ilovetools 0.2.0__tar.gz → 0.2.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ilovetools-0.2.0/ilovetools.egg-info → ilovetools-0.2.2}/PKG-INFO +1 -1
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/__init__.py +1 -1
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/__init__.py +134 -0
- ilovetools-0.2.2/ilovetools/ml/dimensionality.py +1001 -0
- ilovetools-0.2.2/ilovetools/ml/timeseries.py +984 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2/ilovetools.egg-info}/PKG-INFO +1 -1
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools.egg-info/SOURCES.txt +2 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/pyproject.toml +1 -1
- {ilovetools-0.2.0 → ilovetools-0.2.2}/setup.py +1 -1
- {ilovetools-0.2.0 → ilovetools-0.2.2}/LICENSE +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/MANIFEST.in +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/README.md +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ai/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ai/embeddings.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ai/inference.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ai/llm_helpers.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/audio/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/automation/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/conversion/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/data/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/data/feature_engineering.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/data/preprocessing.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/database/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/datetime/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/files/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/image/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/cross_validation.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/ensemble.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/feature_selection.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/imbalanced.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/interpretation.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/metrics.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/pipeline.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/ml/tuning.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/security/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/text/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/utils/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/validation/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools/web/__init__.py +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools.egg-info/dependency_links.txt +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/ilovetools.egg-info/top_level.txt +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/requirements.txt +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/setup.cfg +0 -0
- {ilovetools-0.2.0 → ilovetools-0.2.2}/tests/__init__.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ilovetools
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.2
|
|
4
4
|
Summary: A comprehensive Python utility library with modular tools for AI/ML, data processing, and daily programming needs
|
|
5
5
|
Home-page: https://github.com/AliMehdi512/ilovetools
|
|
6
6
|
Author: Ali Mehdi
|
|
@@ -212,6 +212,76 @@ from .imbalanced import (
|
|
|
212
212
|
near_miss,
|
|
213
213
|
)
|
|
214
214
|
|
|
215
|
+
from .dimensionality import (
|
|
216
|
+
# Full names
|
|
217
|
+
pca_transform,
|
|
218
|
+
explained_variance_ratio,
|
|
219
|
+
scree_plot_data,
|
|
220
|
+
cumulative_variance,
|
|
221
|
+
pca_inverse_transform,
|
|
222
|
+
truncated_svd,
