```bash
82
+ conda activate img-phy-sim
83
+ cd "D:\Informatik\Projekte\Image-Physics-Simulation" && D:
84
+ python physgen_dataset.py --output_real_path ./datasets/physgen_train_raw/real --output_osm_path ./datasets/physgen_train_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode train
85
+ ```
86
+
87
+ ```bash
88
+ python physgen_dataset.py --output_real_path ./datasets/physgen_test_raw/real --output_osm_path ./datasets/physgen_test_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode test
89
+ ```
90
+
91
+ ```bash
92
+ python physgen_dataset.py --output_real_path ./datasets/physgen_val_raw/real --output_osm_path ./datasets/physgen_val_raw/osm --variation sound_reflection --input_type osm --output_type standard --data_mode validation
93
+ ```
94
+
95
+ <br><br>
96
+
97
+ ### Pre-Compute Rays
98
+
99
+ We can use the saving/loading functionality of the `ips`-framework to reduce the computational cost during training a deep learning model.
100
+
101
+ The [ray_tracing_saver.py](./example/ray_tracing_saver.py) is an example of how you can pre-compute all your rays.
102
+
103
+ During training you can load the rays like this (which will try to load pre-computed but still can compute during runtime.):
104
+ ```python
105
+ class PhysGenDataset(Dataset):
106
+
107
+ # def __init__(self, ...):
108
+ # ...
109
+
110
+ # def __len__(self):
111
+ # ..
112
+
113
+ def __getitem__(self, idx):
114
+ sample = self.dataset[idx]
115
+
116
+ if self.input_type == "base_simulation":
117
+ input_img = self.basesimulation_dataset[idx]["soundmap"]
118
+ else:
119
+ input_img = sample["osm"] # PIL Image
120
+ target_img = sample["soundmap"] # PIL Image
121
+
122
+ input_img = self.transform(input_img)
123
+ target_img = self.transform(target_img)
124
+
125
+ # Fix real image size 512x512 > 256x256
126
+ input_img = F.interpolate(input_img.unsqueeze(0), size=(256, 256), mode='bilinear', align_corners=False)
127
+ input_img = input_img.squeeze(0)
128
+
129
+
130
+ # reflexions
131
+ if self.reflexion_channels:
132
+ height, width = np.squeeze(input_img.cpu().numpy(), axis=0).shape
133
+ ray_path = os.path.join("./rays", self.mode, str(self.reflexion_steps), f"rays_[{str(idx)}].txt")
134
+ if os.path.exists(ray_path):
135
+ rays = ips.ray_tracing.open(path=ray_path)
136
+ else:
137
+ rays = ips.ray_tracing.trace_beams(rel_position=(0.5, 0.5),
138
+ img_src=np.squeeze(input_img.cpu().numpy(), axis=0),
139
+ directions_in_degree=ips.math.get_linear_degree_range(step_size=(self.reflexion_steps/360)*100),
140
+ wall_values=[0],
141
+ wall_thickness=0,
142
+ img_border_also_collide=False,
143
+ reflexion_order=3,
144
+ should_scale_rays=True,
145
+ should_scale_img=False)
146
+ ray_img = ips.ray_tracing.draw_rays(rays,
147
+ detail_draw=False,
148
+ output_format='channels' if self.reflexions_as_channels else 'single_image',
149
+ img_background=None,
150
+ ray_value=[50, 100, 255],
151
+ ray_thickness=1,
152
+ img_shape=(height, width),
153
+ should_scale_rays_to_image=True,
154
+ show_only_reflections=True)
155
+ # (256, 256)
156
+ ray_img = self.transform(ray_img)
157
+ ray_img = ray_img.float()
158
+ if ray_img.ndim == 2:
159
+ ray_img = ray_img.unsqueeze(0) # (1, H, W)
160
+
161
+ # Merging with input image
162
+ if ray_img.shape[1:] == input_img.shape[1:]:
163
+ input_img = torch.cat((input_img, ray_img), dim=0)
164
+ else:
165
+ raise ValueError(f"Ray image shape {ray_img.shape} does not match input image shape {input_img.shape}.")
