ilovetools 0.2.11__tar.gz → 0.2.13__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ilovetools-0.2.11/ilovetools.egg-info → ilovetools-0.2.13}/PKG-INFO +2 -2
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/__init__.py +2 -2
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/conversion/config_converter.py +1 -1
- ilovetools-0.2.13/ilovetools/conversion/config_converter_fixed_header.py +14 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/__init__.py +181 -0
- ilovetools-0.2.13/ilovetools/ml/gradient_descent.py +977 -0
- ilovetools-0.2.13/ilovetools/ml/neural_network.py +980 -0
- ilovetools-0.2.13/ilovetools/ml/regularization.py +603 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13/ilovetools.egg-info}/PKG-INFO +2 -2
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools.egg-info/SOURCES.txt +8 -1
- {ilovetools-0.2.11 → ilovetools-0.2.13}/pyproject.toml +2 -2
- {ilovetools-0.2.11 → ilovetools-0.2.13}/setup.py +33 -6
- ilovetools-0.2.13/tests/test_gradient_descent.py +362 -0
- ilovetools-0.2.13/tests/test_neural_network.py +301 -0
- ilovetools-0.2.13/tests/test_regularization.py +322 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/LICENSE +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/MANIFEST.in +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/README.md +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ai/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ai/embeddings.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ai/inference.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ai/llm_helpers.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/audio/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/automation/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/automation/file_organizer.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/conversion/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/data/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/data/feature_engineering.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/data/preprocessing.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/database/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/datetime/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/email/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/email/template_engine.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/files/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/image/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/anomaly_detection.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/clustering.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/cross_validation.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/dimensionality.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/ensemble.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/feature_selection.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/imbalanced.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/interpretation.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/metrics.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/pipeline.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/timeseries.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/ml/tuning.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/security/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/security/password_checker.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/text/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/utils/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/utils/cache_system.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/utils/logger.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/utils/rate_limiter.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/utils/retry.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/validation/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/validation/data_validator.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/web/__init__.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/web/scraper.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools/web/url_shortener.py +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools.egg-info/dependency_links.txt +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools.egg-info/requires.txt +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/ilovetools.egg-info/top_level.txt +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/requirements.txt +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/setup.cfg +0 -0
