ilovetools 0.1.5__tar.gz → 0.1.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ilovetools-0.1.5/ilovetools.egg-info → ilovetools-0.1.7}/PKG-INFO +1 -1
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/__init__.py +1 -1
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/__init__.py +110 -0
- ilovetools-0.1.7/ilovetools/ml/ensemble.py +872 -0
- ilovetools-0.1.7/ilovetools/ml/feature_selection.py +971 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7/ilovetools.egg-info}/PKG-INFO +1 -1
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools.egg-info/SOURCES.txt +2 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/pyproject.toml +1 -1
- {ilovetools-0.1.5 → ilovetools-0.1.7}/setup.py +1 -1
- {ilovetools-0.1.5 → ilovetools-0.1.7}/LICENSE +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/MANIFEST.in +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/README.md +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/embeddings.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/inference.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ai/llm_helpers.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/audio/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/automation/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/conversion/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/data/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/data/feature_engineering.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/data/preprocessing.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/database/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/datetime/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/files/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/image/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/cross_validation.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/metrics.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/ml/tuning.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/security/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/text/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/utils/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/validation/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools/web/__init__.py +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools.egg-info/dependency_links.txt +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/ilovetools.egg-info/top_level.txt +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/requirements.txt +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/setup.cfg +0 -0
- {ilovetools-0.1.5 → ilovetools-0.1.7}/tests/__init__.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: ilovetools
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.7
|
|
4
4
|
Summary: A comprehensive Python utility library with modular tools for AI/ML, data processing, and daily programming needs
|
|
5
5
|
Home-page: https://github.com/AliMehdi512/ilovetools
|
|
6
6
|
Author: Ali Mehdi
|
|
@@ -67,6 +67,64 @@ from .tuning import (
|
|
|
67
67
|
bayesopt,
|
|
68
68
|
)
|
|
69
69
|
|
|
70
|
+
from .ensemble import (
|
|
71
|
+
# Full names
|
|
72
|
+
voting_classifier,
|
|
73
|
+
voting_regressor,
|
|
74
|
+
bagging_predictions,
|
|
75
|
+
boosting_sequential,
|
|
76
|
+
stacking_ensemble,
|
|
77
|
+
weighted_average_ensemble,
|
|
78
|
+
majority_vote,
|
|
79
|
+
soft_vote,
|
|
80
|
+
bootstrap_sample,
|
|
81
|
+
out_of_bag_score,
|
|
82
|
+
ensemble_diversity,
|
|
83
|
+
blend_predictions,
|
|
84
|
+
# Abbreviated aliases
|
|
85
|
+
vote_clf,
|
|
86
|
+
vote_reg,
|
|
87
|
+
bagging,
|
|
88
|
+
boosting,
|
|
89
|
+
stacking,
|
|
90
|
+
weighted_avg,
|
|
91
|
+
hard_vote,
|
|
92
|
+
soft_vote_alias,
|
|
93
|
+
bootstrap,
|
|
94
|
+
oob_score,
|
|
95
|
+
diversity,
|
|
96
|
+
blend,
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
from .feature_selection import (
|
|
100
|
+
# Full names
|
|
101
|
+
correlation_filter,
|
|
102
|
+
variance_threshold_filter,
|
|
103
|
+
chi_square_filter,
|
|
104
|
+
mutual_information_filter,
|
|
105
|
+
recursive_feature_elimination,
|
|
106
|
+
forward_feature_selection,
|
|
107
|
+
backward_feature_elimination,
|
|
108
|
+
feature_importance_ranking,
|
|
109
|
+
l1_feature_selection,
|
|
110
|
+
univariate_feature_selection,
|
|
111
|
+
select_k_best_features,
|
|
112
|
+
remove_correlated_features,
|
|
113
|
+
# Abbreviated aliases
|
|
114
|
+
corr_filter,
|
|
115
|
+
var_filter,
|
|
116
|
+
chi2_filter,
|
|
117
|
+
mi_filter,
|
|
118
|
+
rfe,
|
|
119
|
+
forward_select,
|
|
120
|
+
backward_select,
|
|
121
|
+
feat_importance,
|
|
122
|
+
l1_select,
|
|
123
|
+
univariate_select,
|
|
124
|
+
select_k_best,
|
|
125
|
+
remove_corr,
|
|
126
|
+
)
|
|
127
|
+
|
|
70
128
|
__all__ = [
|
|
71
129
|
# Metrics (full names)
|
|
72
130
|
'accuracy_score',
|
|
@@ -124,4 +182,56 @@ __all__ = [
|
|
|
124
182
|
'early_stop',
|
|
125
183
|
'compare_models',
|
|
126
184
|
'bayesopt',
|
|
185
|
+
# Ensemble (full names)
|
|
186
|
+
'voting_classifier',
|
|
187
|
+
'voting_regressor',
|
|
188
|
+
'bagging_predictions',
|
|
189
|
+
'boosting_sequential',
|
|
190
|
+
'stacking_ensemble',
|
|
191
|
+
'weighted_average_ensemble',
|
|
192
|
+
'majority_vote',
|
|
193
|
+
'soft_vote',
|
|
194
|
+
'bootstrap_sample',
|
|
195
|
+
'out_of_bag_score',
|
|
196
|
+
'ensemble_diversity',
|
|
197
|
+
'blend_predictions',
|
|
198
|
+
# Ensemble (aliases)
|
|
199
|
+
'vote_clf',
|
|
200
|
+
'vote_reg',
|
|
201
|
+
'bagging',
|
|
202
|
+
'boosting',
|
|
203
|
+
'stacking',
|
|
204
|
+
'weighted_avg',
|
|
205
|
+
'hard_vote',
|
|
206
|
+
'soft_vote_alias',
|
|
207
|
+
'bootstrap',
|
|
208
|
+
'oob_score',
|
|
209
|
+
'diversity',
|
|
210
|
+
'blend',
|
|
211
|
+
# Feature Selection (full names)
|
|
212
|
+
'correlation_filter',
|
|
213
|
+
'variance_threshold_filter',
|
|
214
|
+
'chi_square_filter',
|
|
215
|
+
'mutual_information_filter',
|
|
216
|
+
'recursive_feature_elimination',
|
|
217
|
+
'forward_feature_selection',
|
|
218
|
+
'backward_feature_elimination',
|
|
219
|
+
'feature_importance_ranking',
|
|
220
|
+
'l1_feature_selection',
|
|
221
|
+
'univariate_feature_selection',
|
|
222
|
+
'select_k_best_features',
|
|
223
|
+
'remove_correlated_features',
|
|
224
|
+
# Feature Selection (aliases)
|
|
225
|
+
'corr_filter',
|
|
226
|
+
'var_filter',
|
|
227
|
+
'chi2_filter',
|
|
228
|
+
'mi_filter',
|
|
229
|
+
'rfe',
|
|
230
|
+
'forward_select',
|
|
231
|
+
'backward_select',
|
|
232
|
+
'feat_importance',
|
|
233
|
+
'l1_select',
|
|
234
|
+
'univariate_select',
|
|
235
|
+
'select_k_best',
|
|
236
|
+
'remove_corr',
|
|
127
237
|
]
|