166
+
167
+ return input_img, target_img, idx
168
+ ```
169
+
170
+
171
+ <br><br>
172
+
173
+ ### Library Overview
174
+
175
+ - Img-Phy-Sim (ips)
176
+ - `ray_tracing`
177
+ - `get_wall_map`: extracting a wall-map from an image
178
+ - `trace-beam`: calculates one ray
179
+ - `trace_beams`: load an image, extract the wall-map and trace multiple beams
180
+ - `draw_rays`: draw/export the rays as/inside an image
181
+ - `print_rays_info`: get some interesting informations about your rays
182
+ - `save`: save your rays as txt file
183
+ - `open`: load your saved rays txt file
184
+ - `get_linear_degree_range`: get a range for your beam-directions -> example beams between 0-360 with stepsize 10
185
+ - `merge_rays`: merge 2 rays to one 'object'
186
+ - `img`
187
+ - `open`: load an image via Open-CV
188
+ - `save`: save an image
189
+ - `imshow`: show an single image (without much features)
190
+ - `advanced_imshow`: show multiple images with many options
191
+ - `show_image_with_line_and_profile`: show an image with a red line + the values of the image on this line
192
+ - `plot_image_with_values`: plot an image with it's value plotted and averaged to see your image in values
193
+
194
+
195
+ That are not all functions but the ones which should be most useful. Check out the documentation for all functions.
196
+
197
+ <br><br>
198
+
199
+ ### Raytracing Computation
200
+
201
+ 1. A map is created which contains the vector of all "walls" (collision objects) in the image as a single degree value. This is done using the `ips.ray_tracing.get_wall_map`-function, which internally uses the canny-edge detection algorithm from OpenCV. The whole process is masked to get the edges for the given wall-values. In order to put the degree/direction values into the wall-map, we following the `Bresenham's line algorithm` to go from one point pixel-wise to the end-point of the edge and on the way we put the value of thes epixels and the pixels around, depending of the used *thickness*.
202
+ 2. The `ips.ray_tracing.trace_beam`-function goes from pixel to pixel and checks if the pixel-value is a "wall" (collision-object). If yes, a new beam is added using the wall-map to calculate the right direction-vector. To know, which pixel is the next pixel, we use the average vector between the direction vector (the target direction which is available since the beginning of a beam calculation) and a vector pointing to the closest point of the optimal way/vector. Why so complicated? Because we move per pixel and pixel does only know 8 directions, but we want to move more smooth in more directions. The direction vector from the beginning is helpful but will lead every update to the same pixel, because it does not use the information of the current position. THis is bad because so we will move very wrong if going only after the goal vector with our limited step-directions. And so we add the described "to the perfect line"-vector into the calculation weighted a bit less then the real direction (0.5).<br>The "perfect line" is calculated very easy. At the beginning of a beam we move in small steps (like 0.01) forward towards the target direction, ignoring pixel-wise approach, until we hit with x or y a boundary of the image.
203
+
204
+ > You may have noticed that we use a own and Bresenham's line algorithm for moving in the pixel-space, which have no further reason and we may only use one of them in future.
205
+
206
+
207
+
208
+ <br><br>
209
+
210
+ ### Raytracing Tutorial
211
+
212
+ [See also the example notebook 👀](./example/physgen.ipynb)
213
+
214
+ In general you need to do:
215
+ 1. **Load your Image** -> using `ips.img.open`
216
+ 2. **Calculate the Wall-Map** -> using `ips.ray_tracing.get_wall_map`
217
+ 3. **Calculate the Beams** -> using `ips.img.open`
218
+ 4. **Draw (Export) the Beams** -> using `ips.img.open`
219
+
220
+ Using this lib, this is reduced to:
221
+ 1. **Calculate the Beams** (including Wall-Map and loading your Image) -> using `ips.img.open`
222
+ 2. **Draw (Export) the Beams** -> using `ips.img.open`
223
+
224
+ See this example:
225
+
226
+ ```python
227
+ rays = ips.ray_tracing.trace_beams(rel_position=[0.5, 0.5],
228
+ img_src=img_src,
229
+ directions_in_degree=ips.ray_tracing.get_linear_degree_range(step_size=10),
230
+ wall_values=None,
231
+ wall_thickness=1,
232
+ img_border_also_collide=False,
233
+ reflexion_order=1,
234
+ should_scale_rays=True,
235
+ should_scale_img=True)
236
+ ips.ray_tracing.print_rays_info(rays)
237
+
238
+ ray_img = ips.ray_tracing.draw_rays(rays, detail_draw=False,
239
+ output_format="single_image",
240
+ img_background=img, ray_value=2, ray_thickness=1,
241
+ img_shape=(256, 256), dtype=float, standard_value=0,
242
+ should_scale_rays_to_image=True, original_max_width=None, original_max_height=None)
243
+ ips.img.imshow(ray_img, size=5)
244
+ ```
245
+
246
+ **Rays structure:**<br>
247
+ The Raytracing result is a list of rays, where every ray can consist of multiple beams which comes from reflections. One beam is a list of multiple points, where the first point is the start point and the last element is the end point.
