ign-pdal-tools 1.7.4__tar.gz → 1.7.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. {ign_pdal_tools-1.7.4/ign_pdal_tools.egg-info → ign_pdal_tools-1.7.6}/PKG-INFO +7 -2
  2. ign_pdal_tools-1.7.4/PKG-INFO → ign_pdal_tools-1.7.6/README.md +5 -8
  3. ign_pdal_tools-1.7.4/README.md → ign_pdal_tools-1.7.6/ign_pdal_tools.egg-info/PKG-INFO +13 -0
  4. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/ign_pdal_tools.egg-info/SOURCES.txt +4 -0
  5. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/_version.py +1 -1
  6. ign_pdal_tools-1.7.6/pdaltools/add_points_in_las.py +104 -0
  7. ign_pdal_tools-1.7.6/pdaltools/add_points_in_pointcloud.py +102 -0
  8. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/las_info.py +27 -1
  9. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/las_remove_dimensions.py +0 -1
  10. ign_pdal_tools-1.7.6/pdaltools/pcd_info.py +76 -0
  11. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/standardize_format.py +1 -1
  12. ign_pdal_tools-1.7.6/test/test_add_points_in_las.py +72 -0
  13. ign_pdal_tools-1.7.6/test/test_add_points_in_pointcloud.py +82 -0
  14. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_las_info.py +5 -0
  15. ign_pdal_tools-1.7.6/test/test_pcd_info.py +87 -0
  16. ign_pdal_tools-1.7.4/pdaltools/pcd_info.py +0 -46
  17. ign_pdal_tools-1.7.4/test/test_pcd_info.py +0 -61
  18. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/LICENSE.md +0 -0
  19. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/ign_pdal_tools.egg-info/dependency_links.txt +0 -0
  20. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/ign_pdal_tools.egg-info/top_level.txt +0 -0
  21. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/color.py +0 -0
  22. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/las_add_buffer.py +0 -0
  23. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/las_clip.py +0 -0
  24. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/las_merge.py +0 -0
  25. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/replace_attribute_in_las.py +0 -0
  26. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pdaltools/unlock_file.py +0 -0
  27. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/pyproject.toml +0 -0
  28. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/setup.cfg +0 -0
  29. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_color.py +0 -0
  30. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_las_add_buffer.py +0 -0
  31. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_las_clip.py +0 -0
  32. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_las_merge.py +0 -0
  33. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_las_remove_dimensions.py +0 -0
  34. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_replace_attribute_in_las.py +0 -0
  35. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_standardize_format.py +0 -0
  36. {ign_pdal_tools-1.7.4 → ign_pdal_tools-1.7.6}/test/test_unlock.py +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: ign-pdal-tools
3
- Version: 1.7.4
3
+ Version: 1.7.6
4
4
  Summary: Library for common LAS files manipulation with PDAL
5
5
  Author-email: Guillaume Liegard <guillaume.liegard@ign.fr>
6
6
  Description-Content-Type: text/markdown
@@ -87,6 +87,11 @@ By default, `xcoord` and `ycoord` are given in kilometers and the shape of the t
87
87
  `readers.las: Global encoding WKT flag not set for point format 6 - 10.` which is due to TerraSolid
88
88
  malformed LAS output for LAS1.4 files with point format 6 to 10.
89
89
 
90
+ ## Add points in Las
91
+
92
+ [add_points_in_las.py](pdaltools/add_points_in_las.py): add points from some vector files (ex: shp, geojson, ...) inside Las. New points will have X,Y and Z coordinates. Other attributes values given by the initial las file are null (ex: classification at 0). These others attributes could be forced by using the '--dimensions/-d' option in the command line (ex : 'add_points_in_las.py -i myLas.las -g myPoints.json -d classification=64' - points will have their classification set to 64). The dimension should be present in the initial las ; this is not allowed to add new dimension.
93
+
94
+
90
95
  # Dev / Build
91
96
 
92
97
  ## Contribute
@@ -1,11 +1,3 @@
1
- Metadata-Version: 2.1
2
- Name: ign-pdal-tools
3
- Version: 1.7.4
4
- Summary: Library for common LAS files manipulation with PDAL
5
- Author-email: Guillaume Liegard <guillaume.liegard@ign.fr>
6
- Description-Content-Type: text/markdown
7
- License-File: LICENSE.md
8
-
9
1
  # ign-pdal-tools
10
2
 
11
3
  This repo contains various python tools based on [PDAL](https://pdal.io/) that are used to work on
@@ -87,6 +79,11 @@ By default, `xcoord` and `ycoord` are given in kilometers and the shape of the t
87
79
  `readers.las: Global encoding WKT flag not set for point format 6 - 10.` which is due to TerraSolid
88
80
  malformed LAS output for LAS1.4 files with point format 6 to 10.
89
81
 
82
+ ## Add points in Las
83
+
84
+ [add_points_in_las.py](pdaltools/add_points_in_las.py): add points from some vector files (ex: shp, geojson, ...) inside Las. New points will have X,Y and Z coordinates. Other attributes values given by the initial las file are null (ex: classification at 0). These others attributes could be forced by using the '--dimensions/-d' option in the command line (ex : 'add_points_in_las.py -i myLas.las -g myPoints.json -d classification=64' - points will have their classification set to 64). The dimension should be present in the initial las ; this is not allowed to add new dimension.
85
+
86
+
90
87
  # Dev / Build
91
88
 