|
|
223
|
+
kernel_pca_transform,
|
|
224
|
+
incremental_pca_transform,
|
|
225
|
+
feature_projection,
|
|
226
|
+
dimensionality_reduction_ratio,
|
|
227
|
+
reconstruction_error,
|
|
228
|
+
optimal_components,
|
|
229
|
+
whitening_transform,
|
|
230
|
+
component_loadings,
|
|
231
|
+
biplot_data,
|
|
232
|
+
# Abbreviated aliases
|
|
233
|
+
pca,
|
|
234
|
+
exp_var,
|
|
235
|
+
scree_plot,
|
|
236
|
+
cum_var,
|
|
237
|
+
pca_inverse,
|
|
238
|
+
svd,
|
|
239
|
+
kpca,
|
|
240
|
+
ipca,
|
|
241
|
+
project,
|
|
242
|
+
dim_ratio,
|
|
243
|
+
recon_error,
|
|
244
|
+
opt_components,
|
|
245
|
+
whiten,
|
|
246
|
+
loadings,
|
|
247
|
+
biplot,
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
from .timeseries import (
|
|
251
|
+
# Full names
|
|
252
|
+
moving_average,
|
|
253
|
+
exponential_moving_average,
|
|
254
|
+
weighted_moving_average,
|
|
255
|
+
seasonal_decompose,
|
|
256
|
+
difference_series,
|
|
257
|
+
autocorrelation,
|
|
258
|
+
partial_autocorrelation,
|
|
259
|
+
detect_trend,
|
|
260
|
+
detect_seasonality,
|
|
261
|
+
remove_trend,
|
|
262
|
+
remove_seasonality,
|
|
263
|
+
rolling_statistics,
|
|
264
|
+
lag_features,
|
|
265
|
+
time_series_split_cv,
|
|
266
|
+
forecast_accuracy,
|
|
267
|
+
# Abbreviated aliases
|
|
268
|
+
ma,
|
|
269
|
+
ema,
|
|
270
|
+
wma,
|
|
271
|
+
decompose,
|
|
272
|
+
diff,
|
|
273
|
+
acf,
|
|
274
|
+
pacf,
|
|
275
|
+
trend,
|
|
276
|
+
seasonality,
|
|
277
|
+
detrend,
|
|
278
|
+
deseasonalize,
|
|
279
|
+
rolling_stats,
|
|
280
|
+
lag,
|
|
281
|
+
ts_cv,
|
|
282
|
+
forecast_acc,
|
|
283
|
+
)
|
|
284
|
+
|
|
215
285
|
__all__ = [
|
|
216
286
|
# Metrics (full names)
|
|
217
287
|
'accuracy_score',
|
|
@@ -399,4 +469,68 @@ __all__ = [
|
|
|
399
469
|
'imbalance_ratio_alias',
|
|
400
470
|
'synthetic_sample',
|
|
401
471
|
'near_miss',
|
|
472
|
+
# Dimensionality (full names)
|
|
473
|
+
'pca_transform',
|
|
474
|
+
'explained_variance_ratio',
|
|
475
|
+
'scree_plot_data',
|
|
476
|
+
'cumulative_variance',
|
|
477
|
+
'pca_inverse_transform',
|
|
478
|
+
'truncated_svd',
|
|
479
|
+
'kernel_pca_transform',
|
|
480
|
+
'incremental_pca_transform',
|
|
481
|
+
'feature_projection',
|
|
482
|
+
'dimensionality_reduction_ratio',
|
|
483
|
+
'reconstruction_error',
|
|
484
|
+
'optimal_components',
|
|
485
|
+
'whitening_transform',
|
|
486
|
+
'component_loadings',
|
|
487
|
+
'biplot_data',
|
|
488
|
+
# Dimensionality (aliases)
|
|
489
|
+
'pca',
|
|
490
|
+
'exp_var',
|
|
491
|
+
'scree_plot',
|
|
492
|
+
'cum_var',
|
|
493
|
+
'pca_inverse',
|
|
494
|
+
'svd',
|
|
495
|
+
'kpca',
|
|
496
|
+
'ipca',
|
|
497
|
+
'project',
|
|
498
|
+
'dim_ratio',
|
|
499
|
+
'recon_error',
|
|
500
|
+
'opt_components',
|
|
501
|
+
'whiten',
|
|
502
|
+
'loadings',
|
|
503
|
+
'biplot',
|
|
504
|
+
# Time Series (full names)
|
|
505
|
+
'moving_average',
|
|
506
|
+
'exponential_moving_average',
|
|
507
|
+
'weighted_moving_average',
|
|
508
|
+
'seasonal_decompose',
|
|
509
|
+
'difference_series',
|
|
510
|
+
'autocorrelation',
|
|
511
|
+
'partial_autocorrelation',
|
|
512
|
+
'detect_trend',
|
|
513
|
+
'detect_seasonality',
|
|
514
|
+
'remove_trend',
|
|
515
|
+
'remove_seasonality',
|
|
516
|
+
'rolling_statistics',
|
|
517
|
+
'lag_features',
|
|
518
|
+
'time_series_split_cv',
|
|
519
|
+
'forecast_accuracy',
|
|
520
|
+
# Time Series (aliases)
|
|
521
|
+
'ma',
|
|
522
|
+
'ema',
|
|
523
|
+
'wma',
|
|
524
|
+
'decompose',
|
|
525
|
+
'diff',
|
|
526
|
+
'acf',
|
|
527
|
+
'pacf',
|
|
528
|
+
'trend',
|
|
529
|
+
'seasonality',
|
|
530
|
+
'detrend',
|
|
531
|
+
'deseasonalize',
|
|
532
|
+
'rolling_stats',
|
|
533
|
+
'lag',
|
|
534
|
+
'ts_cv',
|
|
535
|
+
'forecast_acc',
|
|
402
536
|
]
|