248
+
249
+ Example:
250
+ ```text
251
+ [
252
+ [[start-point, ..., end-point], [start-point, ..., end-point]], # one reflection
253
+ [[start-point, ..., end-point]], # no reflection
254
+ # ...
255
+ ]
256
+ ```
257
+
258
+ <br><br>
259
+
260
+ Now let's go step by step how to apply ray-tracing to your image.
261
+
262
+ <br><br>
263
+
264
+ **1. Analyzing your image**<br>
265
+ First it is important you know the values of your image and which values should consider an object for collision. For that use the tools given with this package:
266
+ ```python
267
+ img = ips.img.open(src=img_src, should_scale=False, should_print=True)
268
+ ips.img.imshow(img, size=4, axis_off=False)
269
+ ips.img.show_image_with_line_and_profile(imgs=[img], axis='row', index=None, titles=None, figsize=(10, 8));
270
+ ```
271
+ If you see super small values then you might tried to scale your already scaled image.
272
+
273
+ <br><br>
274
+
275
+ **2. Get the Collision Ready**<br>
276
+ Next it is helpful to check if your collision is ready by running the wall-map by yourself (later you will use the wrapper, but here you can find the right params).
277
+
278
+ ```python
279
+ wall_map = ips.ray_tracing.get_wall_map(img, wall_values=None, thickness=0)
280
+ ips.img.imshow(wall_map, size=4, axis_off=False)
281
+ ips.img.show_image_with_line_and_profile(imgs=[wall_map], axis='row', index=None, titles=None, figsize=(10, 8));
282
+ ```
283
+
284
+ You can give `wall_values` a list of values, which you want to collide with.
285
+
286
+ <br><br>
287
+
288
+ **3. Let's start tracing the rays!**<br>
289
+ Now everything should be ready for tracing the rays. The following code include loading your image and creating the wall-map.
290
+
291
+ ```python
292
+ rays = ips.ray_tracing.trace_beams(rel_position=[0.5, 0.5],
293
+ img_src="./my_image.png",
294
+ directions_in_degree=ips.ray_tracing.get_linear_degree_range(start=0, stop=360, step_size=10),
295
+ wall_values=[0.0],
296
+ wall_thickness=0,
297
+ img_border_also_collide=False,
298
+ reflexion_order=1,
299
+ should_scale_rays=True,
300
+ should_scale_img=True)
301
+ ips.ray_tracing.print_rays_info(rays)
302
+ ```
303
+
304
+ Following features are included:
305
+ - Setting custom startposition for raytracing
306
+ - Adding custom beam shooting positions in degree (where 0° is the east/right of the image and 90° is south/bottom and so on)
307
+ - Setting reflexion order (how many maxium reflexions should be calculated)
308
+ - Setting if the border of the image should be reflective or not
309
+ - And setting if the input image should be scaled and if the rays itself should be scaled
310
+ - You can also set the "wall" object values, which should get detected as objects with collision. If set to None, the programm will find all clear edges.
311
+ - Setting if the rays should be in 0.0-1.0 range or the real image range
312
+ - Whether to scale the image or not
313
+
314
+ <br><br>
315
+
316
+ **4. Export your rays**<br>
317
+ At the end you might want to use your rays in an image. We provide you with a draw/export function with many flexibility.