92
89
  ## Contribute
@@ -1,3 +1,11 @@
1
+ Metadata-Version: 2.2
2
+ Name: ign-pdal-tools
3
+ Version: 1.7.6
4
+ Summary: Library for common LAS files manipulation with PDAL
5
+ Author-email: Guillaume Liegard <guillaume.liegard@ign.fr>
6
+ Description-Content-Type: text/markdown
7
+ License-File: LICENSE.md
8
+
1
9
  # ign-pdal-tools
2
10
 
3
11
  This repo contains various python tools based on [PDAL](https://pdal.io/) that are used to work on
@@ -79,6 +87,11 @@ By default, `xcoord` and `ycoord` are given in kilometers and the shape of the t
79
87
  `readers.las: Global encoding WKT flag not set for point format 6 - 10.` which is due to TerraSolid
80
88
  malformed LAS output for LAS1.4 files with point format 6 to 10.
81
89
 
90
+ ## Add points in Las
91
+
92
+ [add_points_in_las.py](pdaltools/add_points_in_las.py): add points from some vector files (ex: shp, geojson, ...) inside Las. New points will have X,Y and Z coordinates. Other attributes values given by the initial las file are null (ex: classification at 0). These others attributes could be forced by using the '--dimensions/-d' option in the command line (ex : 'add_points_in_las.py -i myLas.las -g myPoints.json -d classification=64' - points will have their classification set to 64). The dimension should be present in the initial las ; this is not allowed to add new dimension.
93
+
94
+
82
95
  # Dev / Build
83
96
 
84
97
  ## Contribute
@@ -6,6 +6,8 @@ ign_pdal_tools.egg-info/SOURCES.txt
6
6
  ign_pdal_tools.egg-info/dependency_links.txt
7
7
  ign_pdal_tools.egg-info/top_level.txt
8
8
  pdaltools/_version.py
9
+ pdaltools/add_points_in_las.py
10
+ pdaltools/add_points_in_pointcloud.py
9
11
  pdaltools/color.py
10
12
  pdaltools/las_add_buffer.py
11
13
  pdaltools/las_clip.py
@@ -16,6 +18,8 @@ pdaltools/pcd_info.py
16
18
  pdaltools/replace_attribute_in_las.py
17
19
  pdaltools/standardize_format.py
18
20
  pdaltools/unlock_file.py
21
+ test/test_add_points_in_las.py
22
+ test/test_add_points_in_pointcloud.py
19
23
  test/test_color.py
20
24
  test/test_las_add_buffer.py
21
25
  test/test_las_clip.py
@@ -1,4 +1,4 @@
1
- __version__ = "1.7.4"
1
+ __version__ = "1.7.6"
2
2
 
