ilovetools 0.2.13__tar.gz → 0.2.15__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. {ilovetools-0.2.13/ilovetools.egg-info → ilovetools-0.2.15}/PKG-INFO +2 -2
  2. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/__init__.py +2 -2
  3. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/__init__.py +114 -2
  4. ilovetools-0.2.15/ilovetools/ml/activations.py +822 -0
  5. ilovetools-0.2.15/ilovetools/ml/loss_functions.py +867 -0
  6. {ilovetools-0.2.13 → ilovetools-0.2.15/ilovetools.egg-info}/PKG-INFO +2 -2
  7. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools.egg-info/SOURCES.txt +4 -0
  8. {ilovetools-0.2.13 → ilovetools-0.2.15}/pyproject.toml +2 -2
  9. {ilovetools-0.2.13 → ilovetools-0.2.15}/setup.py +2 -2
  10. ilovetools-0.2.15/tests/test_activations.py +356 -0
  11. ilovetools-0.2.15/tests/test_loss_functions.py +324 -0
  12. {ilovetools-0.2.13 → ilovetools-0.2.15}/LICENSE +0 -0
  13. {ilovetools-0.2.13 → ilovetools-0.2.15}/MANIFEST.in +0 -0
  14. {ilovetools-0.2.13 → ilovetools-0.2.15}/README.md +0 -0
  15. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ai/__init__.py +0 -0
  16. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ai/embeddings.py +0 -0
  17. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ai/inference.py +0 -0
  18. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ai/llm_helpers.py +0 -0
  19. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/audio/__init__.py +0 -0
  20. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/automation/__init__.py +0 -0
  21. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/automation/file_organizer.py +0 -0
  22. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/conversion/__init__.py +0 -0
  23. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/conversion/config_converter.py +0 -0
  24. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/conversion/config_converter_fixed_header.py +0 -0
  25. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/data/__init__.py +0 -0
  26. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/data/feature_engineering.py +0 -0
  27. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/data/preprocessing.py +0 -0
  28. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/database/__init__.py +0 -0
  29. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/datetime/__init__.py +0 -0
  30. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/email/__init__.py +0 -0
  31. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/email/template_engine.py +0 -0
  32. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/files/__init__.py +0 -0
  33. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/image/__init__.py +0 -0
  34. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/anomaly_detection.py +0 -0
  35. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/clustering.py +0 -0
  36. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/cross_validation.py +0 -0
  37. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/dimensionality.py +0 -0
  38. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/ensemble.py +0 -0
  39. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/feature_selection.py +0 -0
  40. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/gradient_descent.py +0 -0
  41. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/imbalanced.py +0 -0
  42. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/interpretation.py +0 -0
  43. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/metrics.py +0 -0
  44. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/neural_network.py +0 -0
  45. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/pipeline.py +0 -0
  46. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/regularization.py +0 -0
  47. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/timeseries.py +0 -0
  48. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/ml/tuning.py +0 -0
  49. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/security/__init__.py +0 -0
  50. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/security/password_checker.py +0 -0
  51. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/text/__init__.py +0 -0
  52. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/utils/__init__.py +0 -0
  53. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/utils/cache_system.py +0 -0
  54. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/utils/logger.py +0 -0
  55. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/utils/rate_limiter.py +0 -0
  56. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/utils/retry.py +0 -0
  57. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/validation/__init__.py +0 -0
  58. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/validation/data_validator.py +0 -0
  59. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/web/__init__.py +0 -0
  60. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/web/scraper.py +0 -0
  61. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools/web/url_shortener.py +0 -0
  62. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools.egg-info/dependency_links.txt +0 -0
  63. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools.egg-info/requires.txt +0 -0
  64. {ilovetools-0.2.13 → ilovetools-0.2.15}/ilovetools.egg-info/top_level.txt +0 -0
  65. {ilovetools-0.2.13 → ilovetools-0.2.15}/requirements.txt +0 -0
  66. {ilovetools-0.2.13 → ilovetools-0.2.15}/setup.cfg +0 -0
  67. {ilovetools-0.2.13 → ilovetools-0.2.15}/tests/__init__.py +0 -0
  68. {ilovetools-0.2.13 → ilovetools-0.2.15}/tests/test_gradient_descent.py +0 -0
  69. {ilovetools-0.2.13 → ilovetools-0.2.15}/tests/test_neural_network.py +0 -0
  70. {ilovetools-0.2.13 → ilovetools-0.2.15}/tests/test_regularization.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ilovetools
3
- Version: 0.2.13
3
+ Version: 0.2.15
4
4
  Summary: A comprehensive Python utility library with modular tools for AI/ML, data processing, and daily programming needs
5
5
  Home-page: https://github.com/AliMehdi512/ilovetools
6
6
  Author: Ali Mehdi
@@ -11,7 +11,7 @@ Project-URL: Repository, https://github.com/AliMehdi512/ilovetools
11
11
  Project-URL: Issues, https://github.com/AliMehdi512/ilovetools/issues
12
12
  Project-URL: Bug Reports, https://github.com/AliMehdi512/ilovetools/issues
13
13
  Project-URL: Source, https://github.com/AliMehdi512/ilovetools
14
- Keywords: utilities,tools,ai,ml,data-processing,automation,gradient-descent,optimization,regularization
14
+ Keywords: utilities,tools,ai,ml,data-processing,automation,gradient-descent,optimization,regularization,loss-functions,activation-functions
15
15
  Classifier: Development Status :: 3 - Alpha
16
16
  Classifier: Intended Audience :: Developers
17
17
  Classifier: Topic :: Software Development :: Libraries :: Python Modules
@@ -2,8 +2,8 @@
2
2
  ilovetools - A comprehensive Python utility library
3
3
  """
4
4
 