318
+
319
+ Features are:
320
+ - Custom value of ray-traces
321
+ - Thickness of ray-traces
322
+ - Drawing on empty image or an existing image
323
+ - Given image-shape, dtype and fill-value (standard-value)
324
+ - Scaling rays to the given image
325
+ - Different Format Types
326
+ - One Image -> `single_image`
327
+ - Multiple Images (each ray on one image) -> `multiple_images`
328
+ - One Image and each channel is one ray -> `channels`
329
+ - Showing only the reflexions
330
+ - Give different values for different reflexion orders
331
+ ```
332
+ ray_img = ips.ray_tracing.draw_rays(rays, detail_draw=False,
333
+ output_format="single_image",
334
+ img_background=None, ray_value=2, ray_thickness=1,
335
+ img_shape=(256, 256), dtype=float, standard_value=0,
336
+ should_scale_rays_to_image=False, original_max_width=None, original_max_height=None,
337
+ show_only_reflections=False)
338
+ ips.img.imshow(ray_img, size=4)
339
+ ```
340
+
341
+ <br><br>
342
+
343
+ I hope this little tutorial could be helpful. Good luck with your project <3
344
+
345
+ <br><br>
346
+
347
+ ### Performance Test
348
+
349
+ <br>
350
+
351
+ [> See the notebook/code <](./example/physgen_performance.ipynb)
352
+
353
+ Executed with 50 random images.
354
+
355
+ Standard Settings were:
356
+ - test_amount=50
357
+ - step_size=10
358
+ - reflexion_order=3
359
+ - ray_scaling=True
360
+ - detail_draw=False
361
+ - output_format="channels"
362
+
363
+ <br>
364
+
365
+ Investigated Factors:
366
+ - `Ray Amount` (step_size)
367
+ - `Scaling of Rays` (ray_scaling)
368
+ - `Reflexion Order` (reflexion_order)
369
+ - `Detail Drawing of Rays` (detail_draw)
370
+
371
+
372
+ <br><br>
373
+
374
+ Experiment 1: Ray Amount
375
+
376
+ ```text
377
+ Number of experiments: 4
378
+
379
+ avg_time : mean=16.0064, std=23.6257, min=0.5744, max=56.7918, rel_change=351.22%
380
+ median_time : mean=15.4329, std=22.7908, min=0.5546, max=54.7799, rel_change=351.36%
381
+ var_time : mean=17.1176, std=29.2774, min=0.0076, max=67.8259, rel_change=396.19%
382
+ avg_compute_time : mean=15.1070, std=22.2322, min=0.5529, max=53.4815, rel_change=350.36%
383
+ median_compute_time : mean=14.5613, std=21.4404, min=0.5346, max=51.5723, rel_change=350.50%
384
+ var_compute_time : mean=14.7739, std=25.2362, min=0.0074, max=58.4825, rel_change=395.80%
385
+ avg_draw_time : mean=0.8994, std=1.3940, min=0.0215, max=3.3103, rel_change=365.67%
386
+ median_draw_time : mean=0.8373, std=1.2914, min=0.0207, max=3.0705, rel_change=364.22%
387
+ var_draw_time : mean=0.1525, std=0.2639, min=0.0000, max=0.6096, rel_change=399.67%
388
+
389
+ Overall trend in avg_time: increasing (1.7306e+01 change per experiment)
390
+ Conclusion: Performance changes significantly across experiments.
391
+ ```
392
+
393
+
394
+ <br><br>
395
+
396
+ Experiment 2: Ray Scaling
397
+
398
+ ```text
399
+ Number of experiments: 2
400
+
401
+ avg_time : mean=0.5744, std=0.0078, min=0.5666, max=0.5823, rel_change=2.73%
402
+ median_time : mean=0.5558, std=0.0080, min=0.5478, max=0.5637, rel_change=2.86%
403
+ var_time : mean=0.0078, std=0.0000, min=0.0078, max=0.0078, rel_change=0.16%
404
+ avg_compute_time : mean=0.5581, std=0.0024, min=0.5557, max=0.5605, rel_change=0.86%
405
+ median_compute_time : mean=0.5398, std=0.0026, min=0.5372, max=0.5423, rel_change=0.95%
406
+ var_compute_time : mean=0.0075, std=0.0000, min=0.0075, max=0.0075, rel_change=0.13%
407
+ avg_draw_time : mean=0.0163, std=0.0055, min=0.0108, max=0.0218, rel_change=66.90%
408
+ median_draw_time : mean=0.0160, std=0.0053, min=0.0106, max=0.0213, rel_change=66.86%
409
+ var_draw_time : mean=0.0000, std=0.0000, min=0.0000, max=0.0000, rel_change=67.83%
410
+
411
+ Overall trend in avg_time: decreasing (-1.5690e-02 change per experiment)
412
+ Conclusion: Performance changes slightly across experiments.