3
3
 
4
4
  if __name__ == "__main__":
@@ -0,0 +1,104 @@
1
+ import argparse
2
+
3
+ import geopandas
4
+ import numpy as np
5
+ import pdal
6
+
7
+ from pdaltools.las_info import get_writer_parameters_from_reader_metadata, las_info_metadata, get_bounds_from_header_info
8
+
9
+
10
+ def extract_points_from_geo(input_geo: str):
11
+ file = open(input_geo)
12
+ df = geopandas.read_file(file)
13
+ return df.get_coordinates(ignore_index=True, include_z=True)
14
+
15
+ def point_in_bound(bound_minx, bound_maxx, bound_miny, bound_maxy, pt_x, pt_y):
16
+ return pt_x >= bound_minx and pt_x <= bound_maxx and pt_y >= bound_miny and pt_y <= bound_maxy
17
+
18
+ def add_points_in_las(input_las: str, input_geo: str, output_las: str, inside_las: bool, values_dimensions: {}):
19
+ points_geo = extract_points_from_geo(input_geo)
20
+ pipeline = pdal.Pipeline() | pdal.Reader.las(input_las)
21
+ pipeline.execute()
22
+ points_las = pipeline.arrays[0]
23
+ dimensions = list(points_las.dtype.fields.keys())
24
+
25
+ if inside_las:
26
+ mtd = las_info_metadata(input_las)
27
+ bound_minx, bound_maxx, bound_miny, bound_maxy = get_bounds_from_header_info(mtd)
28
+
29
+ for i in points_geo.index:
30
+ if inside_las :
31
+ if not point_in_bound(bound_minx, bound_maxx, bound_miny, bound_maxy, points_geo["x"][i], points_geo["y"][i]):
32
+ continue
33
+ pt_las = np.empty(1, dtype=points_las.dtype)
34
+ pt_las[0][dimensions.index("X")] = points_geo["x"][i]
35
+ pt_las[0][dimensions.index("Y")] = points_geo["y"][i]
36
+ pt_las[0][dimensions.index("Z")] = points_geo["z"][i]
37
+ for val in values_dimensions:
38
+ pt_las[0][dimensions.index(val)] = values_dimensions[val]
39
+ points_las = np.append(points_las, pt_las, axis=0)
40
+
41
+ params = get_writer_parameters_from_reader_metadata(pipeline.metadata)
42
+ pipeline_end = pdal.Pipeline(arrays=[points_las])
43
+ pipeline_end |= pdal.Writer.las(output_las, forward="all", **params)
44
+ pipeline_end.execute()
45
+
46
+
47
+ def parse_args():
48
+ parser = argparse.ArgumentParser("Add points from geometry file in a las/laz file.")
49
+ parser.add_argument("--input_file", "-i", type=str, help="Las/Laz input file")
50
+ parser.add_argument("--output_file", "-o", type=str, help="Las/Laz output file.")
51
+ parser.add_argument("--input_geo_file", "-g", type=str, help="Geometry input file.")
52
+ parser.add_argument("--inside_las", "-l", type=str, help="Keep points only inside the las boundary.")
53
+ parser.add_argument(
54
+ "--dimensions",
55
+ "-d",
56
+ metavar="KEY=VALUE",
57
+ nargs="+",
58
+ help="Set a number of key-value pairs corresponding to value "
59
+ "needed in points added in the output las; key should be included in the input las.",
60
+ )
61
+ return parser.parse_args()
62
+
63
+
64
+ def is_nature(value, nature):
65
+ if value is None:
66
+ return False
67
+ try:
68
+ nature(value)
69
+ return True
70
+ except:
71
+ return False
72
+
73
+
74
+ def parse_var(s):
75
+ items = s.split("=")
76
+ key = items[0].strip()
77
+ if len(items) > 1:
78
+ value = "=".join(items[1:])
79
+ if is_nature(value, int):
80
+ value = int(value)
81
+ elif is_nature(value, float):
82
+ value = float(value)
83
+ return (key, value)
84
+
85
+
86
+ def parse_vars(items):
87
+ d = {}
88
+ if items:
89
+ for item in items:
90
+ key, value = parse_var(item)
91
+ d[key] = value
92
+ return d
93
+
94
+
95
+ if __name__ == "__main__":
96
+ args = parse_args()
97
+ added_dimensions = parse_vars(args.dimensions)
98
+ add_points_in_las(
99
+ input_las=args.input_file,
100
+ input_geo=args.input_geo_file,
101
+ output_las=args.input_file if args.output_file is None else args.output_file,
102
+ inside_las=args.inside_las,
103
+ values_dimensions=added_dimensions,
104
+ )
@@ -0,0 +1,102 @@
1
+ import geopandas as gpd
2
+ import laspy
3
+ import numpy as np