- {ilovetools-0.2.11 → ilovetools-0.2.13}/tests/__init__.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ilovetools
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.13
|
|
4
4
|
Summary: A comprehensive Python utility library with modular tools for AI/ML, data processing, and daily programming needs
|
|
5
5
|
Home-page: https://github.com/AliMehdi512/ilovetools
|
|
6
6
|
Author: Ali Mehdi
|
|
@@ -11,7 +11,7 @@ Project-URL: Repository, https://github.com/AliMehdi512/ilovetools
|
|
|
11
11
|
Project-URL: Issues, https://github.com/AliMehdi512/ilovetools/issues
|
|
12
12
|
Project-URL: Bug Reports, https://github.com/AliMehdi512/ilovetools/issues
|
|
13
13
|
Project-URL: Source, https://github.com/AliMehdi512/ilovetools
|
|
14
|
-
Keywords: utilities,tools,ai,ml,data-processing,automation
|
|
14
|
+
Keywords: utilities,tools,ai,ml,data-processing,automation,gradient-descent,optimization,regularization
|
|
15
15
|
Classifier: Development Status :: 3 - Alpha
|
|
16
16
|
Classifier: Intended Audience :: Developers
|
|
17
17
|
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
"""
|
|
2
|
+
FIXED HEADER FOR config_converter.py
|
|
3
|
+
Copy lines 1-9 to replace the broken import in config_converter.py
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
"""
|
|
7
|
+
Configuration File Converter
|
|
8
|
+
Convert between JSON, YAML, TOML, XML, and INI formats
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
import json
|
|
12
|
+
import re
|
|
13
|
+
from typing import Any, Dict, List, Union, Optional
|
|
14
|
+
from collections import OrderedDict
|
|
@@ -330,6 +330,101 @@ from .anomaly_detection import (
|
|
|
330
330
|
visualize_anomalies,
|
|
331
331
|
)
|
|
332
332
|
|
|
333
|
+
from .neural_network import (
|
|
334
|
+
# Activation Functions
|
|
335
|
+
sigmoid,
|
|
336
|
+
relu,
|
|
337
|
+
leaky_relu,
|
|
338
|
+
tanh,
|
|
339
|
+
softmax,
|
|
340
|
+
elu,
|
|
341
|
+
swish,
|
|
342
|
+
# Activation Derivatives
|
|
343
|
+
sigmoid_derivative,
|
|
344
|
+
relu_derivative,
|
|
345
|
+
tanh_derivative,
|
|
346
|
+
# Loss Functions
|
|
347
|
+
mse_loss,
|
|
348
|
+
binary_crossentropy,
|
|
349
|
+
categorical_crossentropy,
|
|
350
|
+
huber_loss,
|
|
351
|
+
# Weight Initialization
|
|
352
|
+
xavier_init,
|
|
353
|
+
he_init,
|
|
354
|
+
random_init,
|
|
355
|
+
zeros_init,
|
|
356
|
+
ones_init,
|
|
357
|
+
# Layer Operations
|
|
358
|
+
dense_forward,
|
|
359
|
+
dense_backward,
|
|
360
|
+
dropout_forward,
|
|
361
|
+
batch_norm_forward,
|
|
362
|
+
# Optimization
|
|
363
|
+
sgd_update,
|
|
364
|
+
momentum_update,
|
|
365
|
+
adam_update,
|
|
366
|
+
rmsprop_update,
|
|
367
|
+
# Utilities
|
|
368
|
+
one_hot_encode,
|
|
369
|
+
shuffle_data,
|
|
370
|
+
mini_batch_generator,
|
|
371
|
+
calculate_accuracy,
|
|
372
|
+
confusion_matrix_nn,
|
|
373
|
+
)
|
|
374
|
+
|
|
375
|
+
from .gradient_descent import (
|
|
376
|
+
# Basic Gradient Descent
|
|
377
|
+
gradient_descent,
|
|
378
|
+
batch_gradient_descent,
|
|
379
|
+
stochastic_gradient_descent,
|
|
380
|
+
mini_batch_gradient_descent,
|
|
381
|
+
# Advanced Optimizers
|
|
382
|
+
momentum_optimizer,
|
|
383
|
+
nesterov_momentum,
|
|
384
|
+
adagrad_optimizer,
|
|
385
|
+
rmsprop_optimizer,
|
|
386
|
+
adam_optimizer,
|
|
387
|
+
adamw_optimizer,
|
|
388
|
+
nadam_optimizer,
|
|
389
|
+
adadelta_optimizer,
|
|
390
|
+
# Learning Rate Schedules
|
|
391
|
+
step_decay_schedule,
|
|
392
|
+
exponential_decay_schedule,
|
|
393
|
+
cosine_annealing_schedule,
|
|
394
|
+
linear_warmup_schedule,
|
|
395
|
+
polynomial_decay_schedule,
|
|
396
|
+
# Utilities
|
|
397
|
+
compute_gradient,
|
|
398
|
+
gradient_clipping,