413
+ ```
414
+
415
+ <br><br>
416
+
417
+ Experiment 3: Reflexion Order
418
+
419
+ ```text
420
+ Number of experiments: 6
421
+
422
+ avg_time : mean=0.9300, std=0.7354, min=0.3231, max=2.4409, rel_change=227.71%
423
+ median_time : mean=0.8502, std=0.6128, min=0.3253, max=2.0917, rel_change=207.76%
424
+ var_time : mean=0.4635, std=0.9329, min=0.0002, max=2.5421, rel_change=548.45%
425
+ avg_compute_time : mean=0.9014, std=0.7194, min=0.3088, max=2.3798, rel_change=229.74%
426
+ median_compute_time : mean=0.8241, std=0.6002, min=0.3108, max=2.0401, rel_change=209.83%
427
+ var_compute_time : mean=0.4449, std=0.8953, min=0.0002, max=2.4396, rel_change=548.32%
428
+ avg_draw_time : mean=0.0286, std=0.0160, min=0.0143, max=0.0611, rel_change=163.74%
429
+ median_draw_time : mean=0.0266, std=0.0129, min=0.0144, max=0.0521, rel_change=142.21%
430
+ var_draw_time : mean=0.0002, std=0.0004, min=0.0000, max=0.0011, rel_change=550.06%
431
+
432
+ Overall trend in avg_time: increasing (3.7365e-01 change per experiment)
433
+ Conclusion: Performance changes significantly across experiments.
434
+ ```
435
+
436
+ <br><br>
437
+
438
+ Experiment 4: Detail Draw
439
+
440
+ ```text
441
+ Number of experiments: 2
442
+
443
+ avg_time : mean=0.6282, std=0.0515, min=0.5767, max=0.6796, rel_change=16.39%
444
+ median_time : mean=0.6101, std=0.0507, min=0.5593, max=0.6608, rel_change=16.63%
445
+ var_time : mean=0.0115, std=0.0040, min=0.0074, max=0.0155, rel_change=70.54%
446
+ avg_compute_time : mean=0.5572, std=0.0020, min=0.5552, max=0.5592, rel_change=0.70%
447
+ median_compute_time : mean=0.5430, std=0.0047, min=0.5383, max=0.5478, rel_change=1.75%
448
+ var_compute_time : mean=0.0074, std=0.0002, min=0.0072, max=0.0076, rel_change=5.32%
449
+ avg_draw_time : mean=0.0709, std=0.0495, min=0.0214, max=0.1204, rel_change=139.55%
450
+ median_draw_time : mean=0.0663, std=0.0454, min=0.0209, max=0.1117, rel_change=137.05%
451
+ var_draw_time : mean=0.0011, std=0.0011, min=0.0000, max=0.0022, rel_change=199.31%
452
+
453
+ Overall trend in avg_time: increasing (1.0292e-01 change per experiment)
454
+ Conclusion: Performance changes slightly across experiments.
455
+ ```
456
+
457
+ <br><br>
458
+
459
+ Summary:
460
+
461
+ The Stepsize/amount of rays have the biggest impact on the performance. The other parameters have rather a small impact.
462
+
463
+
464
+ | **Experiment** | **Number of Experiments** | **avg_time (mean ± std)** | **avg_compute_time (mean ± std)** | **avg_draw_time (mean ± std)** | **rel_change (avg_time)** | **Trend** | **Conclusion** |
465
+ | --- | --- | --- | --- | --- | --- | --- | --- |
466
+ | **1. Ray Amount** | 4 | 16.01 ± 23.63 s | 15.11 ± 22.23 s | 0.90 ± 1.39 s | **351.22 %** | Increasing (+17.31 s/exp) | Performance changes **significantly** |
467
+ | **2. Ray Scaling** | 2 | 0.57 ± 0.01 s | 0.56 ± 0.00 s | 0.016 ± 0.006 s | **2.73 %** | Decreasing (−0.016 s/exp) | Performance changes **slightly** |
468
+ | **3. Reflection Order** | 6 | 0.93 ± 0.74 s | 0.90 ± 0.72 s | 0.029 ± 0.016 s | **227.71 %** | Increasing (+0.37 s/exp) | Performance changes **significantly** |
469
+ | **4. Detail Draw** | 2 | 0.63 ± 0.05 s | 0.56 ± 0.00 s | 0.071 ± 0.050 s | **16.39 %** | Increasing (+0.10 s/exp) | Performance changes **slightly** |
470
+
471
+
472
+
473
+