4
+ from shapely.geometry import box
5
+
6
+ from pdaltools.las_info import get_tile_origin_using_header_info
7
+
8
+
9
+ def get_tile_bbox(input_las, tile_width=1000) -> tuple:
10
+ """
11
+ Get the theoretical bounding box (xmin, ymin, xmax, ymax) of a LIDAR tile
12
+ using its origin and the predefined tile width.
13
+
14
+ Args:
15
+ input_las (str): Path to the LIDAR `.las/.laz` file.
16
+ tile_width (int): Width of the tile in meters (default: 1000).
17
+
18
+ Returns:
19
+ tuple: Bounding box as (xmin, ymin, xmax, ymax).
20
+ """
21
+ origin_x, origin_y = get_tile_origin_using_header_info(input_las)
22
+ bbox = (origin_x, origin_y - tile_width, origin_x + tile_width, origin_y)
23
+ return bbox
24
+
25
+
26
+ def clip_3d_points_to_tile(input_points: str, input_las: str, crs: str) -> gpd.GeoDataFrame:
27
+ """
28
+ Add points from a GeoJSON file in the LIDAR's tile.
29
+
30
+ Args:
31
+ input_points (str): Path to the input GeoJSON file with 3D points.
32
+ input_las (str): Path to the LIDAR `.las/.laz` file.
33
+ crs (str): CRS of the data, e.g., 'EPSG:2154'.
34
+
35
+ Return:
36
+ gpd.GeoDataFrame: Points 2d with "Z" value
37
+ """
38
+ # Compute the bounding box of the LIDAR tile
39
+ tile_bbox = get_tile_bbox(input_las)
40
+
41
+ # Read the input GeoJSON with 3D points
42
+ points_gdf = gpd.read_file(input_points)
43
+
44
+ # Ensure the CRS matches
45
+ if crs:
46
+ points_gdf = points_gdf.to_crs(crs)
47
+
48
+ # Create a polygon from the bounding box
49
+ bbox_polygon = box(*tile_bbox)
50
+
51
+ # Clip the points to the bounding box
52
+ clipped_points = points_gdf[points_gdf.intersects(bbox_polygon)].copy()
53
+
54
+ return clipped_points
55
+
56
+
57
+ def add_points_to_las(
58
+ input_points_with_z: gpd.GeoDataFrame, input_las: str, output_las: str, virtual_points_classes=66
59
+ ):
60
+ """Add points (3D points in LAZ format) by LIDAR tiles (tiling file)
61
+
62
+ Args:
63
+ input_points_with_z(gpd.GeoDataFrame): geometry columns (2D points) as encoded to WKT.
64
+ input_las (str): Path to the LIDAR tiles (LAZ).
65
+ output_las (str): Path to save the updated LIDAR file (LAS/LAZ format).
66
+ virtual_points_classes (int): The classification value to assign to those virtual points (default: 66).
67
+ """
68
+ # Check if input points are empty
69
+ if input_points_with_z.empty:
70
+ raise ValueError("No points to add. The input GeoDataFrame is empty.")
71
+
72
+ # Extract XYZ coordinates and additional attribute (classification)
73
+ x_coords = input_points_with_z.geometry.x
74
+ y_coords = input_points_with_z.geometry.y
75
+ z_coords = input_points_with_z.RecupZ
76
+ classes = virtual_points_classes * np.ones(len(input_points_with_z.index))
77
+
78
+ # Read the existing LIDAR file
79
+ with laspy.open(input_las, mode="r") as las:
80
+ las_data = las.read()
81
+ header = las.header
82
+
83
+ # Create a new header if the original header is missing or invalid
84
+ if header is None:
85
+ header = laspy.LasHeader(point_format=6, version="1.4") # Example format and version
86
+
87
+ # Append the clipped points to the existing LIDAR data
88
+ new_x = np.concatenate([las_data.x, x_coords])
89
+ new_y = np.concatenate([las_data.y, y_coords])
90
+ new_z = np.concatenate([las_data.z, z_coords])
91
+ new_classes = np.concatenate([las_data.classification, classes])
92
+
93
+ # Create a new LAS file with updated data
94
+ updated_las = laspy.LasData(header)
95
+ updated_las.x = new_x
96
+ updated_las.y = new_y
97
+ updated_las.z = new_z
98
+ updated_las.classification = new_classes
99
+
100
+ # Write the updated LAS file
101
+ with laspy.open(output_las, mode="w", header=header, do_compress=True) as writer:
102
+ writer.write_points(updated_las.points)
@@ -6,6 +6,8 @@ from typing import Dict, Tuple
6
6
  import osgeo.osr as osr
7
7
  import pdal
8
8
 
