ilovetools 0.1.6__tar.gz → 0.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ilovetools-0.1.6/ilovetools.egg-info → ilovetools-0.1.8}/PKG-INFO +1 -1
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/__init__.py +1 -1
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ml/__init__.py +110 -0
- ilovetools-0.1.8/ilovetools/ml/feature_selection.py +971 -0
- ilovetools-0.1.8/ilovetools/ml/interpretation.py +915 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8/ilovetools.egg-info}/PKG-INFO +1 -1
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools.egg-info/SOURCES.txt +2 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/pyproject.toml +1 -1
- {ilovetools-0.1.6 → ilovetools-0.1.8}/setup.py +1 -1
- {ilovetools-0.1.6 → ilovetools-0.1.8}/LICENSE +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/MANIFEST.in +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/README.md +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ai/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ai/embeddings.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ai/inference.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ai/llm_helpers.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/audio/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/automation/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/conversion/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/data/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/data/feature_engineering.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/data/preprocessing.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/database/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/datetime/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/files/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/image/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ml/cross_validation.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ml/ensemble.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ml/metrics.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/ml/tuning.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/security/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/text/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/utils/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/validation/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools/web/__init__.py +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools.egg-info/dependency_links.txt +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/ilovetools.egg-info/top_level.txt +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/requirements.txt +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/setup.cfg +0 -0
- {ilovetools-0.1.6 → ilovetools-0.1.8}/tests/__init__.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ilovetools
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.8
|
|
4
4
|
Summary: A comprehensive Python utility library with modular tools for AI/ML, data processing, and daily programming needs
|
|
5
5
|
Home-page: https://github.com/AliMehdi512/ilovetools
|
|
6
6
|
Author: Ali Mehdi
|
|
@@ -96,6 +96,64 @@ from .ensemble import (
|
|
|
96
96
|
blend,
|
|
97
97
|
)
|
|
98
98
|
|
|
99
|
+
from .feature_selection import (
|
|
100
|
+
# Full names
|
|
101
|
+
correlation_filter,
|
|
102
|
+
variance_threshold_filter,
|
|
103
|
+
chi_square_filter,
|
|
104
|
+
mutual_information_filter,
|
|
105
|
+
recursive_feature_elimination,
|
|
106
|
+
forward_feature_selection,
|
|
107
|
+
backward_feature_elimination,
|
|
108
|
+
feature_importance_ranking,
|
|
109
|
+
l1_feature_selection,
|
|
110
|
+
univariate_feature_selection,
|
|
111
|
+
select_k_best_features,
|
|
112
|
+
remove_correlated_features,
|
|
113
|
+
# Abbreviated aliases
|
|
114
|
+
corr_filter,
|
|
115
|
+
var_filter,
|
|
116
|
+
chi2_filter,
|
|
117
|
+
mi_filter,
|
|
118
|
+
rfe,
|
|
119
|
+
forward_select,
|
|
120
|
+
backward_select,
|
|
121
|
+
feat_importance,
|
|
122
|
+
l1_select,
|
|
123
|
+
univariate_select,
|
|
124
|
+
select_k_best,
|
|
125
|
+
remove_corr,
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
from .interpretation import (
|
|
129
|
+
# Full names
|
|
130
|
+
feature_importance_scores,
|
|
131
|
+
permutation_importance,
|
|
132
|
+
partial_dependence,
|
|
133
|
+
shap_values_approximation,
|
|
134
|
+
lime_explanation,
|
|
135
|
+
decision_path_explanation,
|
|
136
|
+
model_coefficients_interpretation,
|
|
137
|
+
prediction_breakdown,
|
|
138
|
+
feature_contribution_analysis,
|
|
139
|
+
global_feature_importance,
|
|
140
|
+
local_feature_importance,
|
|
141
|
+
model_summary_statistics,
|
|
142
|
+
# Abbreviated aliases
|
|
143
|
+
feat_importance_scores,
|
|
144
|
+
perm_importance,
|
|
145
|
+
pdp,
|
|
146
|
+
shap_approx,
|
|
147
|
+
lime_explain,
|
|
148
|
+
decision_path,
|
|
149
|
+
coef_interpret,
|
|
150
|
+
pred_breakdown,
|
|
151
|
+
feat_contrib,
|
|
152
|
+
global_importance,
|
|
153
|
+
local_importance,
|
|
154
|
+
model_summary,
|
|
155
|
+
)
|
|
156
|
+
|
|
99
157
|
__all__ = [
|
|
100
158
|
# Metrics (full names)
|
|
101
159
|
'accuracy_score',
|
|
@@ -179,4 +237,56 @@ __all__ = [
|
|
|
179
237
|
'oob_score',
|
|
180
238
|
'diversity',
|
|
181
239
|
'blend',
|
|
240
|
+
# Feature Selection (full names)
|
|
241
|
+
'correlation_filter',
|
|
242
|
+
'variance_threshold_filter',
|
|
243
|
+
'chi_square_filter',
|
|
244
|
+
'mutual_information_filter',
|
|
245
|
+
'recursive_feature_elimination',
|
|
246
|
+
'forward_feature_selection',
|
|
247
|
+
'backward_feature_elimination',
|
|
248
|
+
'feature_importance_ranking',
|
|
249
|
+
'l1_feature_selection',
|
|
250
|
+
'univariate_feature_selection',
|
|
251
|
+
'select_k_best_features',
|
|
252
|
+
'remove_correlated_features',
|
|
253
|
+
# Feature Selection (aliases)
|
|
254
|
+
'corr_filter',
|
|
255
|
+
'var_filter',
|
|
256
|
+
'chi2_filter',
|
|
257
|
+
'mi_filter',
|
|
258
|
+
'rfe',
|
|
259
|
+
'forward_select',
|
|
260
|
+
'backward_select',
|
|
261
|
+
'feat_importance',
|
|
262
|
+
'l1_select',
|
|
263
|
+
'univariate_select',
|
|
264
|
+
'select_k_best',
|
|
265
|
+
'remove_corr',
|
|
266
|
+
# Interpretation (full names)
|
|
267
|
+
'feature_importance_scores',
|
|
268
|
+
'permutation_importance',
|
|
269
|
+
'partial_dependence',
|
|
270
|
+
'shap_values_approximation',
|
|
271
|
+
'lime_explanation',
|
|
272
|
+
'decision_path_explanation',
|
|
273
|
+
'model_coefficients_interpretation',
|
|
274
|
+
'prediction_breakdown',
|
|
275
|
+
'feature_contribution_analysis',
|
|
276
|
+
'global_feature_importance',
|
|
277
|
+
'local_feature_importance',
|
|
278
|
+
'model_summary_statistics',
|
|
279
|
+
# Interpretation (aliases)
|
|
280
|
+
'feat_importance_scores',
|
|
281
|
+
'perm_importance',
|
|
282
|
+
'pdp',
|
|
283
|
+
'shap_approx',
|
|
284
|
+
'lime_explain',
|
|
285
|
+
'decision_path',
|
|
286
|
+
'coef_interpret',
|
|
287
|
+
'pred_breakdown',
|
|
288
|
+
'feat_contrib',
|
|
289
|
+
'global_importance',
|
|
290
|
+
'local_importance',
|
|
291
|
+
'model_summary',
|
|
182
292
|
]
|