|
|
399
|
+
check_convergence,
|
|
400
|
+
line_search,
|
|
401
|
+
compute_learning_rate,
|
|
402
|
+
)
|
|
403
|
+
|
|
404
|
+
from .regularization import (
|
|
405
|
+
# L1/L2 Regularization
|
|
406
|
+
l1_regularization,
|
|
407
|
+
l2_regularization,
|
|
408
|
+
elastic_net_regularization,
|
|
409
|
+
l1_penalty,
|
|
410
|
+
l2_penalty,
|
|
411
|
+
elastic_net_penalty,
|
|
412
|
+
# Dropout
|
|
413
|
+
dropout,
|
|
414
|
+
dropout_mask,
|
|
415
|
+
inverted_dropout,
|
|
416
|
+
# Early Stopping
|
|
417
|
+
early_stopping_monitor as reg_early_stopping_monitor,
|
|
418
|
+
should_stop_early,
|
|
419
|
+
# Weight Constraints
|
|
420
|
+
max_norm_constraint,
|
|
421
|
+
unit_norm_constraint,
|
|
422
|
+
non_negative_constraint,
|
|
423
|
+
# Regularization Utilities
|
|
424
|
+
compute_regularization_loss,
|
|
425
|
+
apply_weight_decay,
|
|
426
|
+
)
|
|
427
|
+
|
|
333
428
|
__all__ = [
|
|
334
429
|
# Metrics (full names)
|
|
335
430
|
'accuracy_score',
|
|
@@ -623,4 +718,90 @@ __all__ = [
|
|
|
623
718
|
'remove_outliers',
|
|
624
719
|
'get_outlier_scores',
|
|
625
720
|
'visualize_anomalies',
|
|
721
|
+
# Neural Network - Activation Functions
|
|
722
|
+
'sigmoid',
|
|
723
|
+
'relu',
|
|
724
|
+
'leaky_relu',
|
|
725
|
+
'tanh',
|
|
726
|
+
'softmax',
|
|
727
|
+
'elu',
|
|
728
|
+
'swish',
|
|
729
|
+
# Neural Network - Activation Derivatives
|
|
730
|
+
'sigmoid_derivative',
|
|
731
|
+
'relu_derivative',
|
|
732
|
+
'tanh_derivative',
|
|
733
|
+
# Neural Network - Loss Functions
|
|
734
|
+
'mse_loss',
|
|
735
|
+
'binary_crossentropy',
|
|
736
|
+
'categorical_crossentropy',
|
|
737
|
+
'huber_loss',
|
|
738
|
+
# Neural Network - Weight Initialization
|
|
739
|
+
'xavier_init',
|
|
740
|
+
'he_init',
|
|
741
|
+
'random_init',
|
|
742
|
+
'zeros_init',
|
|
743
|
+
'ones_init',
|
|
744
|
+
# Neural Network - Layer Operations
|
|
745
|
+
'dense_forward',
|
|
746
|
+
'dense_backward',
|
|
747
|
+
'dropout_forward',
|
|
748
|
+
'batch_norm_forward',
|
|
749
|
+
# Neural Network - Optimization
|
|
750
|
+
'sgd_update',
|
|
751
|
+
'momentum_update',
|
|
752
|
+
'adam_update',
|
|
753
|
+
'rmsprop_update',
|
|
754
|
+
# Neural Network - Utilities
|
|
755
|
+
'one_hot_encode',
|
|
756
|
+
'shuffle_data',
|
|
757
|
+
'mini_batch_generator',
|
|
758
|
+
'calculate_accuracy',
|
|
759
|
+
'confusion_matrix_nn',
|
|
760
|
+
# Gradient Descent - Basic
|
|
761
|
+
'gradient_descent',
|
|
762
|
+
'batch_gradient_descent',
|
|
763
|
+
'stochastic_gradient_descent',
|
|
764
|
+
'mini_batch_gradient_descent',
|
|
765
|
+
# Gradient Descent - Advanced Optimizers
|
|
766
|
+
'momentum_optimizer',
|
|
767
|
+
'nesterov_momentum',
|
|
768
|
+
'adagrad_optimizer',
|
|
769
|
+
'rmsprop_optimizer',
|
|
770
|
+
'adam_optimizer',
|
|
771
|
+
'adamw_optimizer',
|
|
772
|
+
'nadam_optimizer',
|
|
773
|
+
'adadelta_optimizer',
|
|
774
|
+
# Gradient Descent - Learning Rate Schedules
|
|
775
|
+
'step_decay_schedule',
|
|
776
|
+
'exponential_decay_schedule',
|
|
777
|
+
'cosine_annealing_schedule',
|
|
778
|
+
'linear_warmup_schedule',
|
|
779
|
+
'polynomial_decay_schedule',
|
|
780
|
+
# Gradient Descent - Utilities
|
|
781
|
+
'compute_gradient',
|
|
782
|
+
'gradient_clipping',
|
|
783
|
+
'check_convergence',
|
|
784
|
+
'line_search',
|
|
785
|
+
'compute_learning_rate',
|
|
786
|
+
# Regularization - L1/L2
|
|
787
|
+
'l1_regularization',
|
|
788
|
+
'l2_regularization',
|
|
789
|
+
'elastic_net_regularization',
|
|
790
|
+
'l1_penalty',
|
|
791
|
+
'l2_penalty',
|
|
792
|
+
'elastic_net_penalty',
|
|
793
|
+
# Regularization - Dropout
|
|
794
|
+
'dropout',
|
|
795
|
+
'dropout_mask',
|
|
796
|
+
'inverted_dropout',
|
|
797
|
+
# Regularization - Early Stopping
|
|
798
|
+
'reg_early_stopping_monitor',
|
|
799
|
+
'should_stop_early',
|
|
800
|
+
# Regularization - Weight Constraints
|
|
801
|
+
'max_norm_constraint',
|
|
802
|
+
'unit_norm_constraint',
|
|
803
|
+
'non_negative_constraint',
|
|
804
|
+
# Regularization - Utilities
|
|
805
|
+
'compute_regularization_loss',
|
|
806
|
+
'apply_weight_decay',
|
|
626
807
|
]
|