9
+ from pdaltools.pcd_info import infer_tile_origin
10
+
9
11
  osr.UseExceptions()
10
12
 
11
13
 
@@ -17,13 +19,37 @@ def las_info_metadata(filename: str):
17
19
  return metadata
18
20
 
19
21
 
20
- def get_bounds_from_header_info(metadata):
22
+ def get_bounds_from_header_info(metadata: Dict) -> Tuple[float, float, float, float]:
23
+ """Get bounds from metadata that has been extracted previously from the header of a las file
24
+
25
+ Args:
26
+ metadata (str): Dictonary containing metadata from a las file (as extracted with pipeline.quickinfo)
27
+
28
+ Returns:
29
+ Tuple[float, float, float, float]: minx, maxx, miny, maxy
30
+ """
21
31
  bounds = metadata["bounds"]
22
32
  minx, maxx, miny, maxy = bounds["minx"], bounds["maxx"], bounds["miny"], bounds["maxy"]
23
33
 
24
34
  return minx, maxx, miny, maxy
25
35
 
26
36
 
37
+ def get_tile_origin_using_header_info(filename: str, tile_width: int = 1000) -> Tuple[int, int]:
38
+ """ "Get las file theoretical origin (xmin, ymax) for a data that originates from a square tesselation/tiling
39
+ using the tesselation tile width only, directly from its path
40
+ Args:
41
+ filename (str): path to the las file
42
+ tile_width (int, optional): Tesselation tile width (in meters). Defaults to 1000.
43
+
44
+ Returns:
45
+ Tuple[int, int]: (origin_x, origin_y) tile origin coordinates = theoretical (xmin, ymax)
46
+ """
47
+ metadata = las_info_metadata(filename)
48
+ minx, maxx, miny, maxy = get_bounds_from_header_info(metadata)
49
+
50
+ return infer_tile_origin(minx, maxx, miny, maxy, tile_width)
51
+
52
+
27
53
  def get_epsg_from_header_info(metadata):
28
54
  if "srs" not in metadata.keys():
29
55
  raise RuntimeError("EPSG could not be inferred from metadata: No 'srs' key in metadata.")
@@ -1,5 +1,4 @@
1
1
  import argparse
2
- import os
3
2
 
4
3
  import pdal
5
4
  from pdaltools.las_info import get_writer_parameters_from_reader_metadata
@@ -0,0 +1,76 @@
1
+ """Tools to get information from a point cloud (points as a numpy array)"""
2
+
3
+ from typing import Tuple
4
+
5
+ import numpy as np
6
+
7
+
8
+ def infer_tile_origin(minx: float, maxx: float, miny: float, maxy: float, tile_width: int) -> Tuple[int, int]:
9
+ """Get point cloud theoretical origin (xmin, ymax) for a data that originates from a square tesselation/tiling
10
+ using the tesselation tile width only, based on the min/max values
11
+
12
+ Edge values are supposed to be included in the tile
13
+
14
+ Args:
15
+ minx (float): point cloud min x value
16
+ maxx (float): point cloud max x value
17
+ miny (float): point cloud min y value
18
+ maxy (float): point cloud max y value
19
+ tile_width (int): tile width in meters
20
+
21
+ Raises:
22
+ ValueError: In case the min and max values do not belong to the same tile
23
+
24
+ Returns:
25
+ Tuple[int, int]: (origin_x, origin_y) tile origin coordinates = theoretical (xmin, ymax)
26
+ """
27
+
28
+ minx_tile_index = np.floor(minx / tile_width)
29
+ maxx_tile_index = np.floor(maxx / tile_width) if maxx % tile_width != 0 else np.floor(maxx / tile_width) - 1
30
+ miny_tile_index = np.ceil(miny / tile_width) if miny % tile_width != 0 else np.floor(miny / tile_width) + 1
31
+ maxy_tile_index = np.ceil(maxy / tile_width)
32
+
33
+ if maxx_tile_index == minx_tile_index and maxy_tile_index == miny_tile_index:
34
+ origin_x = minx_tile_index * tile_width
35
+ origin_y = maxy_tile_index * tile_width
36
+ return origin_x, origin_y
37
+ else:
38
+ raise ValueError(
39
+ f"Min values (x={minx} and y={miny}) do not belong to the same theoretical tile as"
40
+ f"max values (x={maxx} and y={maxy})."
41
+ )
42
+
43
+
44
+ def get_pointcloud_origin_from_tile_width(
45
+ points: np.ndarray, tile_width: int = 1000, buffer_size: float = 0
46
+ ) -> Tuple[int, int]:
47
+ """Get point cloud theoretical origin (xmin, ymax) for a data that originates from a square tesselation/tiling
48
+ using the tesselation tile width only, based on the point cloud as a np.ndarray
49
+
50
+ Edge values are supposed to be included in the tile
51
+
52
+ In case buffer_size is provided, the origin will be calculated on an "original" tile, supposing that
53
+ there has been a buffer added to the input tile.
54
+
55
+ Args:
56
+ points (np.ndarray): numpy array with the tile points
57
+ tile_width (int, optional): Edge size of the square used for tiling. Defaults to 1000.
58
+ buffer_size (float, optional): Optional buffer around the tile. Defaults to 0.
59
+
60
+ Raises:
61
+ ValueError: Raise an error when the initial tile is smaller than the buffer (in this case, we cannot find the
62
+ origin (it can be either in the buffer or in the tile))
63
+
64
+ Returns:
65
+ Tuple[int, int]: (origin_x, origin_y) origin coordinates
66
+ """
67
+ # Extract coordinates xmin, xmax, ymin and ymax of the original tile without buffer
68
+ minx, miny = np.min(points[:, :2], axis=0) + buffer_size
69
+ maxx, maxy = np.max(points[:, :2], axis=0) - buffer_size
70
+
71
+ if maxx < minx or maxy < miny:
72
+ raise ValueError(
73
+ "Cannot find pointcloud origin as the pointcloud width or height is smaller than buffer width"
74
+ )
75
+
76
+ return infer_tile_origin(minx, maxx, miny, maxy, tile_width)
@@ -19,6 +19,7 @@ import pdal
19
19
 
