ilovetools 0.2.1__tar.gz → 0.2.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ilovetools-0.2.1/ilovetools.egg-info → ilovetools-0.2.3}/PKG-INFO +1 -1
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/__init__.py +1 -1
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/__init__.py +134 -0
- ilovetools-0.2.3/ilovetools/ml/clustering.py +1107 -0
- ilovetools-0.2.3/ilovetools/ml/timeseries.py +984 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3/ilovetools.egg-info}/PKG-INFO +1 -1
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools.egg-info/SOURCES.txt +2 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/pyproject.toml +1 -1
- {ilovetools-0.2.1 → ilovetools-0.2.3}/setup.py +1 -1
- {ilovetools-0.2.1 → ilovetools-0.2.3}/LICENSE +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/MANIFEST.in +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/README.md +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ai/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ai/embeddings.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ai/inference.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ai/llm_helpers.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/audio/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/automation/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/conversion/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/data/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/data/feature_engineering.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/data/preprocessing.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/database/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/datetime/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/files/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/image/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/cross_validation.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/dimensionality.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/ensemble.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/feature_selection.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/imbalanced.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/interpretation.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/metrics.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/pipeline.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/ml/tuning.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/security/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/text/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/utils/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/validation/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools/web/__init__.py +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools.egg-info/dependency_links.txt +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/ilovetools.egg-info/top_level.txt +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/requirements.txt +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/setup.cfg +0 -0
- {ilovetools-0.2.1 → ilovetools-0.2.3}/tests/__init__.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ilovetools
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.3
|
|
4
4
|
Summary: A comprehensive Python utility library with modular tools for AI/ML, data processing, and daily programming needs
|
|
5
5
|
Home-page: https://github.com/AliMehdi512/ilovetools
|
|
6
6
|
Author: Ali Mehdi
|
|
@@ -247,6 +247,76 @@ from .dimensionality import (
|
|
|
247
247
|
biplot,
|
|
248
248
|
)
|
|
249
249
|
|
|
250
|
+
from .timeseries import (
|
|
251
|
+
# Full names
|
|
252
|
+
moving_average,
|
|
253
|
+
exponential_moving_average,
|
|
254
|
+
weighted_moving_average,
|
|
255
|
+
seasonal_decompose,