5
- __version__ = "0.2.12"
6
- # release marker: 0.2.12
5
+ __version__ = "0.2.14"
6
+ # release marker: 0.2.14
7
7
  __author__ = "Ali Mehdi"
8
8
  __email__ = "ali.mehdi.dev579@gmail.com"
9
9
 
@@ -347,7 +347,7 @@ from .neural_network import (
347
347
  mse_loss,
348
348
  binary_crossentropy,
349
349
  categorical_crossentropy,
350
- huber_loss,
350
+ huber_loss as nn_huber_loss,
351
351
  # Weight Initialization
352
352
  xavier_init,
353
353
  he_init,
@@ -425,6 +425,65 @@ from .regularization import (
425
425
  apply_weight_decay,
426
426
  )
427
427
 
428
+ from .loss_functions import (
429
+ # Regression Losses
430
+ mean_squared_error_loss,
431
+ mean_absolute_error_loss,
432
+ root_mean_squared_error_loss,
433
+ huber_loss,
434
+ log_cosh_loss,
435
+ quantile_loss,
436
+ mean_squared_logarithmic_error,
437
+ # Classification Losses
438
+ binary_crossentropy_loss,
439
+ categorical_crossentropy_loss,
440
+ sparse_categorical_crossentropy_loss,
441
+ hinge_loss,
442
+ squared_hinge_loss,
443
+ categorical_hinge_loss,
444
+ focal_loss,
445
+ kullback_leibler_divergence,
446
+ # Segmentation Losses
447
+ dice_loss,
448
+ dice_coefficient,
449
+ iou_loss,
450
+ tversky_loss,
451
+ focal_tversky_loss,
452
+ # Utilities
453
+ combined_loss,
454
+ weighted_loss,
455
+ )
456
+
457
+ from .activations import (
458
+ # Basic Activations
459
+ sigmoid_activation,
460
+ tanh_activation,
461
+ relu_activation,
462
+ leaky_relu_activation,
463
+ elu_activation,
464
+ selu_activation,
465
+ gelu_activation,
466
+ swish_activation,
467
+ mish_activation,
468
+ softplus_activation,
469
+ softsign_activation,
470
+ hard_sigmoid_activation,
471
+ hard_tanh_activation,
472
+ softmax_activation,
473
+ log_softmax_activation,
474
+ # Derivatives
475
+ sigmoid_derivative as sigmoid_deriv,
476
+ tanh_derivative as tanh_deriv,
477
+ relu_derivative as relu_deriv,
478
+ leaky_relu_derivative,
479
+ elu_derivative,
480
+ swish_derivative,
481
+ softplus_derivative,
482
+ # Utilities
483
+ apply_activation,
484
+ get_activation_function,
485
+ )
486
+
428
487
  __all__ = [
429
488
  # Metrics (full names)
430
489
  'accuracy_score',
@@ -734,7 +793,7 @@ __all__ = [
734
793
  'mse_loss',
735
794
  'binary_crossentropy',
736
795
  'categorical_crossentropy',
737
- 'huber_loss',
796
+ 'nn_huber_loss',
738
797
  # Neural Network - Weight Initialization
739
798
  'xavier_init',
740
799
  'he_init',
@@ -804,4 +863,57 @@ __all__ = [
804
863
  # Regularization - Utilities
805
864
  'compute_regularization_loss',
806
865
  'apply_weight_decay',
866
+ # Loss Functions - Regression
867
+ 'mean_squared_error_loss',
868
+ 'mean_absolute_error_loss',
869
+ 'root_mean_squared_error_loss',
870
+ 'huber_loss',
871
+ 'log_cosh_loss',
872
+ 'quantile_loss',
873
+ 'mean_squared_logarithmic_error',
874
+ # Loss Functions - Classification
875
+ 'binary_crossentropy_loss',
876
+ 'categorical_crossentropy_loss',
877
+ 'sparse_categorical_crossentropy_loss',
878
+ 'hinge_loss',
879
+ 'squared_hinge_loss',
880
+ 'categorical_hinge_loss',
881
+ 'focal_loss',
882
+ 'kullback_leibler_divergence',
883
+ # Loss Functions - Segmentation
884
+ 'dice_loss',
885
+ 'dice_coefficient',
886
+ 'iou_loss',
887
+ 'tversky_loss',
888
+ 'focal_tversky_loss',
889
+ # Loss Functions - Utilities
890
+ 'combined_loss',
891
+ 'weighted_loss',
892
+ # Activation Functions - Basic
893
+ 'sigmoid_activation',
894
+ 'tanh_activation',
895
+ 'relu_activation',
896
+ 'leaky_relu_activation',
897
+ 'elu_activation',
898
+ 'selu_activation',
899
+ 'gelu_activation',
900
+ 'swish_activation',
901
+ 'mish_activation',
902
+ 'softplus_activation',
903
+ 'softsign_activation',
904
+ 'hard_sigmoid_activation',
905
+ 'hard_tanh_activation',
906
+ 'softmax_activation',
907
+ 'log_softmax_activation',
908
+ # Activation Functions - Derivatives
909
+ 'sigmoid_deriv',
910
+ 'tanh_deriv',
911
+ 'relu_deriv',
912
+ 'leaky_relu_derivative',
913
+ 'elu_derivative',
914
+ 'swish_derivative',
915
+ 'softplus_derivative',
916
+ # Activation Functions - Utilities
917
+ 'apply_activation',
918
+ 'get_activation_function',
807
919
  ]