20
20
  from pdaltools.unlock_file import copy_and_hack_decorator
21
21
 
22
+ # Standard parameters to pass to the pdal writer
22
23
  STANDARD_PARAMETERS = dict(
23
24
  major_version="1",
24
25
  minor_version="4", # Laz format version (pdal always write in 1.x format)
@@ -33,7 +34,6 @@ STANDARD_PARAMETERS = dict(
33
34
  offset_z=0,
34
35
  dataformat_id=6, # No color by default
35
36
  a_srs="EPSG:2154",
36
- class_points_removed=[], # remove points from class
37
37
  )
38
38
 
39
39
 
@@ -0,0 +1,72 @@
1
+ import pytest
2
+ import os
3
+ import random as rand
4
+ import tempfile
5
+ import math
6
+
7
+ import pdal
8
+
9
+ import geopandas as gpd
10
+ from shapely.geometry import Point
11
+
12
+ from pdaltools import add_points_in_las
13
+
14
+ numeric_precision = 4
15
+
16
+ TEST_PATH = os.path.dirname(os.path.abspath(__file__))
17
+ INPUT_DIR = os.path.join(TEST_PATH, "data")
18
+ INPUT_LAS = os.path.join(INPUT_DIR, "test_data_77055_627760_LA93_IGN69.laz")
19
+
20
+ Xmin = 770575
21
+ Ymin = 6277575
22
+ Zmin = 20
23
+ Size = 20
24
+
25
+ def distance3D(pt_geo, pt_las):
26
+ return round(
27
+ math.sqrt((pt_geo.x - pt_las['X']) ** 2 + (pt_geo.y - pt_las['Y']) ** 2 + (pt_geo.z - pt_las['Z']) ** 2),
28
+ numeric_precision,
29
+ )
30
+
31
+ def add_point_in_las(pt_geo, inside_las):
32
+ geom = [pt_geo]
33
+ series = gpd.GeoSeries(geom, crs="2154")
34
+
35
+ with tempfile.NamedTemporaryFile(suffix="_geom_tmp.las") as out_las_file:
36
+ with tempfile.NamedTemporaryFile(suffix="_geom_tmp.geojson") as geom_file:
37
+ series.to_file(geom_file.name)
38
+
39
+ added_dimensions = {"Classification":64, "Intensity":1.}
40
+ add_points_in_las.add_points_in_las(INPUT_LAS, geom_file.name, out_las_file.name, inside_las, added_dimensions)
41
+
42
+ pipeline = pdal.Pipeline() | pdal.Reader.las(out_las_file.name)
43
+ pipeline.execute()
44
+ points_las = pipeline.arrays[0]
45
+ points_las = [e for e in points_las if all(e[val] == added_dimensions[val] for val in added_dimensions)]
46
+ return points_las
47
+
48
+ def test_add_point_inside_las():
49
+ X = Xmin + rand.uniform(0, 1) * Size
50
+ Y = Ymin + rand.uniform(0, 1) * Size
51
+ Z = Zmin + rand.uniform(0, 1) * 10
52
+ pt_geo = Point(X, Y, Z)
53
+ points_las = add_point_in_las(pt_geo=pt_geo, inside_las=True)
54
+ assert len(points_las) == 1
55
+ assert distance3D(pt_geo, points_las[0]) < 1 / numeric_precision
56
+
57
+ def test_add_point_outside_las_no_control():
58
+ X = Xmin + rand.uniform(2, 3) * Size
59
+ Y = Ymin + rand.uniform(0, 1) * Size
60
+ Z = Zmin + rand.uniform(0, 1) * 10
61
+ pt_geo = Point(X, Y, Z)
62
+ points_las = add_point_in_las(pt_geo=pt_geo, inside_las=False)
63
+ assert len(points_las) == 1
64
+ assert distance3D(pt_geo, points_las[0]) < 1 / numeric_precision
65
+
66
+ def test_add_point_outside_las_with_control():
67
+ X = Xmin + rand.uniform(2, 3) * Size
68
+ Y = Ymin + rand.uniform(2, 3) * Size
69
+ Z = Zmin + rand.uniform(0, 1) * 10
70
+ pt_geo = Point(X, Y, Z)
71
+ points_las = add_point_in_las(pt_geo=pt_geo, inside_las=True)
72
+ assert len(points_las) == 0
@@ -0,0 +1,82 @@
1
+ import os
2
+ from pathlib import Path
3
+
4
+ import pdal
5
+
6
+ from pdaltools import add_points_in_pointcloud
7
+
8
+ TEST_PATH = os.path.dirname(os.path.abspath(__file__))
9
+ TMP_PATH = os.path.join(TEST_PATH, "data/output")
10
+ DATA_LIDAR_PATH = os.path.join(TEST_PATH, "data/decimated_laz")
11
+ DATA_POINTS_PATH = os.path.join(TEST_PATH, "data/points_3d")
12
+
13
+ INPUT_FILE = os.path.join(DATA_LIDAR_PATH, "test_semis_2023_0292_6833_LA93_IGN69.laz")
14
+ INPUT_POINTS = os.path.join(DATA_POINTS_PATH, "Points_virtuels_0292_6833.geojson")
15
+ OUTPUT_FILE = os.path.join(TMP_PATH, "test_semis_2023_0292_6833_LA93_IGN69.laz")
16
+
17
+ INPUT_FILE_SMALL = os.path.join(DATA_LIDAR_PATH, "test_semis_2021_0382_6565_LA93_IGN69.laz")
18
+ INPUT_POINTS_SMALL = os.path.join(DATA_POINTS_PATH, "Points_virtuels_0382_6565.geojson")
19
+ OUTPUT_FILE_SMALL = os.path.join(TMP_PATH, "test_semis_2021_0382_6565_LA93_IGN69.laz")
20
+
21
+
22
+ def setup_module(module):
23
+ os.makedirs("test/data/output", exist_ok=True)
24
+
25
+
26
+ def test_get_tile_bbox():
27
+ bbox = add_points_in_pointcloud.get_tile_bbox(INPUT_FILE, 1000)
28
+ assert bbox == (292000.0, 6832000.0, 293000.0, 6833000.0) # check the bbox from LIDAR tile
29
+
30
+
31
+ def test_clip_3d_points_to_tile():
32
+ points_clipped = add_points_in_pointcloud.clip_3d_points_to_tile(INPUT_POINTS, INPUT_FILE, "EPSG:2154")
33
+ assert len(points_clipped) == 678 # chech the entity's number of points
34
+
35
+
36
+ def test_add_line_to_lidar():
37
+ points_clipped = add_points_in_pointcloud.clip_3d_points_to_tile(INPUT_POINTS, INPUT_FILE, "EPSG:2154")
38
+
39
+ add_points_in_pointcloud.add_points_to_las(points_clipped, INPUT_FILE, OUTPUT_FILE, 68)
40
+ assert Path(OUTPUT_FILE).exists() # check output exists
41
+
42
+ # Filter pointcloud by classes
43
+ pipeline = (
44
+ pdal.Reader.las(filename=OUTPUT_FILE, nosrs=True)
45
+ | pdal.Filter.range(
46
+ limits="Classification[68:68]",
47
+ )
48
+ | pdal.Filter.stats()
49
+ )
50
+ pipeline.execute()
51
+ metadata = pipeline.metadata
52
+ # Count the pointcloud's number from classe "68"
53
+ point_count = metadata["metadata"]["filters.stats"]["statistic"][0]["count"]
54
+ assert point_count == 678
55
+
56
+
57
+ def test_get_tile_bbox_small():
58
+ # Tile is not complete (NOT 1km * 1km)
59
+ bbox = add_points_in_pointcloud.get_tile_bbox(INPUT_FILE_SMALL, 1000)
60
+ assert bbox == (382000.0, 6564000.0, 383000.0, 6565000.0) # return BBOX 1km * 1km
61
+
62
+
63
+ def test_add_line_to_lidar_small():
64
+ # Tile is not complete (NOT 1km * 1km)
65
+ points_clipped = add_points_in_pointcloud.clip_3d_points_to_tile(INPUT_POINTS_SMALL, INPUT_FILE_SMALL, "EPSG:2154")
66
+
67
+ add_points_in_pointcloud.add_points_to_las(points_clipped, INPUT_FILE_SMALL, OUTPUT_FILE_SMALL, 68)
68
+ assert Path(OUTPUT_FILE).exists() # check output exists
69
+
70
+ # Filter pointcloud by classes
71
+ pipeline = (
72
+ pdal.Reader.las(filename=OUTPUT_FILE_SMALL, nosrs=True)
73
+ | pdal.Filter.range(
74
+ limits="Classification[68:68]",
75
+ )
76
+ | pdal.Filter.stats()
77
+ )
78
+ pipeline.execute()
79
+ metadata = pipeline.metadata
80
+ # Count the pointcloud's number from classe "68"
81
+ point_count = metadata["metadata"]["filters.stats"]["statistic"][0]["count"]
82
+ assert point_count == 186
@@ -40,6 +40,11 @@ def test_get_bounds_from_quickinfo_metadata():
40
40
  assert bounds == (INPUT_MINS[0], INPUT_MAXS[0], INPUT_MINS[1], INPUT_MAXS[1])
41
41
 