|
|
256
|
+
difference_series,
|
|
257
|
+
autocorrelation,
|
|
258
|
+
partial_autocorrelation,
|
|
259
|
+
detect_trend,
|
|
260
|
+
detect_seasonality,
|
|
261
|
+
remove_trend,
|
|
262
|
+
remove_seasonality,
|
|
263
|
+
rolling_statistics,
|
|
264
|
+
lag_features,
|
|
265
|
+
time_series_split_cv,
|
|
266
|
+
forecast_accuracy,
|
|
267
|
+
# Abbreviated aliases
|
|
268
|
+
ma,
|
|
269
|
+
ema,
|
|
270
|
+
wma,
|
|
271
|
+
decompose,
|
|
272
|
+
diff,
|
|
273
|
+
acf,
|
|
274
|
+
pacf,
|
|
275
|
+
trend,
|
|
276
|
+
seasonality,
|
|
277
|
+
detrend,
|
|
278
|
+
deseasonalize,
|
|
279
|
+
rolling_stats,
|
|
280
|
+
lag,
|
|
281
|
+
ts_cv,
|
|
282
|
+
forecast_acc,
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
from .clustering import (
|
|
286
|
+
# Full names
|
|
287
|
+
kmeans_clustering,
|
|
288
|
+
hierarchical_clustering,
|
|
289
|
+
dbscan_clustering,
|
|
290
|
+
elbow_method,
|
|
291
|
+
silhouette_score,
|
|
292
|
+
euclidean_distance,
|
|
293
|
+
manhattan_distance,
|
|
294
|
+
cosine_similarity_distance,
|
|
295
|
+
initialize_centroids,
|
|
296
|
+
assign_clusters,
|
|
297
|
+
update_centroids,
|
|
298
|
+
calculate_inertia,
|
|
299
|
+
dendrogram_data,
|
|
300
|
+
cluster_purity,
|
|
301
|
+
davies_bouldin_index,
|
|
302
|
+
# Abbreviated aliases
|
|
303
|
+
kmeans,
|
|
304
|
+
hierarchical,
|
|
305
|
+
dbscan,
|
|
306
|
+
elbow,
|
|
307
|
+
silhouette,
|
|
308
|
+
euclidean,
|
|
309
|
+
manhattan,
|
|
310
|
+
cosine_dist,
|
|
311
|
+
init_centroids,
|
|
312
|
+
assign,
|
|
313
|
+
update,
|
|
314
|
+
inertia,
|
|
315
|
+
dendrogram,
|
|
316
|
+
purity,
|
|
317
|
+
davies_bouldin,
|
|
318
|
+
)
|
|
319
|
+
|
|
250
320
|
__all__ = [
|
|
251
321
|
# Metrics (full names)
|
|
252
322
|
'accuracy_score',
|
|
@@ -466,4 +536,68 @@ __all__ = [
|
|
|
466
536
|
'whiten',
|
|
467
537
|
'loadings',
|
|
468
538
|
'biplot',
|
|
539
|
+
# Time Series (full names)
|
|
540
|
+
'moving_average',
|
|
541
|
+
'exponential_moving_average',
|
|
542
|
+
'weighted_moving_average',
|
|
543
|
+
'seasonal_decompose',
|
|
544
|
+
'difference_series',
|
|
545
|
+
'autocorrelation',
|
|
546
|
+
'partial_autocorrelation',
|
|
547
|
+
'detect_trend',
|
|
548
|
+
'detect_seasonality',
|
|
549
|
+
'remove_trend',
|
|
550
|
+
'remove_seasonality',
|
|
551
|
+
'rolling_statistics',
|
|
552
|
+
'lag_features',
|
|
553
|
+
'time_series_split_cv',
|
|
554
|
+
'forecast_accuracy',
|
|
555
|
+
# Time Series (aliases)
|
|
556
|
+
'ma',
|
|
557
|
+
'ema',
|
|
558
|
+
'wma',
|
|
559
|
+
'decompose',
|
|
560
|
+
'diff',
|
|
561
|
+
'acf',
|
|
562
|
+
'pacf',
|
|
563
|
+
'trend',
|
|
564
|
+
'seasonality',
|
|
565
|
+
'detrend',
|
|
566
|
+
'deseasonalize',
|
|
567
|
+
'rolling_stats',
|
|
568
|
+
'lag',
|
|
569
|
+
'ts_cv',
|
|
570
|
+
'forecast_acc',
|
|
571
|
+
# Clustering (full names)
|
|
572
|
+
'kmeans_clustering',
|
|
573
|
+
'hierarchical_clustering',
|
|
574
|
+
'dbscan_clustering',
|
|
575
|
+
'elbow_method',
|
|
576
|
+
'silhouette_score',
|
|
577
|
+
'euclidean_distance',
|
|
578
|
+
'manhattan_distance',
|
|
579
|
+
'cosine_similarity_distance',
|
|
580
|
+
'initialize_centroids',
|
|
581
|
+
'assign_clusters',
|
|
582
|
+
'update_centroids',
|
|
583
|
+
'calculate_inertia',
|
|
584
|
+
'dendrogram_data',
|
|
585
|
+
'cluster_purity',
|
|
586
|
+
'davies_bouldin_index',
|
|
587
|
+
# Clustering (aliases)
|
|
588
|
+
'kmeans',
|
|
589
|
+
'hierarchical',
|
|
590
|
+
'dbscan',
|
|
591
|
+
'elbow',
|
|
592
|
+
'silhouette',
|
|
593
|
+
'euclidean',
|
|
594
|
+
'manhattan',
|
|
595
|
+
'cosine_dist',
|
|
596
|
+
'init_centroids',
|
|
597
|
+
'assign',
|
|
598
|
+
'update',
|
|
599
|
+
'inertia',
|
|
600
|
+
'dendrogram',
|
|
601
|
+
'purity',
|
|
602
|
+
'davies_bouldin',
|
|
469
603
|
]
|