ilovetools 0.1.5__tar.gz → 0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. {ilovetools-0.1.5/ilovetools.egg-info → ilovetools-0.1.7}/PKG-INFO +1 -1
  2. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/__init__.py +1 -1
  3. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/__init__.py +110 -0
  4. ilovetools-0.1.7/ilovetools/ml/ensemble.py +872 -0
  5. ilovetools-0.1.7/ilovetools/ml/feature_selection.py +971 -0
  6. {ilovetools-0.1.5 → ilovetools-0.1.7/ilovetools.egg-info}/PKG-INFO +1 -1
  7. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools.egg-info/SOURCES.txt +2 -0
  8. {ilovetools-0.1.5 → ilovetools-0.1.7}/pyproject.toml +1 -1
  9. {ilovetools-0.1.5 → ilovetools-0.1.7}/setup.py +1 -1
  10. {ilovetools-0.1.5 → ilovetools-0.1.7}/LICENSE +0 -0
  11. {ilovetools-0.1.5 → ilovetools-0.1.7}/MANIFEST.in +0 -0
  12. {ilovetools-0.1.5 → ilovetools-0.1.7}/README.md +0 -0
  13. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/__init__.py +0 -0
  14. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/embeddings.py +0 -0
  15. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/inference.py +0 -0
  16. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/llm_helpers.py +0 -0
  17. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/audio/__init__.py +0 -0
  18. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/automation/__init__.py +0 -0
  19. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/conversion/__init__.py +0 -0
  20. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/data/__init__.py +0 -0
  21. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/data/feature_engineering.py +0 -0
  22. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/data/preprocessing.py +0 -0
  23. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/database/__init__.py +0 -0
  24. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/datetime/__init__.py +0 -0
  25. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/files/__init__.py +0 -0
  26. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/image/__init__.py +0 -0
  27. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/cross_validation.py +0 -0
  28. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/metrics.py +0 -0
  29. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/tuning.py +0 -0
  30. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/security/__init__.py +0 -0
  31. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/text/__init__.py +0 -0
  32. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/utils/__init__.py +0 -0
  33. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/validation/__init__.py +0 -0
  34. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/web/__init__.py +0 -0
  35. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools.egg-info/dependency_links.txt +0 -0
  36. {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools.egg-info/top_level.txt +0 -0
  37. {ilovetools-0.1.5 → ilovetools-0.1.7}/requirements.txt +0 -0
  38. {ilovetools-0.1.5 → ilovetools-0.1.7}/setup.cfg +0 -0
  39. {ilovetools-0.1.5 → ilovetools-0.1.7}/tests/__init__.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ilovetools
3
- Version: 0.1.5
3
+ Version: 0.1.7
4
4
  Summary: A comprehensive Python utility library with modular tools for AI/ML, data processing, and daily programming needs
5
5
  Home-page: https://github.com/AliMehdi512/ilovetools
6
6
  Author: Ali Mehdi
@@ -2,7 +2,7 @@
2
2
  ilovetools - A comprehensive Python utility library
3
3
  """
4
4
 
5
- __version__ = "0.1.5"
5
+ __version__ = "0.1.7"
6
6
  __author__ = "Ali Mehdi"
7
7
  __email__ = "ali.mehdi.dev579@gmail.com"
8
8
 
@@ -67,6 +67,64 @@ from .tuning import (
67
67
  bayesopt,
68
68
  )
69
69
 
70
+ from .ensemble import (
71
+ # Full names
72
+ voting_classifier,
73
+ voting_regressor,
74
+ bagging_predictions,
75
+ boosting_sequential,
76
+ stacking_ensemble,
77
+ weighted_average_ensemble,
78
+ majority_vote,
79
+ soft_vote,
80
+ bootstrap_sample,
81
+ out_of_bag_score,
82
+ ensemble_diversity,
83
+ blend_predictions,
84
+ # Abbreviated aliases
85
+ vote_clf,
86
+ vote_reg,
87
+ bagging,
88
+ boosting,
89
+ stacking,
90
+ weighted_avg,
91
+ hard_vote,
92
+ soft_vote_alias,
93
+ bootstrap,
94
+ oob_score,
95
+ diversity,
96
+ blend,
97
+ )
98
+
99
+ from .feature_selection import (
100
+ # Full names
101
+ correlation_filter,
102
+ variance_threshold_filter,
103
+ chi_square_filter,
104
+ mutual_information_filter,
105
+ recursive_feature_elimination,
106
+ forward_feature_selection,
107
+ backward_feature_elimination,
108
+ feature_importance_ranking,
109
+ l1_feature_selection,
110
+ univariate_feature_selection,
111
+ select_k_best_features,
112
+ remove_correlated_features,
113
+ # Abbreviated aliases
114
+ corr_filter,
115
+ var_filter,
116
+ chi2_filter,
117
+ mi_filter,
118
+ rfe,
119
+ forward_select,
120
+ backward_select,
121
+ feat_importance,
122
+ l1_select,
123
+ univariate_select,
124
+ select_k_best,
125
+ remove_corr,
126
+ )
127
+
70
128
  __all__ = [
71
129
  # Metrics (full names)
72
130
  'accuracy_score',
@@ -124,4 +182,56 @@ __all__ = [
124
182
  'early_stop',
125
183
  'compare_models',
126
184
  'bayesopt',
185
+ # Ensemble (full names)
186
+ 'voting_classifier',
187
+ 'voting_regressor',
188
+ 'bagging_predictions',
189
+ 'boosting_sequential',
190
+ 'stacking_ensemble',
191
+ 'weighted_average_ensemble',
192
+ 'majority_vote',
193
+ 'soft_vote',
194
+ 'bootstrap_sample',
195
+ 'out_of_bag_score',
196
+ 'ensemble_diversity',
197
+ 'blend_predictions',
198
+ # Ensemble (aliases)
199
+ 'vote_clf',
200
+ 'vote_reg',
201
+ 'bagging',
202
+ 'boosting',
203
+ 'stacking',
204
+ 'weighted_avg',
205
+ 'hard_vote',
206
+ 'soft_vote_alias',
207
+ 'bootstrap',
208
+ 'oob_score',
209
+ 'diversity',
210
+ 'blend',
211
+ # Feature Selection (full names)
212
+ 'correlation_filter',
213
+ 'variance_threshold_filter',
214
+ 'chi_square_filter',
215
+ 'mutual_information_filter',
216
+ 'recursive_feature_elimination',
217
+ 'forward_feature_selection',
218
+ 'backward_feature_elimination',
219
+ 'feature_importance_ranking',
220
+ 'l1_feature_selection',
221
+ 'univariate_feature_selection',
222
+ 'select_k_best_features',
223
+ 'remove_correlated_features',
224
+ # Feature Selection (aliases)
225
+ 'corr_filter',
226
+ 'var_filter',
227
+ 'chi2_filter',
228
+ 'mi_filter',
229
+ 'rfe',
230
+ 'forward_select',
231
+ 'backward_select',
232
+ 'feat_importance',
233
+ 'l1_select',
234
+ 'univariate_select',
235
+ 'select_k_best',
236
+ 'remove_corr',
127
237
  ]