42
42
 
43
+ def test_get_tile_origin_using_header_info():
44
+ origin_x, origin_y = las_info.get_tile_origin_using_header_info(INPUT_FILE, tile_width=TILE_WIDTH)
45
+ assert (origin_x, origin_y) == (COORD_X * TILE_COORD_SCALE, COORD_Y * TILE_COORD_SCALE)
46
+
47
+
43
48
  def test_get_epsg_from_quickinfo_metadata_ok():
44
49
  metadata = las_info.las_info_metadata(INPUT_FILE)
45
50
  assert las_info.get_epsg_from_header_info(metadata) == "2154"
@@ -0,0 +1,87 @@
1
+ import os
2
+
3
+ import laspy
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pdaltools import pcd_info
8
+
9
+ TEST_PATH = os.path.dirname(os.path.abspath(__file__))
10
+ TMP_PATH = os.path.join(TEST_PATH, "tmp")
11
+ DATA_PATH = os.path.join(TEST_PATH, "data")
12
+
13
+
14
+ @pytest.mark.parametrize(
15
+ "minx, maxx, miny, maxy, expected_origin",
16
+ [
17
+ (501, 999, 501, 999, (0, 1000)), # points in the second half
18
+ (1, 400, 1, 400, (0, 1000)), # points in the first half
19
+ (500, 1000, 500, 500, (0, 1000)), # xmax on edge and xmin in the tile
20
+ (0, 20, 500, 500, (0, 1000)), # xmin on edge and xmax in the tile
21
+ (950, 1000, 500, 500, (0, 1000)), # xmax on edge and xmin in the tile
22
+ (500, 500, 980, 1000, (0, 1000)), # ymax on edge and ymin in the tile
23
+ (500, 500, 0, 20, (0, 1000)), # ymin on edge and ymax in the tile
24
+ (0, 1000, 0, 1000, (0, 1000)), # points at each corner
25
+ ],
26
+ )
27
+ def test_infer_tile_origin_edge_cases(minx, maxx, miny, maxy, expected_origin):
28
+ origin_x, origin_y = pcd_info.infer_tile_origin(minx, maxx, miny, maxy, tile_width=1000)
29
+ assert (origin_x, origin_y) == expected_origin
30
+
31
+
32
+ @pytest.mark.parametrize(
33
+ "minx, maxx, miny, maxy",
34
+ [
35
+ (0, 20, -1, 20), # ymin slightly outside the tile
36
+ (-1, 20, 0, 20), # xmin slightly outside the tile
37
+ (280, 1000, 980, 1001), # ymax slightly outside the tile
38
+ (980, 1001, 980, 1000), # xmax slightly outside the tile
39
+ (-1, 1000, 0, 1000), # xmax on edge but xmin outside the tile
40
+ (0, 1000, 0, 1001), # ymin on edge but ymax outside the tile
41
+ (0, 1001, 0, 1000), # xmin on edge but xmax outside the tile
42
+ (0, 1000, -1, 1000), # ymax on edge but ymin outside the tile
43
+ ],
44
+ )
45
+ def test_infer_tile_origin_edge_cases_fail(minx, maxx, miny, maxy):
46
+ with pytest.raises(ValueError):
47
+ pcd_info.infer_tile_origin(minx, maxx, miny, maxy, tile_width=1000)
48
+
49
+
50
+ @pytest.mark.parametrize(
51
+ "input_points",
52
+ [
53
+ (np.array([[0, -1, 0], [20, 20, 0]])), # ymin slightly outside the tile
54
+ (np.array([[-1, 0, 0], [20, 20, 0]])), # xmin slightly outside the tile
55
+ (np.array([[980, 980, 0], [1000, 1001, 0]])), # ymax slightly outside the tile
56
+ (np.array([[980, 980, 0], [1001, 1000, 0]])), # xmax slightly outside the tile
57
+ (np.array([[-1, 0, 0], [1000, 1000, 0]])), # xmax on edge but xmin outside the tile
58
+ (np.array([[0, 0, 0], [1000, 1001, 0]])), # ymin on edge but ymax outside the tile
59
+ (np.array([[0, 0, 0], [1001, 1000, 0]])), # xmin on edge but xmax outside the tile
60
+ (np.array([[0, -1, 0], [1000, 1000, 0]])), # ymax on edge but ymin outside the tile
61
+ ],
62
+ )
63
+ def test_get_pointcloud_origin_edge_cases_fail(input_points):
64
+ with pytest.raises(ValueError):
65
+ pcd_info.get_pointcloud_origin_from_tile_width(points=input_points, tile_width=1000)
66
+
67
+
68
+ def test_get_pointcloud_origin_on_file():
69
+ input_las = os.path.join(DATA_PATH, "test_data_77055_627760_LA93_IGN69.laz")
70
+ expected_origin = (770550, 6277600)
71
+ LAS = laspy.read(input_las)
72
+ INPUT_POINTS = np.vstack((LAS.x, LAS.y, LAS.z)).transpose()
73
+
74
+ origin_x, origin_y = pcd_info.get_pointcloud_origin_from_tile_width(points=INPUT_POINTS, tile_width=50)
75
+ assert (origin_x, origin_y) == expected_origin
76
+ origin_x_2, origin_y_2 = pcd_info.get_pointcloud_origin_from_tile_width(
77
+ points=INPUT_POINTS, tile_width=10, buffer_size=20
78
+ )
79
+ assert (origin_x_2, origin_y_2) == (expected_origin[0] + 20, expected_origin[1] - 20)
80
+
81
+
82
+ def test_get_pointcloud_origin_fail_on_buffersize():
83
+ with pytest.raises(ValueError):
84
+ # Case when buffer size is bigger than the tile extremities (case not handled)
85
+ points = np.array([[0, 0, 0], [20, 20, 0]])
86
+ buffer_size = 30
87
+ pcd_info.get_pointcloud_origin_from_tile_width(points=points, tile_width=1000, buffer_size=buffer_size)
@@ -1,46 +0,0 @@
1
- """Tools to get information from a point cloud (points as a numpy array)"""
2
-
3
- from typing import Tuple
4
-
5
- import numpy as np
6
-
7
-
8
- def get_pointcloud_origin_from_tile_width(
9
- points: np.ndarray, tile_width: int = 1000, buffer_size: float = 0
10
- ) -> Tuple[int, int]:
11
- """Get point cloud theoretical origin (xmin, ymax) for a data that originates from a square tesselation/tiling
12
- using the tesselation tile width only.
13
-
14
- Edge values are supposed to be included in the tile
15
-
16
-
17
- Args:
18
- points (np.ndarray): numpy array with the tile points
19
- tile_width (int, optional): Edge size of the square used for tiling. Defaults to 1000.
20
- buffer_size (float, optional): Optional buffer around the tile. Defaults to 0.
21
-
22
- Raises:
23
- ValueError: Raise an error when the bounding box of the tile is not included in a tile
24
-
25
- Returns:
26
- Tuple[int, int]: (origin_x, origin_y) origin coordinates
27
- """
28
- # Extract coordinates xmin, xmax, ymin and ymax of the original tile without buffer
29
- x_min, y_min = np.min(points[:, :2], axis=0) + buffer_size
30
- x_max, y_max = np.max(points[:, :2], axis=0) - buffer_size
31
-
32
- # Calculate the tiles to which x, y bounds belong
33
- tile_x_min = np.floor(x_min / tile_width)
34
- tile_x_max = np.floor(x_max / tile_width) if x_max % tile_width != 0 else np.floor(x_max / tile_width) - 1
35
- tile_y_min = np.ceil(y_min / tile_width) if y_min % tile_width != 0 else np.floor(y_min / tile_width) + 1
36
- tile_y_max = np.ceil(y_max / tile_width)
37
-
38
- if not (tile_x_max - tile_x_min) and not (tile_y_max - tile_y_min):
39
- origin_x = tile_x_min * tile_width
40
- origin_y = tile_y_max * tile_width
41
- return origin_x, origin_y
42
- else:
43
- raise ValueError(
44
- f"Min values (x={x_min} and y={y_min}) do not belong to the same theoretical tile as"
45
- f"max values (x={x_max} and y={y_max})."
46
- )
@@ -1,61 +0,0 @@
1
- import os
2
-
3
- import laspy
4
- import numpy as np
5
- import pytest
6
-
7
- from pdaltools import pcd_info
8
-
9
- TEST_PATH = os.path.dirname(os.path.abspath(__file__))
10
- TMP_PATH = os.path.join(TEST_PATH, "tmp")
11
- DATA_PATH = os.path.join(TEST_PATH, "data")
12
-
13
-
14
- @pytest.mark.parametrize(
15
- "input_points, expected_origin",
16
- [
17
- (np.array([[501, 501, 0], [999, 999, 0]]), (0, 1000)), # points in the second half
18
- (np.array([[1, 1, 0], [400, 400, 0]]), (0, 1000)), # points in the frist half
19
- (np.array([[500, 500, 0], [1000, 500, 0]]), (0, 1000)), # xmax on edge and xmin in the tile
20
- (np.array([[0, 500, 0], [20, 500, 0]]), (0, 1000)), # xmin on edge and xmax in the tile
21
- (np.array([[950, 500, 0], [1000, 500, 0]]), (0, 1000)), # xmax on edge and xmin in the tile
22
- (np.array([[500, 980, 0], [500, 1000, 0]]), (0, 1000)), # ymax on edge and ymin in the tile
23
- (np.array([[500, 0, 0], [500, 20, 0]]), (0, 1000)), # ymin on edge and ymax in the tile
24
- (np.array([[0, 0, 0], [1000, 1000, 0]]), (0, 1000)), # points at each corner
25
- ],
26
- )
27
- def test_get_pointcloud_origin_edge_cases(input_points, expected_origin):
28
- origin_x, origin_y = pcd_info.get_pointcloud_origin_from_tile_width(points=input_points, tile_width=1000)
29
- assert (origin_x, origin_y) == expected_origin
30
-
31
-
32
- @pytest.mark.parametrize(
33
- "input_points",
34
- [
35
- (np.array([[0, -1, 0], [20, 20, 0]])), # ymin slightly outside the tile
36
- (np.array([[-1, 0, 0], [20, 20, 0]])), # xmin slightly outside the tile
37
- (np.array([[980, 980, 0], [1000, 1001, 0]])), # ymax slightly outside the tile
38
- (np.array([[980, 980, 0], [1001, 1000, 0]])), # xmax slightly outside the tile
39
- (np.array([[-1, 0, 0], [1000, 1000, 0]])), # xmax on edge but xmin outside the tile
40
- (np.array([[0, 0, 0], [1000, 1001, 0]])), # ymin on edge but ymax outside the tile
41
- (np.array([[0, 0, 0], [1001, 1000, 0]])), # xmin on edge but xmax outside the tile
42
- (np.array([[0, -1, 0], [1000, 1000, 0]])), # ymax on edge but ymin outside the tile
43
- ],
44
- )
45
- def test_get_pointcloud_origin_edge_cases_fail(input_points):
46
- with pytest.raises(ValueError):
47
- pcd_info.get_pointcloud_origin_from_tile_width(points=input_points, tile_width=1000)
48
-
49
-
50
- def test_get_pointcloud_origin_on_file():
51
- input_las = os.path.join(DATA_PATH, "test_data_77055_627760_LA93_IGN69.laz")
52
- expected_origin = (770550, 6277600)
53
- LAS = laspy.read(input_las)
54
- INPUT_POINTS = np.vstack((LAS.x, LAS.y, LAS.z)).transpose()
55
-
56
- origin_x, origin_y = pcd_info.get_pointcloud_origin_from_tile_width(points=INPUT_POINTS, tile_width=50)
57
- assert (origin_x, origin_y) == expected_origin
58
- origin_x_2, origin_y_2 = pcd_info.get_pointcloud_origin_from_tile_width(
59
- points=INPUT_POINTS, tile_width=10, buffer_size=20
60
- )
61
- assert (origin_x_2, origin_y_2) == (expected_origin[0] + 20, expected_origin[1] - 20)
File without changes